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Research Impact Statement: Stream confluences may be biological hotspots. We present a USA stream con-
fluence dataset to stimulate further ecological research. The dataset contains 1,085,629 confluences and 383
attributes.

ABSTRACT: Stream confluences are important components of fluvial networks. Hydraulic forces meeting at
stream confluences often produce changes in streambed morphology and sediment distribution. These changes
often increase habitat heterogeneity relative to upstream and downstream locations, which have led some to
identify them as biological hotspots. Despite their potential ecological importance, there are relatively few
empirical studies documenting ecological patterns upstream and downstream of confluences. We have produced
a publicly available dataset of stream confluences and associated watershed attributes for the conterminous Uni-
ted States. The dataset includes 1,085,629 stream confluences and 383 attributes for each confluence organized
into 15 dataset tables for both tributary and mainstem upstream catchments and watersheds. Themes in the
dataset include hydrology (e.g., stream order), land cover, land cover change, geology (e.g., calcium content of
underlying lithosphere), physical condition (e.g., precipitation), measures of ecological integrity, and stressors
(e.g., impaired streams). Additionally, we used measures of ecological integrity to assess the condition of the
stream confluences. Aside from a generally positive east-to-west gradient in ecological condition, we found that
approximately one-third of the confluences had markedly contrasting ecological conditions between mainstem
and tributary, catchment and watershed, or both. The dataset should support many, multifaceted studies of
stream confluence ecology.

(KEYWORDS: EnviroAtlas; headwaters; NLCD; stream networks; StreamCat; watersheds.)

INTRODUCTION hydraulic forces introduced by a tributary can produce
changes in the morphology of the streambed (e.g.,

scours, aggradation) and distribution of sediment at

Stream confluences emerged as important elements
of lotic ecosystems as their conceptualization advanced
from continua to networks (Rice 1998; Rice et al. 2001,
Benda, Andras, et al. 2004; Benda, Poff, et al. 2004).
Every stream confluence is conditioned by the hydrau-
lic forces of its two or more upstream sources. The

the confluence and further downstream (Rhoads 1987;
Best 1988). Common streambed geomorphic changes
include the development of avalanche faces at the
mouths of the mainstem and tributary, a scour hole,
flow separation (water volumes from each confluent do
not mix immediately), separation bars (a ridge of
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sediment in the zone of flow separation), and zones of
stagnation (sediment deposition) and mixing of the
main stem and tributary water volumes (Best 1988).
Confluence angle, tributary water volume, and differ-
ences between mainstem and tributary stream bed ele-
vations influence the likelihood of occurrence and
magnitude of these geomorphic features (Rhoads 1987;
Best 1988; Best and Roy 1991). These changes are tem-
porally dynamic and spatially variable because of ever-
changing discharge volumes and potential asynchrony
in the timing of mainstem and tributary high-flow
events (Rhoads 1987; Rice et al. 2001), place-to-place
differences in confluent stream angles (Best 1988),
place-to-place differences in sediment supply (Rice
et al. 2001) river shape (Rhoads and Johnson 2018),
and upstream differences in land cover and other
watershed characteristics (Jones and Schmidt 2017).
Often depending on the size of the tributary, Rice
(1998), Rice et al. (2001), Benda, Andras, et al. (2004)
and Benda, Poff, et al. (2004) recognized that geomor-
phic changes at stream confluences may also constitute
habitat changes. Many benthic macroinvertebrates, for
which measures of presence and composition are pre-
ferred indicators of water quality (Barbour et al. 2000),
are also sensitive to change in a host of biotic and abi-
otic factors. Statzner and Higler (1986) have suggested
that hydraulic forces are an integrating factor for
understanding the distribution of stream benthos.

Benda, Poff, et al. (2004) referred to stream conflu-
ences as biological hotspots because of the likelihood of
greater habitat heterogeneity arising from the collision
of two hydrologic forces. Many others have adopted
their perspective, and there is a growing body of
empirical evidence supporting the effect of stream con-
fluences on the spatial patterning of lotic and lotic-as-
sociated biota (Table 1).

Our main objective is to present the development of
a stream confluence dataset for the conterminous Uni-
ted States (U.S.). To our knowledge, no such a dataset
exists. It’s development and use would support further
research of the ecology of stream confluences. Some
examples include effects related to: (1) geographic dif-
ferences (e.g., Benda, Andras, et al. 2004); (2) urban-
ization and other land cover changes; (3) differences
between mainstem and tributary channel gradients;
(4) position in the stream network (e.g., Grenouillet
et al. 2004; Thornbrugh and Gido 2010); (5) influence
of lithology (Hellman et al. 2015); (6) influences of
stressors and disturbance (e.g., Katano et al. 2009;
Boddy et al. 2019); (7) influence of soil differences, and;
(8) interaction between tributary size (discharge) and
differences in mainstem and tributary watershed char-
acteristics (e.g., Jones and Schmidt 2017). Some of the
aforementioned topical examples have not been stud-
ied to our knowledge (Table 1), such as land cover
change, and complementary studies for topics reported

TABLE 1. Studies of ecological patterns in the vicinity of stream confluences.

