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Abstract The Drosophila ventral nerve cord (VNC) receives and processes descending signals

from the brain to produce a variety of coordinated locomotor outputs. It also integrates sensory

information from the periphery and sends ascending signals to the brain. We used single-cell

transcriptomics to generate an unbiased classification of cellular diversity in the VNC of five-day old

adult flies. We produced an atlas of 26,000 high-quality cells, representing more than 100

transcriptionally distinct cell types. The predominant gene signatures defining neuronal cell types

reflect shared developmental histories based on the neuroblast from which cells were derived, as

well as their birth order. The relative position of cells along the anterior-posterior axis could also be

assigned using adult Hox gene expression. This single-cell transcriptional atlas of the adult fly VNC

will be a valuable resource for future studies of neurodevelopment and behavior.

Introduction
The adult Drosophila central nervous system (CNS) consists of the brain in the head capsule and the

ventral nerve cord (VNC; also known as ventral nervous system) in the thorax (Court et al., 2017;

Ito et al., 2014). The VNC receives and integrates sensory input from the periphery and sends this

information to the brain in ascending neurons through the cervical connective (Tsubouchi et al.,

2017). The brain, in turn, sends sensory-motor signals to the VNC via descending neurons

(Namiki et al., 2018). The VNC transforms these signals into locomotor actions (Harris et al., 2015).

It controls muscles in the thorax in unique ways, depending on whether it is steering the wings dur-

ing flight or generating acoustic communication signals during both reproductive and agonistic

behaviors (Clyne and Miesenböck, 2008; Jonsson et al., 2011; Shirangi et al., 2013;

von Philipsborn et al., 2011). It coordinates muscles in the legs to walk, jump, groom, reach, touch,

and taste (Bidaye et al., 2014; Card and Dickinson, 2008; Chen et al., 2018; Gowda et al., 2018;

Harris et al., 2015; Howard et al., 2019; Kim et al., 2017; Mamiya et al., 2018; Mendes et al.,

2013; Mendes et al., 2014; Seeds et al., 2014; Tuthill and Wilson, 2016; Wosnitza et al., 2013).

The VNC also controls musculature in the abdomen relevant to copulation and reproduction includ-

ing abdominal bending, attachment, and ejaculation in the male (Crickmore and Vosshall, 2013;

Jois et al., 2018; Pan et al., 2011; Pavlou et al., 2016; Tayler et al., 2012), and sperm storage and

oviposition in the female (Kimura et al., 2015; Lee et al., 2015).

These different functions are orchestrated by anatomically discrete segments of the VNC.

Whereas the thoracic neuromeres control the legs and wings, the abdominal neuromere controls the

abdominal muscles, gastric system, and reproductive organs. Much of the developmental mecha-

nisms that generate and assemble the VNC have been characterized (Venkatasubramanian and

Mann, 2019). Like other holometabolous insects, Drosophila undergo two stages of neurogenesis

building two distinct nervous systems. Embryonic neurogenesis gives rise to the larval nervous sys-

tem, and post-embryonic neurogenesis produces adult specific neurons. The structure of the adult

nervous system is established in the embryo where pioneering neurons setup networks of tracts,
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which later developing neurons follow (Hartenstein, 2018). The adult VNC is comprised of 4 primary

neuromeres, three thoracic (one per each pair of legs: the prothoracic neuromere, ProNm; mesotho-

racic neuromere, MesoNm and metathoracic neuromere, MetaNm) and one fused abdominal neuro-

mere (ANm) (Court et al., 2017; Niven et al., 2008). The neuromeres, composed of one or more

fused neuropils, are segment-specific parts of the CNS which process sensory signals and control

movements of their specific segments. The thoracic neuromeres are homologous structures and are

thus morphologically similar to each other (Smarandache-Wellmann, 2016). The neurons in these

segments are derived from a set of repeating type I neuroblasts. Cells derived from a given neuro-

blast produce a lineage, which can be split into Notch+ and Notch- hemilineages (Truman et al.,

2010). The formation of tagmatic boundaries, which group these segments into morphological units

along the body axis, is established through differential expression of Hox family transcription factors

(TFs) (Angelini and Kaufman, 2005). Cell types within each neuromere are genetically encoded by

developmental programs. However, it is unclear whether the mature terminal identity of an individ-

ual neuron can be determined from its adult transcriptome.

