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The structure dilemma in biological 
and artificial neural networks
Thomas Pircher1,3*, Bianca Pircher2,3, Eberhard Schlücker1 & Andreas Feigenspan2

Brain research up to date has revealed that structure and function are highly related. Thus, for 
example, studies have repeatedly shown that the brains of patients suffering from schizophrenia 
or other diseases have a different connectome compared to healthy people. Apart from stochastic 
processes, however, an inherent logic describing how neurons connect to each other has not yet been 
identified. We revisited this structural dilemma by comparing and analyzing artificial and biological-
based neural networks. Namely, we used feed-forward and recurrent artificial neural networks as 
well as networks based on the structure of the micro-connectome of C. elegans and of the human 
macro-connectome. We trained these diverse networks, which markedly differ in their architecture, 
initialization and pruning technique, and we found remarkable parallels between biological-based and 
artificial neural networks, as we were additionally able to show that the dilemma is also present in 
artificial neural networks. Our findings show that structure contains all the information, but that this 
structure is not exclusive. Indeed, the same structure was able to solve completely different problems 
with only minimal adjustments. We particularly put interest on the influence of weights and the 
neuron offset value, as they show a different adaption behaviour. Our findings open up new questions 
in the fields of artificial and biological information processing research.

Going far beyond the obvious macroscopic structure of the brain, which hardly differs between human individu-
als, various authors postulated a coupling of structure and function1–3. Neurons, hubs, or in graph theory called 
nodes, with similar connection patterns often show similar functionality4,5. On the contrary, several studies have 
repeatedly shown that the brains of patients suffering from schizophrenia or other neurological diseases, have a 
different connectome than healthy people6,7. This is particularly evident in patients suffering from severe stroke, 
other lesions within the central nervous system or after a massive hemispherectomy, in which the entire right 
hemisphere has been removed. Despite these damages, several patients have been able to learn to speak again, 
and they acquired all language-related abilities8. Although their brains showed an altered structure, it included 
strongly preserved parts of the initial brain regions responsible for language processing8,9.

Nevertheless, and this inevitably leads to a highly discussed paradox and known as the structure dilemma2, it 
must be acknowledged that this structure is not exclusive. There is no ‘master plan’ of the brain, no fixed wiring 
diagram, nor a completely determined structure defined in each individual’s genetic code. While genetics ensures 
that essential, mainly macroscopic, structures develop in an appropriate spatiotemporal pattern, subsequent 
refining steps, as the wiring between individual neurons, are thought to be influenced to a large extent by ran-
domness. Early anatomical studies of different brain regions support the notion of a high degree of randomness 
during network formation in the developing brain10–13 and the ongoing learning process in the adult brain5. 
Braitenberg and Schüz even describe the cortex as a ‘mixing device’, whose connections are set up in a largely 
random manner14. Probably the most spectacular example of a healthy human brain is that of a 44 year-old man 
with a massive ventricular enlargement resulting in an grossly altered structure of the entire brain15.

Indeed, also artificial neural networks (ANNs) have revealed similar representations for both sides of the 
dilemma16. On the one hand, calculations with ANNs, as for example random initialization methods, suggest a 
high degree of randomness, but it has also been found that subnets or, in other words, a pre-set structure, take 
over problem solving17,18. These subnetworks, in this recent publication described as winning tickets17, ‘win 
the initialization lottery’, as their initial weights were able to solve problems with unsurpassed accuracy. Since 
artificial neural networks are confronted with ever more complex problems, whereas computing power is not 
unlimited, techniques to reduce the general network size have been developed19,20. An elimination of unneces-
sary weights from a neural network is called pruning and indeed, it has been shown that the network size can 
be reduced by more than 90% without a significant loss of accuracy17,21,22. These phenomena are based on the 
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findings that not all parts of a network are equally important. Based on these ideas, we considered these sparse 
(in contrast to dense networks, in which every neuron is connected to each other) artificial neural networks as 
graphs and separated the raw structure. That means that the connections within the network are only defined 
as activating, inhibiting or non-existing (illustrated in Fig. 1). Consequently, in this paper the ‘structure’ always 
refers to the specific connections within these sparse networks and therefore is considered as the graph theoretical 
connectome of the artificial neural network. The biological connectome was likewise described and analysed as 
a graph2,23–25, which allows a comparison and analysis of both network structures.

The aim of this paper is to compare information processing in biological neural networks with that in ANNs, 
to get a deeper insight into the structural dilemma of both, types of neural networks. For a valid comparison and 
an interdisciplinary approach we carried out diverse experiments with artificial neural networks, including two 
feed-forward and two recurrent architectures, as well as two biologically-based neural networks. As biological 
networks we used the wiring diagram of the male C. elegans26, as the only living organism whose neural system 
has been mapped in its entirety, representing the micro-connectome level, and second, the functional connectome 
data of healthy patients representing the macro-connectome level27. Experiments for all networks were performed 
with different initialization and pruning methods, on different training sets, as well as with disturbed or blocked 
weights and bias values during the training process. The bias value is a parameter in the calculations of artificial 
neural networks that provides an additive offset for each neuron to adjust its sensitivity to its activation. To avoid 
any misunderstandings in the context of the word bias, we will refer to it as the ‘neuron offset value’.

Through this systematic analysis we wanted to gain a deeper insight into the relevance of the structure for 
information processing and to understand the dilemma from a technical perspective.