Author (year) Location!

Result

Rice et al. (2001) British Columbia, CA

Discontinuities in longitudinal profile of MI abundance and evenness

attributable to SC at one of two sampled rivers

Knispel and Castella (2003) Rhone R, CH
Franks et al. (2002) Loughborough, UK

Fernandes et al. (2004) Amazon R, BR
Grenouillet et al. (2004) Saone R, FR
Beckmann et al. (2005) Rhine R., DE
Kiffney et al. (2006) Skagit R., US

Hitt and Angermeier (2008) eastern US

Rice et al. (2008) Stillaguamish R, US
Katano et al. (2009) Kiso-gawa R, JP
Thornbrugh and Gido (2010) Kansas R, US

Mac Nally et al. (2011) Acheron R, AU

Milesi and Melo (2014) Rio Grande

do Sul, BR
Clay et al. (2015) Tagliomento R, IT
Czeglédi et al. (2016) Marcal R, HU

MI richness increased downstream of a small tributary

Differential patterns of some macroinvertebrate species by confluence zones

Tributaries enriched electric fish diversity

Fish richness influenced by downstream factors for >5th order streams

Mainstem influenced tributary MI richness

Ecological variables were highest near SC

Sites nearer stream confluences had greater fish richness

Scale-dependent pattern of salmon spawning locations attributable to SC

Tributary mitigated dam-induced effects on MI

Fish species richness was higher in tributaries connected to higher order
streams

MI richness and density were unaffected by SC

SC influence on MI was dependent of size of tributary

Stream confluence effects on MI was influenced by context
Tributary fish abundance and composition decreases upstream from confluence;

seasonal effects were significant

Hellman et al. (2015) Susquehanna R, US.

Geology-mediated changes in MI composition and diversity patterns across

confluence zones

White et al. (2018)
Boddy et al. (2019)
Milner et al. (2019)

Colorado R, US
Canterbury, NZ
American R, US

Riparian habitat complexity was highest at SC; results were scale dependent
Disturbance-mediated patterns of fish abundance attributable to SC
Increased MI diversity at tributary on regulated river; no downstream effects

Note: MI, macroinvertebrate; SC, stream confluence.

ITwo-letter country abbreviation source — https://www.worldstandards.eu/other/tlds/; location identified by river system where practicable.
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in the literature would likely help to advance a nascent
field (Rice et al. 2008; Jones and Schmidt 2017). For
example, conversion of forest to urban would likely
lead to increased erosion, which may change conflu-
ence dynamics. To demonstrate the utility of the data-
set, we classify conterminous U.S. stream confluences
using available data on ecological conditions and over-
lay the classification results with other attributes
included in the dataset.

METHODS

Datasets

Two datasets were used to identify stream conflu-
ences and associated landscape attributes: (1) hydro-
graphic data from the National Hydrography Dataset
Plus Version 2 (NHDPlus V2) (http://www.horizon-
systems.com/nhdplus/nhdplusv2_home.php) and (2)
landscape attributes from StreamCat (Hill et al.
2016; https://www.epa.gov/national-aquatic-resource-
surveys/streamcat). The NHDPlus V2 flowlines G.e.,
streams) were used to identify the confluences, and
NHDPLUS V2 catchments were used to summarize
landscape attributes. Elevation-based catchments are
defined for each NHD stream reach, where a stream
reach is the length of stream between upstream and
downstream confluences (Johnston et al. 2009).
StreamCat (Hill et al. 2016) is a conterminous U.S.
national database of watershed attributes including
climate, geology, soils, and land cover.

We used NHD as our hydrography data because it
includes stream network topology and it was the
hydrography data used to develop StreamCat (Hill
et al. 2016). Consistent with NHD terminology (John-
ston et al. 2009), we use the term catchment to refer to
the drainage basin that drains a stream reach, exclud-
ing upstream inputs, and watershed to refer to the tar-
get catchment and all wupstream catchments
(Figure 1). There are many more catchments than con-
fluences because catchments are defined by hydro-
graphic feature type (Johnston et al. 2009) such that
there would be two catchments for a stream if it chan-
ged, for example, from intermittent to perennial or
perennial to canal (see Figure 1). StreamCat includes
landscape attributes for both NHD catchments and
watersheds.