Although a large body of work has investigated how the adult Drosophila CNS is established

from that of the embryo, many outstanding questions remain. It is for example unknown whether the

TFs involved in establishing the cellular diversity of the nervous system also play a role in the form

and function of these same neurons in the adult. Although certain features of individual neurons can

be plastic, the identity of a terminally differentiated neuron is likely to remain stable throughout the

animal’s life. It is therefore important to understand gene expression and regulation that permit

mature neurons to preserve their subtype identity, morphology and connectivity, and maintain neu-

ral circuit function throughout adulthood. The VNC of the genetically tractable vinegar fly, Drosoph-

ila melanogaster, is ideally suited for these studies.

Here we used single-cell RNA-sequencing to characterize the transcriptomes of individual cells in

a 5 day old adult Drosophila VNC. We generated an atlas of the VNC with 26,768 single-cell tran-

scriptional profiles that define more than 100 cell types. This analysis reveals that the VNC has a

roughly equal number of inhibitory GABAergic neurons and excitatory cholinergic neurons, and that

genes encoding preproneuropeptides are amongst the most highly expressed. The segmentally

repeating nature and developmental history of the VNC is born out in the cellular transcriptomes, as

maintained expression of Hox and several other neuronal lineage marker genes persist. In addition,

these profiles provide many novel markers for known and new cell types. This single-cell atlas of the

adult Drosophila VNC provides a useful resource to help connect cellular identity to behaviorally rel-

evant neural circuit function.

Results

Single-cell transcriptomic atlas of the adult VNC
We created a single-cell transcriptome atlas of the VNC using single-cell RNA-sequencing with 10x

Chromium chemistry. We processed 80 VNCs, 20 per independent replicate (Figure 1A; see

Materials and methods). The data were filtered according to the number of genes (nGene), the num-

ber of unique molecule identifiers (nUMI), and the proportion of mitochondrial genes (prop.mito)

(Figure 1—figure supplement 1A,B; see Materials and methods). A similar number of expressed

genes, and UMIs were retrieved in each replicate (Figure 1—figure supplement 1C). Pooling the

data, we recovered 26,768 high quality cells with a median of 1170 genes and 2497 transcripts per

cell. We compared the expression levels observed in this single-cell data set with those reported

from bulk sequencing, to evaluate the extent to which the tissue dissociation and the 10x procedure

effect gene expression. The filtered single-cell data showed high correlation (r = 0.76) to FlyAtlas’

bulk VNC sequencing data (Figure 1—figure supplement 1D; Leader et al., 2018). Comparisons of

the pseudo-bulk expression levels between replicates of the filtered cells yielded correlations coeffi-

cients from 0.93 to 0.95 (Figure 1—figure supplement 2).

We performed a Canonical-Correlation Analysis (CCA) on the transcriptomes and reduced the

first 45 dimensions into two t-SNE dimensions (van der Maaten, 2014; Figure 1B). We evaluated

the clustering resolution with a clustering tree, comparing the relationship between clusters at differ-

ent resolutions (Figure 1—figure supplement 3). A cluster resolution of 12 was chosen as it best

resolved established substructures within our data (as described below). This resulted in 120 distinct
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Figure 1. Single cell sequencing of 5 day old adult Drosophila VNC. (A) Schematic workflow showing single cell sequencing data generation. Male and

female Drosophila VNCs were dissected and dissociated prior to droplet encapsulation of individual cells with barcoded beads, forming gel beads in

emulsion (GEMs). Following barcode incorporation, molecular amplification and sequencing the transcriptional profiles of individual cells were

determined. (B) Two-dimensional representation (t-SNE) of 26,768 Drosophila VNC cells grouped into 120 clusters. Clusters were assigned using the

Louvain algorithm, using 45 CCA dimensions with a cluster resolution of 12. Each dot is a cell colored by cluster identity. (C) Heatmap showing scaled,

log-normalized expression of top 5 cluster discriminative genes per cluster. (D) Flow diagram representing neuronal and non-neuronal cluster

identification, including total number of genes identified as cluster markers.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. List of marker genes for the 120 clusters shown in Figure 1B and Figure 1—figure supplement 4.

Source data 2. Cluster summary table.

Figure supplement 1. Cut-offs and correlation to bulk sequencing.

Figure supplement 2. Pseudo-bulk comparisons between replicates of filtered VNC data.

Figure supplement 3. Cluster resolution analysis of adult VNC dataset.

Figure supplement 4. t-SNE plot of 5 day old adult VNC with cluster numbers labeled.

Figure supplement 5. Replicate contributions.

Figure supplement 6. t-SNE spatial distributions.

Figure supplement 7. Identification of neuronal and glia clusters.
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clusters (Figure 1—figure supplement 4). Cells from independent experimental replicates were pro-

portionally distributed across the clusters with an alignment metric of 94.6% (Figure 1—figure sup-

plement 5A,B). All replicates contributed to all clusters (with one exception) and showed high

correlation of cluster level expression (Figure 1—figure supplement 1C). Replicate one did not

have any constituents in cluster 118, which had only 22 cells total. The number of genes and tran-

scripts showed a uniform distribution across the t-SNE (Figure 1—figure supplement 6A).