Results
Structure contains the information.  We mentioned in the introduction that in biological systems the 
neuronal structure apparently contributes considerably to information processing. When transferring this 
approach to artificial neural networks, three questions arise: (1) how much information does the structure of 
an ANN contain related to the weights, (2) does a functional biological network with its distinct structure can 
be translated in an artificial neural network, and (3) which changes arise in relation to learning performance 
and characteristics, when computing these technically transferred networks? To answer these questions we per-
formed several experiments and tried to implement biological connectomes as artificial neural networks. In the 
following we will refer to them as biological-based neural networks (BBNN). For this purpose, we first used 
the micro-connectome of chemical connections of C. elegans26 and transformed it in a recurrent and a feed-
forward architecture with similar distributed path lengths (see “Methods” for a detailed description). Indeed, 
as the learning curves in Fig. 2A shows, the raw structure of the nematode neurons were also able to learn like 
an ANN. The feed-forward configuration is printed in dashed lines, whereas the solid lines show the recurrent 
architecture. The feed-forward architecture reaches an accuracy of approximately 90% , whereas the recurrent 
configuration reaches 93% accuracy after 30 epochs of learning.

In addition, we initialized the network with either winning ticket17 (orange) or structure implantation (pur-
ple) to investigate whether the pre-trained structure contains enough or the same information as the weights 
themselves. In contrast to the winning ticket initialization, in which this structure including its weights has been 
implanted, the structure implantation only initialized the structure with fixed values for the categories exciting, 
inhibiting, and no connections (explained in Fig. 1), but without any distinct information about the weights. 
Despite the fact that weight information was not provided, both C. elegans configurations showed approximately 
the same accuracy (95% in the recurrent architecture), whereas the faster approach was particularly pronounced 
in the feed-forward architecture. This result is also obtained for the commonly used LeNet 4x300 (see Fig. 2B). 
Here, the faster approximation of a learned state, as the gradient of the accuracy became small and there was 
no improvement in subsequent learning epochs, is noteworthy. Other initialization methods as dense or sparse 
diversity (see “Methods”) did not show significant improvements in relation to the random glorot initialization 
(best case of learn curve sum max t = 1.11 with min p = 0.14 ). The significance level is 5% . A minor optimisation 

Figure 1.   Schematic of converting a dense network into a sparse graph by choosing the five strongest edges. 
Weak edges are interpreted as a not existing connection (A � B). Positive weights are activating (A → C, C → E, 
D → E) and negative weights are inhibiting (A ⊣ D, B ⊣ E) connections.
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was obtained by lightning28, which outperforms the other random initialization methods (worst case of learn 
curve sum min t = 6.75 with max p = 1.26 · 10−6 ). Figure 2C shows the learning curve of a recurrent network 
in a random G(n, p) configuration with 1194 nodes. Although all three learning methods show approximately 
the same behaviour and final result, both winning ticket and raw display, in contrast to the structure implantation 

Figure 2.   Learning curves showing the validation accuracy of different networks over 30 epochs of learning 
with different initialization methods for the MNIST problem. Error bars show standard deviation over ten 
independent random iterations. (A) C. elegans biological-based recurrent (solid lines) and feed forward network 
(dashed lines). (B) Feed forward network LeNet 4x300. (C) G(n, p) 1194. 

Table 1.   Endangered by alpha value inflation accuracy t-test for ‘small world 1194 is best’. i—structure 
implantation.

Data set Experiment t p (%)

MNIST i 3.02 0.37

Fashion-MNIST
Raw 3.84 0.06

i 2.88 0.50

Figure 3.   Best accuracy of the recurrent experiments. Error bars show standard deviation over ten independent 
random iterations. I—iterative pruning, B—bio pruning; W—winning ticket, i—structure implantation.
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great fluctuations in their accuracy during learning iterations. This may be caused by a possible restriction due 
to the specification of too concrete weights, which could be exactly the wrong ones for this particular learning 
process state. It seems that an initialization with only the structure and no weight information is more successful. 
Therefore, it can be stated that the structure already contains all needed information.

To examine this in more detail, we trained eight different networks on two training data sets with different 
initialization and pruning methods and compared them by their best accuracy (Fig. 3). In particular, we used 
recurrent networks with 1194 and 177 nodes in a random G(n, p) configuration or with a small world archi-
tecture, respectively (the uniform and IRNN configurations are shown in the Supplementary Material). This 
decision was based on recent findings in biological and artificial neural networks. Brain networks indeed show 
the defined high clustering and short path length topology29 as demonstrated by various neuroimaging studies30 
and calculations31. Also in a technical context, it has been shown that in feed-forward networks a small world 
architecture positively influences learning time and error probability32–35. In addition, we calculated two different 
BBNNs. First,the naturally occurring micro-connectome of C. elegans26, as well as in the previously described 
recurrent and its feed-forward configuration; and second, technically transferred human connectomes36 (the 177 
node recurrent networks were the corresponding random reference).

Table 2.   Accuracy t-test for ‘small world 177 is better than G(n, p) 177’. I—iterative pruning, B—bio pruning; 
W—winning ticket, i—structure implantation.

Data set Experiment t p (%)

MNIST

Raw 1.34 9.91

Raw I − 2.88 0.50

Raw B − 1.27 11.4

W 0.81 21.5

i 0.49 31.4

iI − 1.88 3.79

iB 2.22 1.96

Fashion-MNIST

Raw − 0.43 33.5

Raw I − 0.67 25.5

Raw B − 1.06 15.1

W 3.31 0.20

i 0.15 44.2

iI − 3.53 0.12

iB − 4.02 0.04

Table 3.   Accuracy and learn curve sum t-test for ‘structure implantation is better than winning ticket’ (negative 
values indicating winning ticket is better than structure implantation).