Identification of Confluences

NHD does not include confluences per se. All NHD
stream reaches that had flow direction, regardless of
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class, were used to identify confluences. We identified
confluences by converting the most downstream node
of each NHD stream reach to a point. The node-to-
point conversion produced two or more points for
each confluence where one or more streams joined
another (one for each stream reach). Pivot table anal-
ysis (i.e., rows to columns) was used to reduce the
number of points to the actual number of confluences.
The data table resulting from the pivot table analysis
had 1 row and 2 fields (columns) for a confluence
with one inflowing stream. The stream reach IDs
were used as the link to the matching catchment ID
(an NHD stream reach unique ID is equivalent to the
NHD catchment unique ID in which it occurs). The
NHDPlus V2 attribute linking the stream reach (i.e.,
stream reach ID) and the catchment (i.e., catchment
ID) is COMID (Figure 1). Node-to-point conversion
and pivot table analysis resulted in the identification
of 1,085,629 confluences for the conterminous U.S.
The number of streams coming together at a conflu-
ence ranged from one to three and the corresponding
frequencies were 138,430 (1 incoming stream),
942,226 (2 incoming streams), and 4,973 (3 incoming
streams). Nodes with only one incoming stream iden-
tified streams flowing into water bodies.

Our confluence dataset includes 383 landscape
attributes that were primarily from StreamCat (Hill
et al. 2016) organized into 15 different data tables
representing 8 different themes: map, hydrology, land
cover, land cover change, physical, geology, stressors,
and ecology (Figure 1; Table S1). The map attribute
table includes the stream and catchment unique IDs
(i.e., COMID), the 2-, 8-, and 12-digit hydrologic unit
codes (HUC) from the NHDPlus V2 Watershed
Boundary Dataset (WBD), which is available at the
aforementioned NHD website (USGS and USDA-
NRCS 2013), and classification results from the dis-
joint cluster and decision tree analyses (discussed
below). We present separate catchment and water-
shed attribute tables each for the physical, geology,
and stressors themes. The same division into catch-
ment and watershed was used for land cover, produc-
ing a total of six tables, two each for 2001, 2011, and
2001-2011 change. Catchment and watershed land
cover percentages in StreamCat (Hill et al. 2016)
were derived from NLCD 2011 (Homer et al. 2015).
We used the land cover proportions available from
StreamCat (Hill et al. 2016); we did not derive them
from the NLCD 2011 (Homer et al. 2015). Land cover
change (not available from StreamCat) was estimated
as 2011 land cover percentages minus 2001 values.
NLCD 2016 (Yang et al. 2018; Homer et al. 2020)
was not included in our stream confluence dataset
because these data were not available when this pro-
ject was initiated. Catchment and watershed attri-
butes were combined into a single table for the
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Confluence Map Attributes

ID COMID1 COMID 2 COMID 3

31003146 8678831 8678675 0
Hydrology Attributes
ID CatAreal WSAreal StrOrl CatArea2 WSArea2 StrOr2
31003146 3.18 12.10 2 0.95 3.60 2

:] COMID1 catchment
:I COMID2 catchment
:] COMID1 watershed
|:] COMID2 watershed

1
= "Cat + WS" = single table; "Cat, WS" = separate table for each unit

Database Tables®

1) Map (Confluence
1) Hydrology (Cat + WS)

2) Geology (Cat, WS)
3) Physical (Cat, WS)

4) Stressor (Cat, WS)
5) Ecology (Cat + WS

7) Land cover, 2001 (Cat, WS)
8) Land cover, 2011 (Cat, WS)
9) Land cover change (Cat, WS)

FIGURE 1. Catchment-watershed organization and database structure. A watershed is comprised of all catchments (i.e., solid + hatched)
draining to an outlet. Table S1 provides a description of each data table and its indicators. [Color figure can be viewed at wileyonlinelibra
ry.com]

hydrology and ecology themes. Attributes in the
hydrology data table were derived from the NHD
Value Added Attributes (VAA). We added an addi-
tional variable, not in the NHD VAA tables, to iden-
tify the confluence mainstem and tributaries
(mainstem =1 and tributary = 2). The incoming
stream with the largest watershed (not catchment)
area was assumed to be the mainstem (Rhoads 1987).
The value of mainstem-tributary identifier was deter-
mined by the rank order of watershed areas when
there were three incoming streams. We also added
stream channel slope (%) as an attribute (physical
data table) based on elevations of the most upstream
and downstream nodes and the catchment stream
length; stream channel slope is only available for the
catchment.

