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Abstract

Molecular self-diffusion coefficients underlie various kinetic properties of the liquids

involved in chemistry, physics, and pharmaceutics. In this study, 547 self-diffusion

coefficients are calculated based on all-atom molecular dynamics (MD) simulations of

152 diverse pure liquids at various temperatures employing the OPLS4 force field.

The calculated coefficients are compared with experimental data (424 extracted from

the literature and 123 newly measured by pulsed-field gradient nuclear magnetic res-

onance). The calculations well agree with the experimental values. The determination

coefficient and root mean square error between the observed and calculated loga-

rithmic self-diffusion coefficients of the 547 entries are 0.931 and 0.213, respec-

tively, demonstrating that the MD calculation can be an excellent industrial tool for

predicting, for example, molecular transportation in liquids such as the diffusion of

active ingredients in biological and pharmaceutical liquids. The self-diffusion coeffi-

cients collected in this study are compiled into a database for broad researches

including artificial intelligence calculations.
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1 | INTRODUCTION

Liquid materials are ubiquitous in organisms, environments, and

industries involving reactants, solvents, and other functional

entities. The diffusion of molecules in liquids has attracted con-

siderable attention in the fields of fluid mechanics and liquid sci-

ence, materials physics, chemical engineering, and theoretical

chemistry.1–5 The self-diffusion coefficients of molecules in liq-

uids are sensitive to the molecular structure, as well as the ther-

modynamic conditions such as temperature and pressure.

Despite the increasing importance of the self-diffusion coeffi-

cient in theoretical and applied chemistry, successful reports

including a comprehensive prediction of the self-diffusion

coefficient of chemically diverse liquids under various conditions

have been quite limited.6

Computationally, the self-diffusion coefficients (D) of molecules in

liquids have been obtained with molecular dynamics (MD) calculations

by two popular methods. The first method integrates the velocity

auto-correlation function over time using the Green–Kubo formula1

D¼1
3

ð∞
0
⟨vi 0ð Þ �vi tð Þ⟩dt, ð1Þ

where vi is the velocity of a molecule i of interest at time t and the

angular brackets represent the ensemble average. The second method

uses the mean square displacement (MSD) as7
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D¼ lim
t!∞

1
6t

⟨ ri tð Þ� ri 0ð Þj j2⟩, ð2Þ

where ri is the position of molecule i.

Various force fields8,9 for MD simulations have been developed

and employed in the fields of biophysics,10 chemical physics,11 mate-

rials science,12 and drug discovery.13 In particular, OPLS4,14 among

the newest force fields and an improved version of OPLS3e,15 is a

promising force field with new potential parameters. Therefore, apply-

ing this force field to self-diffusion coefficients is an interesting

proposition.

Experimentally, self-diffusion coefficients in liquids have

been determined using nuclear magnetic resonance (NMR) with

spin-echo techniques16,17 as well as radioactive or stable isotopic

tracers.18–20 The former techniques, especially pulsed-field gradi-

ent (PFG)–NMR,21,22 which is also referred to as pulsed-gradient

spin-echo NMR, and their improvements23,24 have been widely

used to measure the self-diffusion coefficient. The NMR

methods have handled a broad range of diffusion coefficients

and temperature conditions since their development by Stejskal

and Tanner in 1968.25 In PFG–NMR experiments using a rectan-

gular gradient pulse, the self-diffusion coefficient D is

obtained as26

S
S0

¼ exp �γ2g2δ2D Δ� δ

3

� �� �
, ð3Þ

where γ is the gyromagnetic ratio, which is intrinsic to the resonant

nucleus, g is the pulse gradient, δ is the width of the pulse gradient, Δ

is the interval between the gradient pulses, S is the observed signal on

the gradient, and S0 is the signal at zero gradient.

In this study, we have attempted to evaluate the perfor-

mance of predicting self-diffusion coefficient for chemically

diverse pure liquids by all-atom MD simulations. To this end, we

employed the following three processes: (1) compilation of a

new large dataset containing the self-diffusion coefficients of

pure liquids by performing a literature survey and conducting

additional PFG-NMR experiments; (2) all-atom MD simulations of

the self-diffusion coefficients for all pure liquids found in our

database; (3) assessment of the predictive performances of our

self-diffusion coefficient calculations using reliable statistical

metrics.

2 | METHODS

We calculated 547 diffusion coefficients from the MD trajectories of

molecules in pure liquids and compared them with the experimental

values. Among the 547 experimental data, 424 were extracted from

the literature and 123 were newly measured by the PFG–NMR tech-

nique. The data were all compiled in a database constructed in the

present study.