Data set Architecture

Best accuracy
Learn curve 
sum

Difference (%) t p (%) t p (%)

MNIST

G(n, p) 1194 −0.03 − 0.62 27.1 6.53 0.00

Small world 1194 −0.14 − 4.20 0.03 1.12 13.8

G(n, p) 177 −2.90 − 7.09 0.00 − 3.84 0.06

Small world 177 −2.71 − 8.83 0.00 − 7.74 0.00

Connectome −0.05 − 0.32 37.8 1.88 3.80

C. elegans G(n, p) 0.05 0.34 36.7 2.22 1.99

C. elegans LeNet 0.41 5.89 0.00 9.25 0.00

C. elegans 0.19 1.92 3.52 − 0.15 44.1

Fashion- MNIST

G(n, p) 1194 0.68 4.73 0.01 4.69 0.01

Small world 1194 −0.02 − 0.13 44.9 1.81 4.33

G(n, p) 177 −1.77 − 6.71 0.00% − 8.93 0.00

Small world 177 −2.26 − 7.08 0.00 − 8.34 0.00

Connectome 0.13 0.76 22.7 1.79 4.51

C. elegans G(n, p) 0.26 1.19 12.4 0.11 45.6

C. elegans LeNet 0.30 3.97 0.05 5.93 0.00

C. elegans 0.41 1.75 4.84 1.85 4.01
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Leading in the comparison of the best accuracy of recurrent networks were the networks with 1194 nodes, 
whereby the small world architecture performed even better (worst not alpha value inflation endangered case 
for MNIST min t = 5.16 with max p = 3.25 · 10−5 ; worst not alpha value inflation endangered case for Fashion-
MNIST min t = 6.61 with max p = 1.67 · 10−6 ). The alpha inflation endangered cases are listed in Table 1, which 
based on m = 88 data accesses and the Bonferroni correction p ≤

α
m = 0.057% . These findings seem to put into 

perspective previous results of advantages of a network with small world architecture32,33. However, it should be 
kept in mind that we have only considered recurrent networks, but not the modified version of a feed-forward 
network, as it was used in e. p.34. The size of the network must also be taken into account here. The effect of a 
considerable improvement only occurred in larger networks. In the smaller 177 node configuration no consist-
ent behavior in the accuracy could be observed as shown in Table 2, whereby here pruning had strong negative 
effects on the accuracy. The profitable benefits of this specialized structure seem to be cancelled out if the com-
puting capacity is not large enough. Table 3 shows additionally the statistical t-test results on the best accuracy 
and the learn curves sum for the different architectures. In general structure implantation and winning ticket 
perform similar. Structure implantation performs better related to the learn curve sum, excepted for the small 
177 architectures. In some cases winning ticket is better than structure implantation related to the best accuracy, 
but the differences are very small. The values are only definite for the small random networks (G(n, p) 177 and 
small world 177) where winning ticket is clearly better.

Another argument supporting this hypothesis concerns the results of C. elegans. In the ranking of the best 
accuracy, C. elegans in its unpruned configurations can be positioned directly after the 1194 nets (worst not alpha 
value inflation endangered significant case for MNIST min t = 7.88 with max p = 1.52 · 10−7 ; worst significant 
case for Fashion-MNIST min t = 3.96 with max p = 4.64 · 10−4 ). Table 4 shows the cases that are not significant. 
The unrestricted network showed the best results (worst case for MNIST min t = 7.54 with max p = 2.80 · 10−7 ; 
worst case for Fashion-MNIST min t = 11.0 with max p = 1.02 · 10−9 ), whereas in the pruning experiments 

Table 4.   Exceptions and alpha value inflation endangered cases for the accuracy t-test for ‘C. elegans is the 
third best’. W—winning ticket, i—structure implantation.

Data set Architecture Experiment t p (%)

MNIST C. elegans G(n, p) reference

Raw 0.37 35.8

W 1.53 7.23

i 3.18 0.26

Fashion-MNIST

G(n, p) 177 W 3.85 0.06

Small world 177 W 1.50 7.54

C. elegans G(n, p) reference

Raw 0.29 38.7

W 0.13 45.0

i 1.18 12.6

Table 5.   Exceptions and alpha value inflation endangered cases for the accuracy t-test for largest decline for 
not pre-trained pruning by C. elegans. I—iterative pruning, B—bio pruning; i—structure implantation.

Data set Pre-trained Not pre-trained t p (%)

MNIST
iI Raw I 3.30 0.20

iB Raw I 3.45 0.14

Fashion-MNIST

iI Raw I 1.57 6.68

iB Raw I 1.44 8.37

iI Raw B 1.80 4.41

iB Raw B 1.70 5.32

Table 6.   Accuracy t-test for improvement through pre-trained information for C. elegans. W—winning ticket, 
i—structure implantation.

Data set Pre-training t p (%)

MNIST
W 1.60 6.35

i 3.24 0.22

Fashion-MNIST
W 0.19 42.4

i 2.49 5.32
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without pre-trained initialization it displayed the largest decline (worst not alpha value inflation endangered case 
for MNIST min t = 4.55 with max p = 1.24 · 10−4 ; worst significant case for Fashion-MNIST min t = 11.0 with 
max p = 1.09 · 10−9 ). Table 5 shows the not significant cases. These results are understandable since the neural 
structure of C. elegans was not optimised to solve the MNIST problem. Neurobiological research postulated that 
a specialized structure is always coupled with a certain function2,3. However, the structure needs to be changed 
only slightly so that it can solve this synthetic task more effectively, as evident in comparison with the C. elegans 
G(n, p) reference variant (not significant cases are shown in Table 4). The use of the pre-trained information of 
structure implantation improves the performance for the raw C. elegans, thereby emphasizing the argument of 
only minimal changes as shown in Table 6.

A final argument underlining the importance of structure is illustrated in Fig. 4 (for a detailed description of 
the ‘toast plots’ and its analysis see “Methods”). It turned out that for each initialization the resulting structure 
was always analogous to the structure with which it was initialized, independent of the experimental settings.