JAWR

Demonstration of Dataset Utility

To demonstrate the potential utility of the dataset,
we classified the confluences using measures of catch-
ment and watershed ecological integrity (Thornbrugh
et al. 2018) included in the StreamCat database (Hill
et al. 2016). This was done for all confluences joining
two incoming streams that had ecological integrity
measures (n = 941,469). The main objective of the
demonstration was to provide a national assessment
of the ecological condition of stream confluences.
Given the emerging ecological importance of stream
confluences (Table 1), the classification of stream con-
fluences based on ecological integrity should be a use-
ful resource for the numerous watershed assessments
conducted throughout the country (e.g., Shilling et al.
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2005). The stream confluence dataset could be a
framework for incorporating stream confluences into
such assessments. Also, a national ecological assess-
ment of stream confluences is lacking. The demon-
stration fills that void and may motivate further
research on the ecological roles of stream confluences.

We used disjoint clustering to classify the stream
confluences and decision tree analysis (SAS Institute
Inc 2015) to validate the cluster result. The indices of
ecological integrity for catchments (ICI) and water-
sheds (IWI), developed by Thornbrugh et al. (2018)
and provided in the StreamCat database (Hill et al.
2016), were used as the input variables for the clus-
ter analysis. The ecological integrity indices are mul-
timetric estimates of a stream’s water chemistry,
sediment load, hydrologic connectivity, habitat provi-
sion, and its capacity to regulate stream temperature
(Thornbrugh et al. 2018; Supporting Information).
Because of the high correlation (» > 0.8) among the
mainstem and tributary ICI and IWI (Table S2), only
ICI and IWI for the mainstem along with four con-
trast variables were used as cluster analysis input.
The four contrast variables were as follows: (1) ICI
minus IWI for the mainstem; (2) ICI minus IWI for
the tributary; (3) mainstem ICI minus tributary ICI,
and; (4) mainstem IWI minus tributary IWI. In total,
six variables were used as input for the cluster analy-
sis. We refer to the four measurements based on dif-
ferences between ICI and IWI as contrast variables
because they emphasize differences in ecological
integrity between watersheds and catchments and
mainstems and tributaries. They have intuitive
appeal because the ICIs and IWIs of the two incom-
ing streams, which may be very different, should be
influential in determining the ecological condition of
the confluence. The contrast measures were not cor-
related with each other or the mainstem ICI and IWI
(Table S2). Use of the contrast measures also created
the potential for clustering to identify groups based
on catchment-watershed and mainstem-tributary dif-
ferences.

The difference between the observation and the
cluster median rather than the cluster mean @.e., k-
means) was used as the clustering criterion to mini-
mize sensitivity to outliers (SAS Institute Inc 2015).
The input variables were not transformed prior to
disjoint clustering because ICI and IWI are scaled
between 0 and 1, and therefore the contrast (differ-
ence) measures are scaled between -1 and 1
(Table S3). The appropriate number of clusters was
evaluated using a measure of cluster separation (see
Van Craenendonck and Blockeel 2015) for outputs
ranging from 10 to 30 clusters in increments of two
(10, 12, ..., 30). The 16-class result maximized cluster
separation and was validated using decision tree
analysis (Supporting Information). The cluster and
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decision tree results are included in the map data
table (see Table S1). Inclusion of the cluster and deci-
sion tree assignments and their associated attributes
provides additional measures of cluster assignment
uncertainty.

We labeled the 16 clusters as poor, moderate, good,
or contrast based on the cluster mean values of ICI
and IWI for the mainstem and the four contrast vari-
ables to simplify the reporting of the cluster analysis
results. Clusters were labeled as contrast if one or
more of the cluster’s mean values for the four con-
trast variables were >|0.1] regardless of the mainstem
cluster mean values for ICI and IWI. Clusters with a
mean ICI or IWI < 0.35 were labeled as poor, and
clusters with mean values of ICI and IWI > 0.60 were
labeled as good. Clusters with mean ICI and IWI val-
ues >0.35 and <0.60 were labeled as moderate. Over-
all, clusters labeled as contrast had mean mainstem
ICI and IWI values that were distinctly different
unless the mean contrasts >|0.1] were between the
mainstem and the tributary.

Results from the statistical analyses were summa-
rized using the HUC units in the WBD (USGS and
USDA-NRCS 2013). The WBD dataset is a nested set
of hydrologic (polygonal) units identified by digital
codes whose length (number of digits) decreases as
the size of the unit increases. The number of HUC 2
(e.g., 02), HUC 8 (e.g., 02020303), and HUC 12 (e.g.,
020203030404) units are 18, ~2,000, and ~87,000,
respectively. Catchments (defined above) are much
smaller than the HUC 12 units and generally nest
within the WBD units but do not use the same inte-
ger coding (McKay et al. 2018). There are about
2,500,000 catchments in the conterminous U.S.