2.1 | System preparation

The initial liquid structures for the MD calculations were efficiently

prepared using the following procedures. First, the two-dimensional

molecular structures of liquids in our database were obtained from

CAS SciFinder. Subsequently, we applied the LigPrep package with

the OPLS4 force field for energy minimization in the Schrödinger

Small-Molecule Discovery Suite ver. 2021-427 to generate the three-

dimensional molecular structures of each liquid. Based on the gener-

ated molecular structures of the liquids, we constructed a cubic

simulation cell for each pure liquid using the System Builder and Pre-

pare for MD functions in the Schrödinger Materials Science suite: Poly-

mer Package (MSS) ver. 2021-4.27 One simulation cell contained over

1000 molecules of a pure liquid to ensure sufficient statistical conver-

gence. The OPLS4 force field was applied to the simulation cells. For

water, we prepared eight simulation cells for eight different potential

models, namely, the single-point charge (SPC),28 SPC/E,29 the transfer-

able intermolecular potential with three, four, and five points (TIP3P,30

TIP4P,31 and TIP5P,32 respectively), TIP4P/2005,33 TIP4P-Ew,34 and

TIP4P-D.35 The performances of the potential models in the prediction

of self-diffusion coefficients were then compared.

2.2 | Equilibration calculation

To attain thermal equilibrium of the calculation systems, we car-

ried out the following four-stage process before computing the

self-diffusion coefficients: (1) Brownian dynamics37 at 10 K for

100 ps with a 1 fs time step; (2) MD calculation in the canonical

(NVT) ensemble using the Langevin thermostat1 at 10 K for 100 ps

with a 2 fs time step; (3) MD calculation in the canonical ensemble

using the Langevin thermostat at the temperature of interest for

100 ps with a 2 fs time step; (4) MD calculation in the isothermal–

isobaric (NPT) ensemble using the Nose–Hoover thermostat38 and

the Martyna–Tobias–Klein barostat39 at the temperature of inter-

est and 1.01325 bar for 20 ns with a 2 fs time step. The electro-

static interaction was calculated by the u-series algorithm40

developed by Shaw and coworkers, and the cutoff radius of the

short-range interaction was set to 9.0 Å. Other tunable parameters

were used as default values for simulations and all simulations

were performed with periodic boundary conditions in the

Desmond/G package ver. 6.8.135.41,42

2.3 | Calculation of the diffusion coefficients

Production MD runs of the self-diffusion coefficients in the NPT

ensemble were started from the equilibrated simulation systems and

continued at the temperature of interest. Theoretically, the self-

diffusion coefficient is accurately calculated based on Equation (2)

and practically we can estimate self-diffusion coefficient from the

slope of the MSD versus sufficient long lag time τ.43 In this study, we
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divided the database into the two sets of highly diffusive samples

(with logarithmic experimental diffusion coefficients [m2/s] larger than

�9.5) and lowly diffusive samples (the rest of the entire dataset) to

set an appropriate simulation time of 40 ns for the former and 150 ns

for the latter. The pressure, temperature, and other settings were kept

the same as described in preprocess (4) above. The MSD of a mole-

cule's center-of-mass was calculated from the trajectories as a func-

tion of at 4 ps intervals and the MSDs of all molecules in the

simulation system were averaged using the Diffusion Coefficient tools

in the MSS. Subsequently, the self-diffusion coefficient was calculated

as one-sixth of the slope of the averaged MSD versus lag time ranging

from 12 to 20 ns for the highly diffusive samples and from 45 to

75 ns for the lowly diffusive samples, which was linearly regressed by

the least-squares technique using the lm function in the R environ-

ment ver. 4.1.1.44 To assess the adequacy of the calculations of self-

diffusion coefficients, we evaluated the determination coefficients of

the linear regressions and diffusion coefficient transitions of the sys-

tem every 500 ps lag time.