This phenomenon was particularly conserved in recurrent networks. Here, only a minimum of edge changes 
could be detected in the entirety of the connections. Also the Spearman R coefficient, which is depicted in the 
lower left toast and illustrates the change of weights, shows that these structures also were almost completely 
similar in their active weights. The lack of correlation for not pruned and implanted information (winning ticket 
and structure implantation) results from the analysis of the primary (part of the structure) and secondary (not 
part of the structure) connections, since the secondary part, which is random, is not deactivated by pruning. It 
thus can be concluded that the weights will follow through the implanted structure.

To give a first summary, presenting the arguments for one side of the dilemma, it can be stated that it is 
possible to initialize a network with a pre-learned structure, missing the information of weights, with an equal 
accuracy and an improved learning behavior. In addition, the edge and weight comparison of unmodified, pruned 
and implanted models repeatedly reveal the fact that the structure holds the information about the weights itself. 
As it could be seen by the transformation of a biological network into an artificial network learning successfully, 
biological network structure is conserved and seems to play an important role. We were thus able to show that 
the importance of structure is not only a phenomenon in naturally occurring, but also in artificial information 
processing structures.

Structure is not exclusive.  Reconsidering the figures presented thus far, it must be noted, however, that 
these also contain arguments for the other side of the paradox. It could be seen that the structure—although 
being of considerable importance—is not exclusive. For instance, it is evident from Fig. 4 that the same struc-
ture was able to solve both problems, the MNIST and the more complex Fashion-MNIST. This is indicated by 
the extensive yellow areas in the upper right toast, which for the most part show only minimal changes in the 
connections. This effect of so-called transfer-learning has been observed in recurrent networks as well as in the 
feed-forward networks. It is remarkable that not only the structure was left unchanged during learning of an 
alternative problem, but that also the weights were nearly identical (indicated through dark black areas in the 
lower left toast). Therefore, a more or less randomly initialized network could solve two different problems with 
nearly the same structure and weights. The same applies to C. elegans. As it was mentioned in the previous sec-
tion, the worm was not made to solve this synthetic problems, neither its sensory neurons were made to read 
image information, nor its motor neurons to output numbers. Nevertheless, also in its pruned configuration, it 
was able to solve this task.

Also in Fig. 3, some arguments underline the non-exclusivity of structures. Thus, if the bar graph is consid-
ered in its entirety, it shows that every network can solve the two problems. Only a minimal difference of less 
than 5% could be observed within one calculation experiment between the networks. Especially remarkable in 
this context were the random G(n, p) graphs. Although these had by definition random connections and thus 
randomized structures, they did not perform worse in solving the problems. On the other hand, even the more 
sophisticated networks showed very small improvements or even a worse behavior in their accuracy. This lead to 
the hypothesis that probably any structure can be used to solve any problem, as long as the network has enough 
capacity. Indeed, this finding is not entirely new. Honey and colleagues claimed that a variety of functional roles 
can be performed by ‘computational reservoirs’ with sufficient built-in complexity1. It should be emphasized that 
this theory was also discussed and supported on the biological side by various studies. For example, Prinz et al.37 
simulated the pyloric rhythm of the crustacean stomatogastric nervous system and found that this even tightly 
regulated network can result from a wide range of different underlying mechanisms and parameters. Biological 
networks with structural38 and functional39 variability can perform the same functions. In addition, there are 
findings that neurons themselves rather than their connections are tuned in the learning process. Nonsynaptic 
changes of membrane components, such as a modulation of voltage-dependent membrane conductances, which 
results in a change in excitability, is produced by learning40.

Comparing structure and their weights alone misses the point of isomorphisms. A graph can be identically 
connected but on a different node setting. This may appear during the analyses of edge changes and the correla-
tion of weights as a different network. The upper right toasts in Fig. 6 show the results of a simple isomorphism 
test. If two graphs are isomorph, they have an identical degree sequences over all nodes. A match indicates that 
both graphs could be isomorph, a mismatch denotes that the graphs were not isomorph (further information 
on the isomorphism test can be found in “Methods”). Figure 6 shows that in most cases the variants were not 
isomorph. Only few pairs displayed the possibility to be identical.

The influence of the weights and the neuron offset value.  Considering the results presented thus 
far showing the two sides of the paradox, the question of what influence the weights have on the results remains 
unresolved. In fact, in all of the networks investigated, the best possible accuracy between winning ticket and 
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structure implantation was found to be very similar. Both problems, MNIST41 and Fashion-MNIST42, were solved 
with identical accuracy for each data set, which disclosed the relevance of the structure even without the weights. 
This was additionally supported by Fig. 4, showing that during learning only minimal changes were applied to 
the weights.

Indeed, a quite familiar observation was drawn from Gaier and Ha25 as they figured out the importance of the 
architecture in contrast to the previously established interest in the weights. To put this influence of the weights 
to the test, we performed experiments with either disturbed or blocked weights and neuron offset values, respec-
tively. A disturbance of the value means that a normally distributed noise was added before each learning step. 
In blocked runs the disturbed values were not trainable (further information can be observed in the “Methods” 

Figure 4.   Toast plot type 1: Edge and weight changes during learning and between different initial states. 
Identical tests marked red. Each run is marked with an abbreviation at the side of the graph. Each of these 
include four different subvariants (each as its own pixel), entailing the initial status or the trained status after 30 
epochs training for MNIST and Fashion-MNIST respectively. Toast plot (a) shows the LeNet 4x300, (b) G(n,p) 
1194, (c) C. elegans26 and (d) the human connectome27. In all four networks broad yellow regions indicate very 
few changes in the edges between different initalization settings. Widespread black or dark grey regions in the 
lower left toasts exhibit convergence in its active weights. This effect is much more conserved in the recurrent 
networks, but also the feed-forward networks show this effect blockwise within one initalization method. The 
minimum distances for a 95% significance are based on t-test. R—reference, g—Glorot, L—lightning , D—dense 
diversity, S—sparse diversity initialization; c—connectome, C—C. elegans; I—iterative pruning, B—bio pruning; 
W—winning ticket, i—structure implantation.
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section). Figure 5 shows the results of this experiment. Despite adding noise to the weights, the best accuracy 
decreased only slightly up to a level of approximately 10−2 (dark blue). If the added noise was greater than 10−2 , 
the accuracy dropped rapidly. As can be seen in Fig. 5E,F on this scale a range of instability is recognizable. The 
solver is provoked to make changes that are even disproportionately stronger in the range over 10−2 than the 
actual change caused by the noise.