Following the cluster analysis, we attributed the
classified stream confluences with the ratio of tribu-
tary watershed area to mainstem watershed area.
The tributary-mainstem ratio derives from studies of
the geomorphological effects of tributary discharge
into mainstems (Rhoads 1987). It is an index of the
potential significance of the incoming tributary on
the geomorphic characteristics of the stream conflu-
ence. Empirical studies of relative sizes of tributary
and mainstem watershed areas on confluence geomor-
phology indicate geomorphic changes at confluences
tend to be become common as the tributary water-
shed area approaches and exceeds 60% of the main-
stem watershed area (Rhoads 1987; Benda, Andras,
et al. 2004). For the demonstration, we chose 0.6 as a
threshold for confluences where tributary effects
might be significant, recognizing that several factors
likely influence threshold effects (Rice 1998; Rice
et al. 2001). The objective of the overlay was to fur-
ther classify confluence ecological conditions by the
likelihood of the confluence being a biological hotspot
(sensu Benda, Poff, et al. 2004). For simplicity, we
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hereafter refer to the tributary-mainstem watershed
areas ratio as the symmetry ratio (sensu Rhoads
1987) and confluences with symmetry ratios >0.6 as
hydraulically significant. The symmetry ratio was
based on the watershed areas of the mainstem and
tributary, not the catchment areas. It is included
hydrology dataset table.

RESULTS

Catchment-watershed and mainstem-tributary con-
trasts were useful for identifying groups of conflu-
ences. Eleven of 16 groups (clusters), comprising
about 35% of all confluences, had large absolute aver-
age values (>/0.1|) for one or more of the four contrast
measures (Table 2). The remaining five groups had
either average catchment-watershed or mainstem-
tributary contrasts that were <|0.1|. About 27% of the
confluences were in Cluster 4, which had average
mainstem ICI and IWI values of 0.85 and very small
(<0.01)) average catchment-watershed and mainstem-
tributary contrasts. Nearly the same percentage of
the confluences had average mainstem ICI and IWI
values <0.55 (Clusters 6, 7, and 13) with generally
small (<|0.02) average catchment-watershed and
mainstem-tributary contrasts.

The main geographic pattern was an east-west
contrast in the preponderance of confluences in good
ecological condition and concentration of the conflu-
ences in the poorest condition in the agriculturally

dominated midwest and Mississippi River valley (Fig-
ure 2). In general, watersheds in the western U.S.
had relatively uniform distributions of confluences in
good condition and therefore relatively few conflu-
ences with contrasting conditions (Figure 2a, 2d),
whereas watersheds east of the Colorado Front Range
had more heterogeneous confluence conditions and
were in poorer condition overall. The main exception
to this pattern occurred in the northwestern Great
Lakes and northern New England, where watersheds
tended to have confluences in good condition.

The inherent nestedness of the dataset can be used
to examine the spatial pattern of confluence condi-
tions across a range of spatial scales, from the spatial
pattern for HUC 8 units across the country (Figure 2)
to HUC 12 units nested in HUC 8 units (Figure 3b)
to individual confluences within HUC 12 units (Fig-
ure 3a). There was often considerable spatial variabil-
ity in confluences conditions within the HUC 12 units
that comprise a HUC 8 (e.g., Figures 2a vs. 3b) and
there was often considerable spatial variability in
confluence conditions within the HUC 12 units them-
selves (e.g., Figure 3a vs. 3b). The scale of individual
confluences is often the scale at which restoration
occurs because of cost factors (Wickham, Riitters,
et al. 2017) and an interesting example of how the
data could be used to support local ecological restora-
tion efforts is represented by the confluence encircled
in black in Figure 3a. The property description for
the land surrounding the confluence includes the
term “conservation easement” (https:/appomattoxgis.
timmons.com/#/mwl?zoom=15&location=-78.933669_
37.434599) but much of the property is not forested,

TABLE 2. Means of input variables by cluster. Contrast values > |0.1] are underlined to aid interpretation.

Cluster # Obs ICIm IWIm ICWIm ICWIt ICId IWId Label
1 38,355 0.486 0.317 0.176 0.000 0.141 ~0.015 Contrast
2 27,081 0.813 0.380 0.397 0.000 0.390 —0.005 Contrast
3 24,923 0.352 0.568 —0.207 0.000 —0.013 0.205 Contrast
4 256,318 0.851 0.856 0.000 0.000 0.000 0.000 Good

5 35,417 0.401 0.402 0.000 0.000 -0.228 -0.221 Contrast
6 52,689 0.544 0.536 0.000 0.000 ~0.007 —0.009 Moderate
7 99,352 0.332 0.333 0.000 0.000 0.019 0.015 Poor