The 547 logarithmic values of self-diffusion coefficients predicted

in the present MD calculations were statistically compared with the

experimental data by four metrics, namely, the determination coeffi-

cient (R2), root mean square error (RMSE), mean absolute error (MAE),

and concordance correlation coefficient (CCC).45 The four statistics

are defined as follows:

R2 ¼1�
Pn

i¼1 yobsi �ycalci

� �2Pn
i¼1 yobsi � byobs� 	2

, ð4Þ

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 yobsi � ycalci

� �2
n

s
, ð5Þ

MAE¼
Pn

i¼1 yobsi �ycalci

�� ��
n

, ð6Þ

CCC¼
2
Pn

i¼1 yobsi �byobs� 	
ycalci �bycalc� 	

Pn
i¼1 yobsi � byobs� 	2

þPn
i¼1 ycalci �bycalc� 	2

þn byobs�bycalc� 	2
:

ð7Þ

where yobsi , ycalci , byobs, and bycalc are the observed, calculated, mean of

the observed, and mean of the calculated logarithmic self-diffusion

coefficients, respectively, and n is the number of samples. All metrics

were calculated in the R environment ver. 4.1.1.44 The experimental

data were collected as described in the next section.

2.4 | Self-diffusion coefficients in the database

From the literature, we extracted 424 self-diffusion coefficients of

81 chemically diverse pure liquids.46–62 This compilation process

excluded self-diffusion data of stereoisomeric mixtures. To quantita-

tively evaluate the impact of temperature on self-diffusion, we

collected the self-diffusion coefficients at different temperatures for

most of the individual liquids.

To expand the chemical diversity of our database, we conducted

PFG-NMR spectroscopy experiments of 75 pure liquids at temperatures

ranging from 278.15 to 328.15 K using the bipolar gradient stimulated

echo pulse sequence.24 All measurements were made on protons at

395.88 MHz. Applying Equation (3) to the experimental data, we newly

obtained 123 self-diffusion coefficients. The details of materials, instru-

mental information, and parameter settings of the experiments are given

in Tables S1 and S2. Note that although the four liquids, acetone, acetoni-

trile, ethanol, and tetrahydrofuran, are duplicated in the literature and our

additional observations, the diffusion temperature for each liquid is differ-

ent in the two cases. Thus, we integrated our new observations with the

literature data to construct a database embracing 547 self-diffusion coef-

ficients for 152 pure liquids. Our database includes the liquid names, CAS

registry numbers, diffusion temperatures, logarithmic values of the experi-

mental and calculated self-diffusion coefficients (unit: m2/s), the

simulation-box sizes after equilibration calculations, the number of mole-

cules in the simulation boxes and data references. The database is pro-

vided in Table S3.

2.5 | Database characterization

We examined the distribution of the logarithmic self-diffusion coefficients

and the number of atoms of the constituent molecules of liquids in our

database. To chemically characterize our database, we generated 5290

molecular descriptors consisting of one-, two-, and three-dimensional

descriptors63 and various molecular properties, based on three-

dimensional neutral structures (see Section 2.1) for all the 152 pure liquids

utilizing alvaDesc ver. 2.0.10.64 After eliminating the constant and errone-

ous descriptors, 2119 descriptors remained in the list. Among this molec-

ular descriptor pool, we selected five descriptors that are frequently used

as chemical characteristics—molecular weight, octanol–water partition

coefficient (ALogP),65 number of rotatable bonds, topological polar sur-

face area, and number of hydrogen bonds—and determined their statisti-

cal metrics to evaluate the chemical diversity of our database. We then

evaluated the complementary relation between the experimentally

observed liquids in this study and the liquids reported in the literature. To

this end, we visually compared the three-dimensional chemical spaces of

the corresponding liquids by the t-distributed stochastic neighbor embed-

ding (t-SNE) technique.66 The t-SNE analysis was executed by applying

the tsne function in the tsne R package ver. 0.1-367 to the scaled values

of the 2119 descriptors of the liquids. These statistical analyses were

implemented in the R environment ver. 4.1.1.44

3 | RESULTS AND DISCUSSION

3.1 | Chemical diversity of the materials

To evaluate the performance of computational methods for predicting

physico-chemical or thermodynamic properties of materials, a
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sufficient chemical diversity of the test samples is essential. The database