For the blocked runs, the behaviour is similar, except that the best accuracy is only at around 0.5. Here the role 
of the bias is also indicated. Although weight changes can no longer be made, the solver is still able to change the 
neuron offset value and thereby reaches an accuracy of 0.5. The role of bias should thus not be underestimated.

The neuron offset value was even less sensitive to the disturbances. In both cases, disturbed and blocked bias 
values, the best accuracy was stable up to a strength of 10−2 . If the results from Fig. 5E,F are also taken together, 
it can be seen that the neuron offset values changed by the noise are hardly changed by the solver. Changes in 
the bias can be easily compensated by minimal changes in the more powerful weights, as can be seen in Fig. 5B. 
Until the system gets unstable, the weights remain constant in the relation to the starting point. Above the sta-
bility point the weight change gets smaller, because the solver is unable to find the correct countermeasure to 
compensate the disturbance. The initial configuration in the weights, which follow directly from the structure, 
thus can not be disturbed severely without the system becoming unstable, as can derived from Fig. 5A,B. With 
the described conclusion that the weights follow from the structure, it must therefore be noted that this solution 
has only a small domain.

This may be also the reason why only very few changes in the weights were detected in the learning process. 
However, if it turns out that neither the structure nor the resulting weights undergo major changes in the learn-
ing process, the question arises how artificial neural networks are able to learn at all. In principle, there are two 
possibilities. First, it is possible that even minimal changes could have enormous effects on the entire system, i.e. 
it could be a chaotic system. The other, perhaps more likely explanation could be an adjustment of the neuron 
offset value. The bottom left toasts of Fig. 6, in which the Spearman R coefficient of the neuron offset values are 
displayed, providing an exemplary answer to this question for four of our analysed networks. Independent of 
the network, the Spearman R correlation coefficient showed mostly very low values (recognizable by an almost 
completely dark blue coloration), indicating the dissimilarity between individual neuron offset values. This clearly 
demonstrated the change in those values caused by the learning process. Thus, it could be stated that adjustments 
were done by the solver not as commonly assumed largely through weight or structural changes, but through 
changes in the neuron offset value of each artificial neuron.

This behavior could be interpreted as an increasing or decreasing sensitivity of every individual neuron to 
its input values. This behaviour suggested that a change in the neuron offset value was sufficient to adjust the 
network effectively.

In a biological context, a possible analogy for this phenomenon can also be identified. A modulation through 
an intracellular storage of calcium can result in a short-term signal amplification as well as an adjustment of 
neuronal excitability43. Although the behaviour is similar, it is doubtful whether gradient-based learning as a 

Figure 5.   Experiments with disturbed learning for a uniform 1194. Shown are results for blocked or disturbed 
weights or neuron offset. Error bars show standard deviation over ten independent random iterations. (A) Best 
accuracy in relation to the added noise. (B) Spearman R between the trained and untrained weights in relation 
to the added noise, to show the similarity of the weights. The effective value of the weight (C) and neuron offset 
(D) gradients relative to the noise demonstrates the relation of gradients to the added noise, to show the effective 
change per step. The relative, effective weights (E) and neuron offset (F) change shows the development of the 
RMS value related to the noise, to illustrate the change over the complete training.
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mechanism can be compared with learning performed by true nervous systems. Therefore, the obviously similar 
behaviour might have a completely different cause.

Nonetheless, the further development of artificial neural networks can make use of known functions from 
nature in order to extend their functionality and effectiveness in a sustainable way. From a biological point of 
view, results, obtained through ongoing technical simulation experiments, may also contribute to the under-
standing of the learning process and the structural organisation of the brain.

Discussion
In this paper we wanted to understand the relevance of the structure for information processing. Therefore, we 
analysed the behavior of artificial and biological-based networks based on technical neurons and their train-
ing methods. We were able to show that the structural dilemma, which is often resumed in biology, can also be 

Figure 6.   Toast plot type 2: Bias, means neuron offset value, change and verification of a possible existing 
isomorphism during learning and between different initial states. Identical tests marked red. Every mark 
consists of the configuration after 30 epochs training for MNIST and Fashion-MNIST respectively. Toast plot (a) 
shows the LeNet 4x300, (b) G(n,p) 1194, (c) C. elegans26 and (d) the human connectome27. The majority of dark 
blue coloring in the lower left toast clearly show the comprehensive change in the bias value that have taken 
place in each artificial neuron. The upper right toasts show the results of the isomorphism test, which states the 
possibility that a graph could be isomorph. In most cases the calculation excluded this. The minimum distances 
for a 95% significance are based on t-test. The minimum distance for a 95% significance for the possible 
isomorphism is 0.9 based on binomial test R—reference, g—Glorot, L—lightning , D—dense diversity, S—sparse 
diversity initialization; c—connectome, C—C. elegans; I—iterative pruning, B—bio pruning; W—winning ticket, 
i—structure implantation.
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found in ANNs. We figured out that an initial structure is indeed sufficient to improve learning accuracy, with 
minimal importance on the weights. Nevertheless, it seems to be of less relevance how this structure is organized. 
Contrary to expectations, a network based on biological structural principles does not improve learning success 
compared to randomly initialized structures. This raises the question why biological networks show precisely 
these structures. Based on our findings, it is questionable that these structures are made specifically for informa-
tion processing. But, this follows the question why these structures are created that way and why deviations show 
pathogenic patterns. To answer these questions, further experiments will be carried out based on the parallels 
between artificial and biological-based neural networks presented in this paper. For this it is essential to include 
further information levels of the biological system. Further research is therefore aimed to model the technical 
neurons in a more biological way based on neural coding44,45, or to include electrical synapses.