8 26,280 0.781 0.446 0.340 0.000 0.015 ~0.290 Contrast
9 29,037 0.407 0.684 ~0.265 0.000 -0.311 -0.013 Contrast
10 24,911 0.848 0.456 0.364 0.370 0.000 0.000 Contrast
11 61,005 0.832 0.709 0.131 0.000 0.045 —0.071 Contrast
12 41,710 0.695 0.676 0.000 0.000 0.200 0.160 Contrast
13 119,369 0.196 0.192 0.000 0.000 —0.009 —0.001 Poor

14 17,708 0.382 0.336 0.033 0.444 ~0.402 0.006 Contrast
15 13,270 0.389 0.671 —0.263 -0.325 0.047 0.000 Contrast
16 74,044 0.698 0.743 ~0.030 0.000 ~0.082 —0.034 Good

Notes: The column, Label, provides a simple, nominal classification to aid interpretation of Figure 2. Clusters were labeled “contrast” if one
or more of the contrast variables was >/0.1| (e.g., Clusters 1 and 3). ICIm and IWIm values of >0.35 and 0.60 were used as threshold for the

“moderate” and “good” labels.

m, mainstem; t, tributary; ICWI, catchment — watershed; d, mainstem — tributary.
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I oo
[ 0.01-0.10 0.31-0.40

0.11-020 [ 0.41-0.50

0.21-0.30

(b)

0.51-0.60 [l 0.81-0.90

[ o61-070 R oe1-10

FIGURE 2. Proportion of confluences within 8-digit hydrologic units (HUC 8) in (a) good, (b) moderate, (c) poor, and (d) contrasting
ecological conditions (see Table 1). The HUC 8 highlighted in red in panel a is depicted in Figure 3. [Color figure can be viewed at wile
yonlinelibrary.com]

which is the potential natural vegetation in this
region of the U.S. (Daubenmire 1978). Our confluence
dataset can be used alone and in combination with
other GIS data to support ecological conservation and
restoration efforts.

Across the conterminous U.S., about 20%
(n = 196,818) of the confluences were hydraulically
significant, and their distribution across the clusters
was uneven (Figure 4). The percentage of hydrauli-
cally significant (symmetry ratio >0.6) confluences by
cluster ranged from about 2% (Cluster 8) to nearly
50% (Cluster 10). About 3% of the hydraulically sig-
nificant confluences had incoming streams where
both stream orders were >1 (n = 5,933), of which 25%
were in Cluster 10. Cluster 10 confluences have
mainstem and tributary catchments in good ecological
condition and mainstem and tributary watersheds in
moderate ecological condition (Table 2). The
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geographic pattern of hydraulically significant conflu-
ences was consistent with geographic pattern for all
confluences.

DISCUSSION

Confluences are an understudied component of
lotic systems that readily facilitate and fit into
stream network conceptual models. We classified con-
fluences by characteristics attributable to the catch-
ments and watersheds of the incoming streams and
found that about 35% of the confluences in the con-
terminous U.S. had distinctly different conditions
between the mainstem and tributary, the catchment
and watershed, or both, suggesting that the condition
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(a)

Cluster labels

¢ Contrast

@® Poor
Moderate
Good

FIGURE 3. Spatial distribution of (a) confluence conditions for a HUC 12 and (b) the proportion of confluences in good ecological condition
for the HUC 12 units nested within a HUC 8. The HUC 12 highlighted in (b) is depicted in (a). The confluence encircled in black in (a) is

discussed in the Results. The HUC 8 in (b) is highlighted in Figure 2. The Google Earth™ image date is February 2, 2019. [Color figure can be viewed at
wileyonlinelibrary.com]

of about one-third of the stream confluences in the
conterminous U.S. is defined by inflowing streams
with distinctly different ecological characteristics. It
would be difficult to ascertain information on con-
trasting catchment-watershed and mainstem-tribu-
tary conditions from a similarly broad-scale
assessment that was based on watersheds (e.g., Jones
et al. 1997; Wickham et al. 1999).

When compared to the number of field studies we
found on the ecologic characteristics of confluences,
the number of confluences in the conterminous U.S.
tends to support the view that knowledge of the eco-
logical roles of stream confluences is still in an emer-
gent stage (Grant et al. 2007; Rice et al. 2008; Jones
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and Schmidt 2017), and the list of worthwhile
research topics appears to be long (see Grant et al.
2007). The dataset developed for this project should
support many of these topics. For example, the influ-
ence of climate, geology, and topography on riverine
characteristics (Poff et al. 1997) suggests that there
should be geographic differences in the hydraulic sig-
nificance of confluences and the occurrence of biologi-
cal hotspots. Benda, Andras, et al. (2004) and Benda,
Poff, et al. (2004) found differences in geomorphic
characteristics of confluences in the western U.S.
when the data were split into humid and arid loca-
tions. Similarly, rivers in coastal plain settings, may
have low-sediment transport capacity (Slattery and
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Label Class