compiled in this study comprises 547 self-diffusion coefficients of

152 chemically diverse pure liquids and is much larger than that of previ-

ous work.6 Figure 1 shows the distributions of the logarithmic self-

diffusion coefficients and the sizes of the constituent molecules of the

pure liquids in our database. As shown in Figure 1A, the logarithmic self-

diffusion coefficient was widely distributed from extremely low (under

�12.0) to high (over �8.5) values and the number of atoms of the mole-

cules of liquids in our database also widely ranged from very small (under

10) to comparatively large (over 50) values, as shown in Figure 1B. These

results suggest that our database is sufficiently diverse for assessing the

predictive ability of MD for self-diffusion coefficients. Actually, liquids are

composed of a wide range of chemical structures, such as alcohols (mono-

hydric and polyhydric), hydrocarbons (acyclic, alicyclic, aromatic, and halo-

genated), short-, medium-, and long-chain saturated fatty acids (n-alkanoic

acids), amides, esters, carbonates, ketones, nitriles, amines, thiols, sulfides,

ethers, silanes, nitro compounds, and other polar liquids. Note that many

of the liquids in our database are often used as thermal energy storage

media, pharmaceutical excipients and solvents in electronics, pharmaceu-

tical, and chemical industries.68–72 The diversity of our database is also

demonstrated by the statistics summarized in Table 1, including the

molecular weight, octanol–water partition coefficient, number of

rotatable bonds, topological polar surface area, and number of hydrogen

bonds. Clearly, the liquids in our database exhibit a wide range of chemi-

cal characteristics.

In this study, we experimentally determined the self-diffusion

coefficients of 75 pure liquids by PFG-NMR techniques and 71 of

them were not retrieved from the literature. The expansion of the

chemical space by our additional data is graphically demonstrated by

t-SNE techniques as a three-dimensional scatter plot and its projec-

tions to two-dimensional planes in Figure 2. As shown in the figure,

the red data points representing the 71 additional liquids occupy a dif-

ferent space from the black data points corresponding to the litera-

ture liquids, which means that the additional liquids efficiently

complement the liquids presented in the literature and provide addi-

tional chemical diversity to the database. These results suggest that

our database covers a sufficient chemical space for assessing the pre-

dictive performance of MD for self-diffusion coefficients.

3.2 | Adequacy of calculating diffusion coefficients

The determination coefficient (R2) of the linear regression of the aver-

aged MSD as a function of lag time (τ) critically determine the

F IGURE 1 Distributions of
(A) logarithmic self-diffusion
coefficients and (B) number of
atoms of the constituent
molecules of liquids contained in
the database. The red, blue, and
green bars represent the
experimentally observed liquids
in the present study, the liquids
collected from the literature, and
the liquids in both the literature
and our observations,
respectively.

TABLE 1 Chemical characteristics of
the liquids in our database

Metrics Log Da MWb A Log Pc RBNd TPSAe HBAf HBDg

Samples 547 152 152 152 152 152 152

Max �8.20 410.8 11.33 16 60.69 4 3

Median �8.94 100.1 1.81 1 20.23 1 0

Min �12.21 18.0 �1.41 0 0 0 0

SDh �0.65 54.1 1.91 3.76 15.59 1.04 0.63

aLogarithmic self-diffusion coefficient.
bMolecular weight.
cGhose–Crippen octanol–water partition coefficient.
dNumber of rotatable bonds.
eTopological polar surface area.
fNumber of hydrogen bond acceptors.
gNumber of hydrogen bond donors.
hStandard deviation.
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adequacy of the analyses, including the system preparation, simulation

preprocesses, and sampling simulation. Table 2 summarizes the statistics

of the R2 values for all 610 regressions, corresponding to 538 + 9 � 8

sampling simulations, where nine water-diffusion entries of all the

547 entries in our database were applied to eight different water models.

Table 2 clearly shows that the plots of MSD versus prescribed τ range

(12–20 ns for highly diffusive liquids or 45–75 ns for lowly diffusive liq-

uids) were almost completely linear, as all the R2 values were greater than

0.9996, indicating that our simulations statistically converged to the diffu-

sional region. Based on the molecular behavior, plots of MSD versus lag

time can take two major modes, that is, the ballistic and the diffusion

regimes.73 The former is a collision-free mode that is found at earlier sim-

ulation times where the MSD plots are nonlinear. The latter is a typical

random-walk (diffusion) mode based on molecular collisions, which gives

rise to linear MSD plots. Two examples of MSD plots are presented in

Figure 3. Figure 3A plots the results of acetonitrile at 308.15 K, which

yielded the maximum calculated self-diffusion coefficient in our database.

In contrast, Figure 3B plots the results of (R)-1,2,4-butanetriol at

288.15 K, which shows the minimum self-diffusion coefficient. The MSD

versus τ plot of (R)-1,2,4-butanetriol with the small self-diffusion coeffi-

cient was clearly nonlinear at small τ. The nonlinearity survived longer for

the sample with low diffusion coefficient than for the sample with high

diffusion coefficient. Actually, the diffusion coefficients of (R)-1,-

2,4-butanetriol per 500 ps exhibited slower convergence than those of

acetonitrile, although transitions of diffusion coefficients of both liquids

were in the plateau region in a prescribed τ range (12–20 ns for acetoni-

trile or 45–75 ns for (R)-1,2,4-butanetriol) as shown in Figure 4. The same

tendency is seen in all calculations on the samples in our entire database.