Methods
Biological network data.  For a multi-level analysis and comparison of biological networks we used two 
different datasets. First, the wiring diagram of the male C. elegans (updated dataset: https​://wormw​iring​.org/
serie​s/ published in26), representing the micro-connectome level, and second, functional connectome data of 
healthy patients with varying age, gender and ethnical background, representing the macro-connectome level36, 
(directly accessible via: http://umcd.human​conne​ctome​proje​ct.org/umcd/defau​lt/brows​e_studi​es)27. Both data 
sets are freely accessible online.

The single data set of the male C. elegans is composed of 369 neurons, 3888 connections through chemical 
synapses, 134 muscle connectors and 1018 muscle connections. The analysed adjacency matrix is bidirectional 
and weighted. More details about this dataset can be obtained from26.

984 data sets were included in the analysis of the macro-connectome, as 17 of the provided sets were not 
complete. In particular, the data records of “Beijing_Zang_newid182” with the sequential number up to 198 
were affected, when we downloaded the data in August 2019. We processed the provided adjacency matrix with 
a threshold to obtain a mean degree of around 22. This results in a number of edges of 3964. The connectome 
graph was undirected but weighted. We ignored the weights, because we were only interested in the structure. 
The undirected graph was transformed to a directed one by randomly choosing the direction and type equally 
for all edges.

Artificial neural network data.  In order to make well-founded statements about the behaviour of ANNs, 
we used both feed-forward as well as recurrent networks. As feed-forward networks, we used the established 
structures of the LeNet 300-100 and the LeNet 4x30046. For the class of recurrent networks, we used random 
G(n, p) graphs with either 1194 nodes corresponding to the LeNet 300-100 architecture and a comparable mean 
degree, or 177 nodes analogous to the connectomes and also a corresponding mean degree. These graphs were 
calculated additionally with a directed small-world architecture.

The adjacency matrices of the human connectome were preprocessed first, as it was described in the previ-
ous section. For C. elegans, we used the naturally occurring network, provided from the original dataset, and a 
randomly connected version as G(n, p) with an equal number of nodes. A speciality of the C. elegans model are 
the separated layers for neurons (including sensor neurons) and muscle attachment points. The G(n, p) refer-
ence holded the muscle layer and connects the neuron layer randomly. The dataset of the C. elegans holded no 
information about excitatory and inhibitory neurons. Based on a calculated, theoretical optimal percentage of 
inhibitory synapses of 30%47 and a measured value of typical 20–30%48 in mammalian brains we assumed this 
percentage also for C. elegans. We trained 10 different datasets with a random value between 20 and 30% of inhibi-
tory neurons. We saved this model, but did not perform a Monte Carlo simulation to avoid over-interpreting of 
the distribution of the inhibiting neurons.

Training process.  Initialization.  In order to test the effect of different conditions at the beginning of learn-
ing, the nets were initialized differently. The methods included the randomized initialization glorot49, lightning28, 
winning ticket17 and two new implemented methods called structure implantation and diversity. In contrast to 
winning ticket, in which a pretrained structure including its weights has been implanted the structure implanta-
tion only implanted the structure with the categories exciting, inhibiting and no connections but without any 
information about the weights. This was done by using a threshold to decide whether or not an edge in the graph 
existed. This threshold was adjusted dynamically. The n strongest connections (positive and negative) were used 
to keep the average connectivity c constant. The existing edges were divided in positive and negative weights, 
corresponding to an exciting or inhibiting connection. Non-existing edges were 0, existing ones were set to the 
same value with the sign corresponding to the connection type. Low noise of a tenth of the connection value was 
added on top of the resulting adjacency or bipartite matrices.

The method of the diversity initialization should represent first degrees of kinship with biology. The amount 
of links showed a distribution in a specific range and not a constant value. The diversity initialization generated 
a set of neurons with a randomly chosen number of edges to random other neurons. For this paper this type of 
initialization was again divided into two subgroups: 

Dense diversity	� very dense connected system defined by the in-going degree din . 

Sparse diversity	� sparse connected system defined by the in-going degree din . 

(1)din =

{

[N (100, 10)] for 35% off all existing Neurons
[N (50, 5)] otherwise

https://wormwiring.org/series/
https://wormwiring.org/series/
http://umcd.humanconnectomeproject.org/umcd/default/browse_studies
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Datasets.  The artificial neural networks were trained on either the MNIST41, Fashion-MNIST42 or the CIFAR-
1050 (For CIFAR-10 the results are available in the Supplementary Materials) database. Recurrent networks iter-
ated over a specific number of calculation steps. All recurrent networks were calculated for 25 steps and the input 
information was constantly set. The values of the datasets were normalized to the range of [0, 1] as a preprocess-
ing step.

Architectures.  As already described in the beginning of this chapter, we used different ANNs for our calcula-
tions.

•	 LeNet 300-100: 784 input neurons followed by a dense layer with 300 neurons, a dense layer with 100 neurons 
and 10 output layer neurons containing the output information; only the output layer had a softmax activa-
tion function, whereas the others were activated through relu.

•	 LeNet 4x300: 784 input neurons followed by 4 dense layers with 300 neurons each and 10 output neurons; 
only the output layer had a softmax activation function, whereas the others were activated through relu.