These 26,768 cells represent an approximate 1.5x coverage of the adult VNC. Lineage based

counts of the adult specific post-embryonic neurons in the VNC range from 10,000 to 11,000 cells

(Birkholz et al., 2015; Lacin et al., 2019), with a total number of cells in the VNC forecasted to

be ~16,000 (Lacin et al., 2019). Connectomic analyses of the adult VNC using electron microscopy

estimated a larger total number of ~20,000 cells (Bates et al., 2019). Based on these prior numbers,

our cell atlas has 1.3–1.7x coverage of the VNC.

Cluster-defining marker genes
The 120 t-SNE clusters are defined by unique combinations of significantly enriched genes that we

refer to as cluster markers (Figure 1C, Figure 1—source data 1). The number of significantly

enriched genes and the maximum observed log fold-change varies by cluster (Figure 1—figure sup-

plement 6B; Figure 1—source data 2). These cluster markers are likely to be important for the

development and/or maintenance of the cell types represented by the clusters. We compared the

significantly enriched cluster markers from this data set (excluding the salivary and sperm clusters,

see below) to the cluster markers of re-analyzed mid-brain Drop-seq (Croset et al., 2018) and whole

brain 10x (Davie et al., 2018) data sets (Figure 2—figure supplement 1; Figure 2—figure supple-

ment 1—source data 1; Figure 2—figure supplement 1—source data 2). 85% of the mid-brain

cluster markers were also found in our VNC cluster markers, while 67% of the whole brain markers

overlapped. This suggests that the majority of the genes that define neuronal and glial identity in

the brain also define neuronal and glial identity in the VNC.

We defined 110 neuronal clusters using expression of known neuron-specific and neuron-enriched

genes (Figure 1—figure supplement 7; see methods), such as embryonic lethal abnormal vision

(elav), neuronal Synaptobrevin (nSyb) and the long non-coding (lnc) RNA noe (noe) (Davie et al.,

2018; DiAntonio et al., 1993; Kim et al., 1998; Robinow et al., 1988). These neuronal clusters can

be distinguished from each other by differential expression of 1205 additional cluster markers

(Figure 1D, Figure 1—source data 1). Functional enrichment analysis of these cluster-defining

marker genes identified those encoding immunoglobulin (Ig)-like domains as most significantly

enriched (Figure 2A), including many cell adhesion molecules that are known to establish neuronal

connectivity during development (Özkan et al., 2013). Specifically, many members of the Immuno-

globulin superfamily (IgSF) continue to be expressed in the adult and contribute to neuronal cluster

identity (Figure 2B; Figure 2—figure supplement 2A). The defective proboscis extension response

(Dpr) subfamily, and their binding partners, the Dpr-interacting protein (DIP) subfamily, are markers

for over 50% of neuronal clusters identified in the adult VNC (Figure 2—figure supplement 2B).

Dpr and DIP genes provide a complex interaction network regulating neural circuit assembly and

have been proposed to act as neuronal ‘identification tags’ during development. Distinct combina-

tions of Dpr and DIP proteins are expressed by different neuronal classes in the developing optic

lobe, the antennal lobe, and the VNC (Carrillo et al., 2015; Özkan et al., 2013). Specific combina-

tions of Beat and Side IgSF proteins play an important role in the sculpting the nervous system

(Özkan et al., 2013; Pipes et al., 2001). Almost all Beat and Side family members were found as

cluster markers in the VNC (Figure 2B), and their enrichment was largely mutually exclusive, with

80% of the identified clusters enriched for either Beats or Sides (Figure 2—figure supplement 2C).

The enrichment of IgSFs in the adult VNC supports their importance in establishing cell type specific-

ity and suggests an ongoing role in maintenance of neuronal connectivity in the mature nervous sys-

tem (Figure 2B).

G-protein coupled receptors (GPCRs) were also significantly over-represented as cluster markers

(Figure 2A, Figure 2—figure supplement 3A). GPCRs play a critical role in intercellular communica-

tion by interacting with a diverse group of extracellular ligands such as neurotransmitters, modula-

tory neuropeptides and biogenic amines, peptide hormones, and gases (Hanlon and Andrew,

2015). We observed a median of 8 GPCRs expressed per cell and a median of 22 transmembrane

receptors in total per cell. Due to the potential for drop-out events (a gene is expressed in a cell,
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but not detected) these values may be an underestimate. We saw a median of 12 GPCRs when we

consider the expression at the cluster level (with a threshold of 20% positive cells per cluster; Fig-

ure 2—figure supplement 4B). Although many GPCRs are significantly enriched in the individual

clusters, they were, in general, expressed at low levels, in few cells per cluster, and across many
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Figure 2. Characterization of neuronal cluster markers. (A) Functional analysis of neuronal cluster markers (DAVID) showing representative functional

terms (>5 fold-change) and their corresponding enrichment scores (representing mean p-values). (B) Phylogenetic tree of IgSF neuronal cluster markers.