These results indicate that our MSD calculation time, which is 12–20 ns

for highly diffusive liquids or 45–75 ns for lowly diffusive liquids, is appro-

priate for analyzing the self-diffusion coefficients.

3.3 | Comparison of water models

Water is a ubiquitous liquid. This simple, two-element, three-atom

molecule has been extensively studied over 50 years. The anomalous

TABLE 2 Statistics of the calculated mean square displacements
in the MD calculations

Metrics Values

Samples 610

Max 1.0000

Median 0.99999

Min 0.99964

Standard deviation 0.00003

F IGURE 3 Plots of MSD versus lag time (τ): (A) acetonitrile at
308.15 K, (B) (R)-1,2,4-butanetriol at 288.15 K

F IGURE 2 Three-dimensional chemical space by t-SNE analysis.
The red, black, and green data points represent the experimentally
observed liquids in the present study, the liquids collected from the
literature, and the liquids in both the literature and our observations,
respectively.
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physical properties74 of water have been simulated in various water

models.75 Each model reasonably reproduces particular properties of

water, but has its own limitations. Therefore, we compared the water

self-diffusion coefficients obtained by eight popular water models: SPC,

SPC/E, TIPnP (n = 3, 4, 5), TIP4P/2005, TIP4P-Ew, and TIP4P-D, and

assessed the predictive ability of each model. Figure 5 shows the plots of

the self-diffusion coefficients of water calculated by all-atom MD simula-

tions as a function of temperature ranging from 288.15 to 329.15 K. The

experimentally observed values54 are also given for comparison. Clearly,

the prediction errors depended on the model, but all models except TIP5P

obtained a common temperature dependence with similar slopes. How-

ever, the difference in the self-diffusion coefficient calculated by TIP5P

and the experimental ones increased further with increasing temperature.

We observed that the descending order of self-diffusion coefficient

around 300 K is TIP3P > SPC > TIP4P > TIP5P > SPC/E > TIP4P-

Ew > TIP4P/2005 > experimental > TIP4P-D, which is in quite agreement

with existing studies.35,76,77 The TIP3P, SPC, TIP4P, and TIP5P models

F IGURE 5 Comparison of calculated and experimental self-
diffusion coefficients as a function of temperature for the eight water
models

TABLE 3 Performances of the six water models in predicting self-
diffusion coefficients

Model R2 RMSE MAE CCC

SPC 0.998 0.260 0.257 0.254

SPC/E 0.998 0.066 0.063 0.863

TIP3P 0.995 0.375 0.371 0.123

TIP4P 0.998 0.207 0.204 0.373

TIP4P/2005 0.999 0.012 0.009 0.996

TIP4P-D 0.999 0.041 0.039 0.947

TIP4P-Ew 0.998 0.052 0.050 0.918

TIP5P 0.996 0.137 0.134 0.675

F IGURE 6 Self-diffusion coefficients calculated by the present
all-atom MD calculations versus the experimental data for 547 entries
in our database

F IGURE 4 Transitions of diffusion coefficients every 500 ps lag
time (τ): (A) acetonitrile at 308.15 K, (B) (R)-1,2,4-butanetriol at
288.15 K
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substantially overestimated the experimental self-diffusion coefficient,

whereas the remaining models (TIP4P/2005, TIP4P-Ew, SPC/E, and

TIP4P-D) reproduced the experimental data quite well over the entire

temperature range (with TIP4P/2005 being slightly better than the

others; see Figure 5).

The predictive statistics, namely, R2, RMSE, MAE, and CCC,

between the experimental and calculated self-diffusion coefficients

for eight water models are summarized in Table 3. The TIP4P-2005

achieved the best RMSE, MAE, and CCC values, indicating that this

water potential is the most favorable model for estimating the self-

diffusion coefficient within the temperature range of this study.

Meanwhile, the R2 values were almost identical in all models (>0.995),

reflecting the high correlation between the experimental and calcu-

lated self-diffusion coefficients versus temperature. Consequently, we

adopted TIP4P-2005 as the water model in the following discussion

of the total predictive performances of all-atom MDs for self-diffusion

coefficient.