•	 Recurrent 1194: 1194 neurons were activated through tanh; 784 of the 1194 were defined as input neurons, 
to generate the output 10 neurons were calculated with softmax in an additional output layer.

•	 Recurrent 117: The 784 input information of the datasets were encoded with an random encoder with a dis-
tribution of U(−0.05, 0.05) , the same encoder was used for all experiments, all neurons were input neurons, 
to generate the output 10 neurons were calculated with softmax in an additional output layer.

•	 C. elegans model: The 784 input information of the datasets were encoded with an random encoder with a 
distribution of U(−0.05, 0.05) to 136 sensory neurons, which were included in the recurrent layer with 369 
tanh activated neurons, which were mapped to the 134 tanh activated muscle attachment points, those were 
decoded to 10 output values which were calculated with softmax in an additional output layer. In general, it 
needs to be added that the given connectivity matrix values were, due to the absence of inhibiting connections 
and a to wide numerical range not suitable to use, which made the definition of other values necessary.

•	 C. elegans LeNet model: The en- and decoding is the same as in C. elegans. The minimal distances of every 
node to an output was calculated and based as mapping for the feed forward layers. The encoded inputs were 
also added based on the minimal distance to an output mapping. Thus, this model has several inputs on all 
four layers. The exact configuration is shown in Table 7. 22 nodes are not added to the model, because they 
are not connected in the C. elegans micro-connectome.

Pruning.  We used two different pruning techniques: iterative pruning and the newly introduced bio pruning. 
During the iterative pruning the graph was analysed after each epoch and the pruning mask was updated to the 
new graph. In opposite to that the bio pruning was aimed to take up another idea from biology, the random based 
creating and destroying of connections. The solver was allowed to build up maximum Pois(20) new connections, 
delete maximum Pois(20) weak connections and could break 0 strong connections after each epoch. Within the 
number of connections, resulting from the average connectivity c, strong connections can be formed. Beyond 
of this, weak connections can be built up and destroyed. The average connectivity may therefore variate for the 
bio pruning method.

Training.  The models were trained with the solver settings given in Table 8. Categorical cross entropy was used 
as loss value and accuracy as metric. All models were trained for 30 epochs with shuffled batches of the size 128 
for the feed forward and 256 for the recurrent networks.

All variants that we trained have learned to solve the problems. We only figured out two exceptions, which 
were the pruned glorot initialized feed forward networks with a mean degree less than 15. This can be observed in 
Table 9. The table shows the behavior of the glorot initialization based on the mean degree for the LeNet 300-100.

A weakly connected component is the amount of nodes that have paths between each other independent of 
the edge directions. If the fraction of the largest weakly connected component S = 34.3% , only a third of the 
neurons were connected to each other in maximum.

(2)din =

{

[N (8, 2)] for 80% off all existing Neurons
[N (25, 5)] otherwise

Table 7.   C. elegans LeNet architecture.

Inputs Hidden nodes Outputs Activation

3 0 0 –

23 12 0 relu

71 64 0 relu

35 139 0 relu

0 0 134 softmax
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A reason for the learning deficiency of the pruned glorot variant could be the fact that the largest weakly 
connected component was to small. The other feed forward initialization (lightning, dense and sparse diversity) 
did not show this behaviour. The values of the diversity initialization were similar to lightning.

Disturbed and blocked training.  Gradient based learning tries to minimize the loss function l by adjust-
ing the trainable parameters. This is achieved by following the gradient ∂ l

∂xi
 . If the learning parameters are set 

well, the optimizer climbs down to a local minimum by every step. Based on the start parameter the local mini-
mums can differ. By adding noise to the trainable parameters the optimizer is forced to react on this disturbance. 
Related to the strength of the noise a solution is possible by compensating the distribution or climbing down an 
other local minimum.

In our experiments the normal distributed noise ǫ ∼ N (0, σ) with a mean of 0 and a standard deviation of σ 
is added to the values χ before the optimization in every batch. Weights and neuron offset are treated separately 
and were not disturbed together. Thus, the optimizer has to deal with the disturbed weights or altered neuron 
offsets. Additionally, to show the compensating of the optimizer, in blocked runs the disturbed values were 
not trainable. The optimizer has to compensate the disturbance only by adjusting the unblocked values. The 
unblocked values were not disturbed. As architecture a pruned recurrent 1194 with an uniform initialisation 
were used. Two metrics were used: 

Relative gradient rms	� This metric shows the strength of the gradient related to the added distrubtion. 

Relative change rms	� This metric shows the effective change of the values to the initial state by the gradient 
related to the effective change of the noise over N batches. 

(3)γ =

√

1
n

∑n
i=1

∂ l
∂χi

σ

Table 8.   Solver parameter for different architectures.

Architecture Solver Learning rate Momentum

LeNet 300-100 SGD 0.050 0.00

LeNet 4x300 SGD 0.050 0.00

G(n, p) & small world 1194 SGD 0.030 0.01

irnn & uniform 1194 SGD 0.050 0.01

G(n, p) & small world 177 SGD 0.050 0.00

irnn & uniform 177 SGD 0.050 0.01

C. elegans model SGD 0.075 0.01

Table 9.   Comparison of best validation accuracy and fraction of the largest weakly connected component S 
for glorot and lightning initialization for LeNet 300-100 with different mean degree c. ±-values show standard 
deviation over ten independent random iterations.