Poor Contrast
@® Good Moderate
Frequency Proportion
Wsratio Stream Wsratio Stream
Cluster Count 20.6 Order>1 20.6 Order>1 Label
1 38,355 3927 192 0.102 0.0050 Contrast
2 27,081 3804 344 0.140 0.0127 Contrast
3 24,923 1430 22 0.057 0.0009 Contrast
4 256,318 64121 775 0.250 0.0030 Good
5 35,417 5501 13 0.155 0.0004 Contrast
6 52,689 13624 248 0.259 0.0047 Moderate
7 99,352 20293 283 0.204 0.0028 Poor
8 26,280 672 5 0.026 0.0002 Contrast

210 420

Kilometers

Frequency Proportion
Wsratio Stream Wsratio Stream
Cluster Count 20.6 Order>1 20.6 Order>1 Label
9 29,037 4333 345 0.149 0.0119 Contrast
10 24,911 12443 1493  0.499 0.0599 Contrast
11 61,005 8480 628 0.139 0.0103 Contrast
12 41,710 8811 113 0.211 0.0027 Contrast
13 119,369 25355 394 0.212 0.0033 Poor
14 17,708 4678 334 0.264 0.0189 Contrast
15 13,270 4983 470 0.376 0.0354 Contrast
16 74,044 14363 274 0.194 0.0037 Good

FIGURE 4. Confluence condition where symmetry (Ws) ratio >0.6 and inflowing stream orders >1. [Color figure can be viewed at wileyonline
library.com]

Phillips 2011), suggesting that geomorphic and con-
comitant ecological effects may be different for conflu-
ent, low-sediment streams compared to those with
more typical sediment volumes.

Threshold tributary effects on stream confluences
have been developed based on the symmetry ratio
and other factors (Rhoads 1987; Rice 1998; Rice et al.
2001; Benda, Andras, et al. 2004). Based on the sym-
metry ratio alone, threshold effects occur between 0.6
and 0.7 (Rhoads 1987; Benda, Andras, et al. 2004).
Notwithstanding potential hydraulic effects on
stream biota (Statzner and Higler 1986), possible
effects attributable to other factors (e.g., Hellman
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et al. 2015; Boddy et al. 2019) have not been tested
empirically to our knowledge. The Jones and Schmidt
(2017) conceptual model can be viewed as an
acknowledgment of the potential importance of fac-
tors other than hydraulic forces. In their conceptual
model, dissimilarity in the landscape characteristics
of the inflowing streams reduces the symmetry ratio
at which threshold effects may be realized. Differ-
ences in the amount of impervious cover between the
watersheds of confluent streams would seem to be
one example in which landscape characteristics would
affect the symmetry ratio at which threshold effects
might occur. The results reported by Boddy et al.
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(2019) in which disturbance in the tributary water-
shed affected ecological changes attributable to stream
confluences appear to be empirical evidence supporting
Jones and Schmidt’s (2017) conceptual model.

Rice et al. (2008) discussed several fascinating
examples of stream confluence effects on aquatic ecol-
ogy that are not necessarily dependent on high sym-
metry ratios, including use of tributaries for predator
avoidance, differential use of mainstem and tributary
based on life stage, thermal refugia, and preferential
use of stream confluences as feeding grounds. Our
motivation for producing a stream confluence dataset
and classifying the confluences was to support and
invigorate the study of the ecology of stream conflu-
ences. One example is the use of our classification
results to develop ecological reference sites for stream
confluences. Ecological reference sites (sites free or
nearly free of anthropogenic influence) are often
determined by expert judgment, and the subjectivity
inherent in such judgment may lead to misclassifica-
tion — sites incorrectly labeled as representing (or
not) reference conditions (Whittier et al. 2007). Our
classification is based on consistently quantified met-
rics of ecological condition (Thornbrugh et al. 2018)
that are further supported by several measures of
classification uncertainty. In addition, dataset ele-
ments such as stream order (Whittier et al. 2007) and
geology (Hellman et al. 2015) can be used to bring
context to reference site identification.

DATE AVAILABILITY AND DATA LIMITATIONS

Data Availability. The data are freely available
https://doi.pangea.de/10.1594/PANGEA.909230 (Wick-
ham 2019). The data are provided as ArcMap shape-
files and associated dbase files. ArcMap shapefiles for
streams (line) and catchments (polygon) are also
included. The data will also be made available by the
U.S. Environmental Protection Agency at their Envir-
oAtlas geospatial portal (Pickard et al. 2015; https:/
www.epa.gov/enviroatlas). The Methods and Support-
ing Information serve as metadata for the dataset
posted at PANGEA, and its subsequent posting on
EPA’s EnviroAtlas website will include information
from the Methods and Supporting Information sec-
tions, and additional documentation.