3.4 | Predictive performance of all-atom MDs

Figure 6 presents the predictive performances of all-atom MD simula-

tions for the 547 self-diffusion coefficients of 152 pure liquids in our

database, which is among the largest ones tested by all-atom MD. The

statistical metrics R2, RMSE, MAE, and CCC between the experimen-

tal and calculated self-diffusion coefficients are also shown. These sta-

tistics demonstrate the excellent performance of the MD predictions.

That is, our all-atom MD simulations can strongly predict a wide range

of self-diffusion coefficients of chemically diverse liquids spanning

over four common logarithmic units. Note that no anisotropic diffu-

sions were observed in all our simulations because coefficients of vari-

ation for calculated diffusion coefficients along the three axes (x, y,

and z) of the 547 samples ranged from 2.10 � 10�3 to 1.18 � 10�1.

In our database, there are homologous compounds series, for

example, sequential nine normal alcohols containing one to nine car-

bon atoms (methanol to n-nonanol), in several chemical groups. To

F IGURE 7 Prediction error
versus temperature for
various homologous series:
(A) n-alcohols, (B) terminal diols,
(C) 2-alkanones, (D) n-alkanoic
acids, (E) n-alkyl acetates,
(F) n-nitriles, (G) methyl n-alkyl
carbonates, and (H) n-thiols
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understand the prediction trends of the self-diffusion coefficients

obtained in our MD simulations, we calculated the prediction error as

the difference between the experimental and calculated self-diffusion

coefficients. The results of eight homologous series—n-alcohols, ter-

minal diols, 2-alkanones, n-alkanoic acids, n-alkyl acetates, n-nitriles,

methyl n-alkyl carbonates, and n-thiols—are shown in Figure 7.

As shown in the figure, carbon homologation tended to underesti-

mate the self-diffusion coefficients at lower temperatures in the MD

simulations. The prediction-error curves differed among the liquids,

even among those within the same homologous series, and could be

typically classified into three trend types: growing asymptotically,

changing linearly, and adopting a mountain-like shape. These trends

were typically found for 2-decanone, 2-pentanone, and 2-octanone,

respectively. Furthermore, the prediction errors of methyl n-alkyl car-

bonates and n-alkanoic acids were larger than other liquids with simi-

lar molecular weights containing other chemical groups: at the same

temperature, the absolute prediction errors for n-hexyl methyl car-

bonates (molecular weight = 160.24) were more than 3.8 times those

of n-decanenitrile (153.30) and more than 2.2 times those of

2-decanone (156.30). Additionally, three n-alkanoic acids (n-octanoic

acid, n-decanoic acid, and n-dodecanoic acid) share a constitutional

isomeric relationship with three n-alkyl acetates (n-hexyl acetate, n-

octyl acetate, and n-decyl acetate, respectively). However, in the

323–353 K range, the absolute prediction errors in the self-diffusion

coefficients of the former acids were 1.2–2.1 times larger than those

of the latter acetates. In particular, n-alkanoic acids have been reported

to exhibit a characteristic dynamical behavior that can lead to rod-like

dimers and aggregation even in the liquid state.53 Furthermore, the for-

mation of dimers or higher-order molecular structures and the resultant

dynamic properties of liquid n-alkanoic acids depend on the conforma-

tional geometries of the acid molecules.69

To further improve the predictive performance, an elaborate molecu-

lar modeling and a sophisticated re-parametrization of the force field, for

example, by quantum-chemical calculations36 may be required.

4 | CONCLUSIONS

We compiled 547 self-diffusion coefficients of 152 chemically diverse

pure liquids into a new database, which comprises 424 literature

values and 123 newly measured values from PFG-NMR experiments.

Our integrated database of self-diffusion coefficients, embracing wide

chemical characteristics, can be used not only for the assessment of

the predictive ability of the MD calculations but also for the extensive

researches including artificial intelligence calculations.

All-atom MD calculations employing the OPLS4 force field exhib-

ited excellent predictive performances for entire samples in our data-

base, with R2 and RMSE values between the logarithmic experimental

and calculated self-diffusion coefficients were 0.931 and 0.213,

respectively. Furthermore, our results revealed that both TIP4P/2005

achieved the best performance of reproduction of self-diffusion coef-

ficient among eight common water models in the temperature range

from 288.15 to 329.15 K.

This fully computational all-atom MD prediction can be practical

tools for the analysis of self-diffusion coefficient and provide the basis

of industrial trials, for instance, the diffusion of active pharmaceutical

ingredients in various biological and pharmaceutical liquids.
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