c Pruning value (%) Experiment Best accuracy S

5 Glorot 98.0% ±0.059% 34.3% ±0%

5 Lightning 98.0% ±0.086% 99.6% ±0.119%

5 2.2 Pruned glorot 11.3% ±0% 34.3% ±0%

5 2.2 Pruned lightning 93.3% ±0.318% 99.6% ±0.119%

10 Glorot 98.0% ±0.067% 34.3% ±0%

10 Lightning 98.1% ±0.068% 100.0% ±0%

10 4.5 Pruned glorot 11.3% ±0% 34.3% ±0%

10 4.5 Pruned lightning 95.1% ±0.239% 100.0% ±0%

15 Glorot 97.9% ±0.056% 99.9% ±0.097%

15 Lightning 98.1% ±0.092% 100.0% ±0%

15 6.7 Pruned glorot 95.3% ±0.187% 99.9% ±0.097%

15 6.7 Pruned lightning 95.9% ±0.138% 100.0% ±0%

21.9 Glorot 98.0% ±0.064% 100.0% ±0%

21.9 Lightning 98.0% ±0.056% 100.0% ±0%

21.9 9.8 Pruned glorot 96.1% ±0.136% 100.0% ±0%

21.9 9.8 Pruned lightning 96.5% ±0.180% 100.0% ±0%
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Possible graphs and isomorphism.  The difficulty in calculating an isomorphism is demonstrated in 
Fig. 6d. Per definition, the connectome-based recurrent networks can not have isomorph graphs, because these 
networks have no free nodes that are not connected to an input or output. The isomorphism test checks only the 
possibility of an isomorphism in general. It cannot test against the specific conditions of fixed input and output 
nodes. So the algorithm tends to show a higher possibility that an isomprophism exists than actually would be 
the case. A discussion of the absolute changes in the graphs requires a reference in order to be able to estimate 
how large a change actually is. For this purpose different theoretical values of the graphs were calculated. The 
number of possible edges

with L number of layers and nlingoing or nloutgoing number of nodes in- and outgoing of layer l defines the amount 
of all possible connections. The number of all possinble unique graphs

with M as number of all possible edges and m as number of existing edges, shows how many unique forms the 
graph could have. For this we assume that free nodes, which are not connected to an input or output, can per-
muted in their position. The last paramater is the number of possible isomorph graphs

with f l as number of free nodes in layer l.
Table 10 (calculated with https​://www.wolfr​amalp​ha.com/) showed the permutation and isomorphisms values 

for the different architectures, which were used in this paper. The selected architectures covered a wide range 
and differ in their basic properties. For example, the recurrent 177 architecture had relative few possible edges 
and unique graphs and no free nodes. In opposite, the recurrent 1194 architecture had the most possible edges 
and unique graphs but not as much isomorphisms as the LeNet 4x300 architecture.

Analytical methods.  Toast plots.  To observe the changes in the trained model with simple metrics, we 
focus on the change of the weights during the learning. Figure 7a shows the distribution of the weight depend-
encies between different states of the model. By comparing two independent initialized states the weights show 
no logic and distributed equally corresponding to the different layers. The comparison of the initial to the cor-
responding trained state shows the complete opposite. The post training weights depend directly on the initiali-
sation. Figure 7b show the cumulative distribution function of the weight change between the different states of 
Fig. 7a. It demonstrates the gap between randomized and depending trained weights.

For an optimized presentation of the extensive analytical results we developed our so-called toast plots. 
Figure 8 shows the two types we used in this paper. They offer the advantage that several analyses as well as runs 
can be recorded and compared at a glance. One plot is built out of two toasts. In particularly, type 1 (see Fig. 8a) 
displays the Spearman R coefficient of the edge changes, meaning how similar the weights of the edges are com-
pared to other runs. The second toast of that plot shows the number of odd edges compared to other runs. Type 
2 (see Fig. 8b) shows the Spearman R coefficient of the bias values and the results of an isomorphism test (see 
section ‘Possible graphs and isomorphism’ for further details).

Each run is marked with a one to three letter abbreviation at the side of the graph. Each of these include four 
different subvariants, entailing the data set they were trained with (see more details in training section) and if 
it is the initial or the trained status. The abbreviations given in the legends describe how the net was initialized 
and pruned. In detail these are: R—reference, g—Glorot, L—lightning , D—dense diversity, S—sparse diversity 

(4)δ =

√

1
n

∑n
i=1 �χi

√
Nσ

(5)M =

L
∑

l=0

nlingoing · n
l
outgoing

(6)P(M,m) =
M!

m!

(7)I =

L
∏

l=0

f l !

Table 10.   Amount of possible edges, unique and isomorphic graphs for the different network architectures.

Architecture Possible edges Possible graphs Isomorphisms

LeNet 300-100 266, 200 1.71 · 101,223,900 For c = 22 2.86 · 10772

LeNet 4x300 508, 200 6.02 · 102,494,508 For c = 22 8.77 · 102,457

Recurrent 1194 1, 425, 636 6.90 · 108,049,549 For c = 22 6.40 · 10868

Recurrent 177 31, 329 1.38 · 1017,708 For c = 22.4 No free nodes

C. elegans model 185, 607 4.21 · 10881,304 For c = 9.75 1.46 · 10659

https://www.wolframalpha.com/
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initialization; c—connectome, C—C. elegans; I—iterative pruning, B—bio pruning; W—winning ticket, i—struc-
ture implantation. A detailed explanation of the abbreviations and setups are given in the training process section.

Data availability
The artificial datasets generated during and analysed during the current study are available from the corre-
sponding author on reasonable request. The biological datasets from C. elegans is freely available and can be 

Figure 7.   Weight relation of a LeNet 300-100 architecture between initialisation and post trained state.

Figure 8.   Demonstration of the two types of toast plots. Exemplary for the feed forward network LeNet 
300-100. The minimum distances for a 95% significance are based on t-test. The minimum distance for a 95% 
significance for the possible isomorphism is 0.9 based on binomial test.
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downloaded from: https​://wormw​iring​.org/serie​s/. The human connectome dataset is freely available and can 
be downloaded from: http://umcd.human​conne​ctome​proje​ct.org/umcd/defau​lt/brows​e_studi​es.
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