IgSF subfamily members are highlighted in color. (C) Chord diagram comparing the relationship between Tale Homeobox TF cluster markers (left) and

the clusters in which they are significantly enriched (right). (D) Chord diagram comparing the relationship between LIM Homeobox TF cluster markers

(left) and the clusters in which they are significantly enriched (right). (B–D) Gene were classified based on Flybase Gene Group annotations (www.

flybase.org). (C,D) Chord diagrams are visual aids based on data available in Figure 1—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Figure supplement 1. Comparison of central nervous system single-cell data sets.

Figure supplement 1—source data 1. List of marker genes for the 32 clusters shown in Figure 2—figure supplement 1A of re-analyzed data from

Croset et al. (2018).

Figure supplement 1—source data 2. List of marker genes for the 88 clusters shown in Figure 2—figure supplement 1B of re-analyzed data from

Davie et al. (2018).

Figure supplement 2. Relationships between IgSF subfamilies in defining cluster identity.

Figure supplement 3. GPCR neuronal cluster markers.

Figure supplement 4. Co-expression of gene family members in the VNC.

Figure supplement 5. Ion channel neuronal cluster markers.

Figure supplement 6. TF neuronal cluster markers.
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clusters (Figure 2—figure supplement 3A). The neuropeptide receptor family members had more

inter-cluster variation in expression levels than the other GPCR subtypes, suggesting that they confer

an added level of specialization. We also saw that 80% of biogenic amine receptor family members,

a diverse group of neurotransmitter receptors sensitive to biogenic amine neurotransmitters includ-

ing dopamine, octopamine, serotonin and tyramine, are found as cluster markers (Figure 2—figure

supplement 3B). Odorant receptors, gustatory receptors, ionotropic receptors, and pickpocket

sodium channels are predominantly found in first-order sensory neurons (Joseph and Carlson, 2015)

and in general, were not expressed in the VNC, as expected. There were exceptions, however, as

Or63a, Gr28b, Ir76a, ppk31 are all expressed in the VNC, albeit at low levels and in few cells. Neuro-

transmitter-gated ion-channels were also highly enriched as neuronal cluster markers (Figure 2A,

Figure 2—figure supplement 5, Figure 1—source data 1), including 8 of the 10 nicotinic acetylcho-

line receptor subunits (Littleton and Ganetzky, 2000). Expression of transmembrane receptors that

provide fast- and slow-acting responses to neurotransmitters, therefore, contribute to cellular

identity.

Finally, over 20% of all Drosophila TFs were cluster markers in the adult VNC, the most enriched

class of which was the homeodomain (HD) family (Figure 2A, Figure 2—figure supplement 6).

Homeodomain TFs play central roles in establishing regional-, tissue- and cell-specific fates

(Bürglin and Affolter, 2016). We observed a median of 6 HD TFs per cell, and a median of 52 TFs

in total per cell. We saw a median of 10 HD TFs when we consider the expression at the cluster level

(20% positive cells per cluster threshold; Figure 2—figure supplement 4D). We detected high vari-

ance in HD TF expression levels across clusters (Figure 2—figure supplement 6A). Four members

of the three amino acid loop extension (TALE) class of HD TFs mark specific clusters. This included

all the three members of the evolutionarily conserved Iroquois gene complex (Iro-C) araucan (ara),

caupolican (caup), and mirror (mirr) (Cavodeassi et al., 2001). The Iro-C arose through two duplica-

tion events, one ancient event in arthropods led to independent ara/caup and mirr genes, followed

by a more recent event in dipterans which gave rise to the caup and ara genes (Kerner et al., 2009).

Cluster expression of Iro-C genes appears to reflect this evolutionary history. Whereas caup and ara

overlap as cluster markers, mirr expression is only partially overlapping and mirr is an independent

marker for 11 additional clusters, suggesting specialization (Figure 2C). In addition, we found largely

mutually exclusive enrichment of individual members of the LIM class of HD TFs defining cell clusters

in the VNC (Figure 2D). LIM TFs are known to specify distinct neuronal identities in the embryo

(Thor et al., 1999). In the VNC only Lmx1a and CG4328 appear to be co-expressed which given

their genomic linkage likely represents a relatively recent tandem duplication event. These findings

suggest that aspects of the TF-code that establishes cellular identity during development actively

maintains neuronal identity throughout the life of the animal (Deneris and Hobert, 2014).