Data Limitations. Like so many other geographic
research efforts, the work described herein embodies
the concept that maps are models (sensu Board 1967,
see also King 1982). As such, the work was subject to
the constraints of generality, realism, and precision
(Levins 1966; see also Weisberg 2006) that all model-
ing efforts must address. As is the case with many
broad-scale (i.e., large geographic extent) studies, our
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effort emphasized generality at the expense of preci-
sion. Depending on the objectives, our emphasis on
generality may or may not impact the use of these data
at local scales (e.g., Figure 3a). The hierarchical
stream habitat classification system developed by Fris-
sel et al. (1986) is perhaps a useful guide on the limita-
tion of the use of the stream confluence dataset. The
authors identify five levels of classification broadly
defined by length scales ranging from 10~ m to 10®> m
in units of 10'. The stream confluence dataset would
seem to be most useful at the Frissel et al. (1986) 10®
and 102 classification levels and begin to breakdown at
the 10! classification level.

The potential impact on our results of the broad-
scale geographic perspective and emphasis on
generality extend to the primary input data (NHD,
StreamCat, and NLCD) we used. The source materials
and data capture methods used to develop NHD have
resulted in inconsistent drainage densities, omission of
many headwater streams, and omission of all ephem-
eral streams (Lang et al. 2012; Fritz et al. 2013; Benda
et al. 2016). Others have noted that streams removed
(i.e., buried), most often as a result of urbanization,
also are missing from NHD (Elmore and Kaushal
2008; Roy et al. 2009). The reported shortcomings of
NHD were based on studies that were local in scale
and emphasized precision (Elmore and Kaushal 2008;
Roy et al. 2009; Lang et al. 2012; Fritz et al. 2013;
Benda et al. 2016). Missing streams in NHD indicate
missing stream confluences in our dataset. The ten-
dency for missing streams to be small, headwater
streams also suggests that the associated missing
stream confluences likely would be hydrologically sig-
nificant since the merging streams would likely have
similar discharge volumes. Our results for hydrologic
significance for stream orders greater than one (i.e.,
Figure 4) could also be affected if the inclusion of head-
waters changed the spatial pattern of stream orders.
NHD Plus High Resolution (NHD Plus HR) data
(1:24,000-scale) (https://www.usgs.gov/core-science-
systems/ngp/national-hydrography/nhdplus-high-re
solution#WhatlIslt ) include more streams than the
NHDPlus V2 data (1:100,000-scale) we used and likely
would have resulted in identification of more stream
confluences. However, Fritz et al. (2013) found closer,
but far from perfect, agreement in stream class type
(ephemeral, intermittent, or perennial) between field-
determined streams (Fritz et al. 2008) and NHD Plus
HR than between field-determined streams and
NHDPIlus V2. NHD Plus HR is still in beta version and
not complete for the entire conterminous U.S. Simi-
larly, the models developed by Thornbrugh et al.
(2019) to estimate ICI and IWI emphasize generality
rather than precision because they were based on
input data that were available across the conterminous
U.S. A similar effort on a local scale emphasizing
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precision (i.e., higher quality data) might derive differ-
ent estimates for ICI and IWI. Like NHD, NLCD is a
broad-scale, widely used database. NLCD 2011 (Homer
et al. 2015) user’s accuracies (complement of commis-
sion error) and producers accuracies (complement of
omission error) range from 80% to 95% for its urban,
forest, shrubland, grassland, and agriculture classes
for both the 2001 and 2011 components of the data-
base, and accuracy of change results (e.g., forest loss),
while lower, compare favorably with other land cover
change products (Wickham, Stehman, et al. 2017).
Translating recent quantitative estimates of the spa-
tial pattern of land cover change accuracy (Wickham,
Stehman, et al. 2018) to the expression of land cover
change in our stream confluence dataset indicates that
accuracy should increase as the difference between
2001 and 2011 proportions increases. Availability of
higher resolution land cover is becoming more wide-
spread (Popkin 2018; www.chesapeakeconservancy.
org; www.epa.gov/enviroatlas), and comparison of
NLCD with such data indicates higher resolution data
would yield different area estimates and different spa-
tial patterns but these high-resolution datasets are not
without error (Wickham, Herold, et al. 2018; Wickham
et al. 2020; Wickham and Riitters 2019).

SUPPORTING INFORMATION

Additional supporting information may be found
online under the Supporting Information tab for this
article: Supporting information on database indica-
tors and classification methods.
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