Hox genes define neuromere identity
Hox genes encode homeodomain proteins that confer positional identities along the antero-poste-

rior axis in all bilaterian animals (McGinnis and Krumlauf, 1992). In both vertebrates and inverte-

brates, the Hox family of transcription factors are known to govern key aspects of nervous system

development, notably the formation of neuromuscular networks (Philippidou and Dasen, 2013). The

neuromeres of the VNC show distinct segment-specific properties under Hox gene control

(Baek et al., 2013; Suska et al., 2011).

The Hox genes Antennapedia (Antp), Ultrabithorax (Ubx), abdominal-A (abd-A), and Abdominal-

B (Abd-B), which specify the thoracic, and abdominal segments of the fly VNC, define specific clus-

ters in the single-cell atlas (Figure 3A). Hox gene expression patterns were significantly anti-corre-

lated at the individual cell level, except for abd-A and Abd-B (Figure 3B). Similar patterns were seen

with the correlation of cluster-level expression, and the patterns were consistent between replicates.

Antp and Ubx are both expressed throughout the t-SNE plot, with many clusters expressing both,

albeit in mutually exclusive cells, while abd-A and Abd-B expression is more restricted and overlap-

ping (Figure 3C). Immunostaining the adult VNC with antibodies against these Hox proteins showed

belts of expression along the anterior-posterior axis (Figure 3D). These patterns of expression are

different to those in the larva but are consistent with those observed in the mid-pupal stage

(Baek et al., 2013). Antp protein is most highly expressed in the mesothoracic neuromere (Mes-

oNm), whereas Ubx expression is highest in the metathoracic neuromere (MetaNm). Abd-A and

Abd-B protein showed overlapping expression restricted to the abdominal neuromere (ANm), with
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Figure 3. Neuromeres are defined by Hox gene expression in the adult VNC. (A) Chord diagram comparing the

relationship between Hox genes found as cluster markers (left) and the clusters in which they are significantly

enriched (right), based on data available in Figure 1—source data 1. (B) Heatmap of Pearson correlation

coefficient for Hox gene expression in all single cells. We saw consistent patterns of correlation at the cluster-level

expression, and between replicates. (C) t-SNE plot of Hox gene expression distribution. Expression shown in

black, intensity is proportional to the log-normalized expression levels. (D) Visualization of Hox protein expression

in the 5 day old adult VNC. Coronal and sagittal views of anti-Antp, -Ubx, -Abd-A, and -Abd-B (white). Neuropil

counterstained with anti-Cad-N (blue). Scale bars = 50 mm. (E) Schematic representing bands of Hox expression

along the anterior-posterior axis of the VNC (left). Cells assigned to approximate neuromeres in VNC t-SNE plots

(right) based on differential Hox gene expression: ProNm (pink), MesoNm (green), MetaNm (blue) and ANm

Figure 3 continued on next page
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Abd-A expressed more anteriorly than Abd-B. By combining the neuromere enriched expression

revealed by antibody staining, with the high level of anti-correlation in the single-cell data, we can

separate the single-cell clusters into approximations for each neuromere (Figure 3E).

Neuroblast lineage identity
Each neuromere contains a repeating set of neuroblast lineages. We used prior knowledge of bio-

markers defining the development of post-embryonic lineages (Bossing et al., 1996; Schmid et al.,

1999) to further annotate the 5 day old adult VNC single-cell atlas. All known lineage biomarkers

showed continued expression in the adult VNC, and most were found as significantly enriched clus-

ter markers (Figure 4A and B; Figure 4—figure supplement 1; Figure 1—source data 1). These

established markers therefore allowed us to assign potential hemilineage identities to many of the

cell clusters (Figure 4B; Figure 1—source data 2). We also used fast-acting neurotransmitter (FAN)

identity as an additional marker to specify potential hemilineages, since FAN usage is acquired in a

lineage-dependent manner in post-embryonic neurons in the VNC (Lacin et al., 2019). For example,

cluster 54 has enriched expression of lineage markers Lim3, tailup (tup), abnormal chemosensory

jump 6 (acj6), and the glutamatergic neuron marker Vesicular glutamate transporter (VGlut), which

collectively suggests this cluster is hemilineage 9B. The correspondence between cluster markers

and hemilineage markers shows that cell cluster identity is closely linked to hemilineage identity. We

observed a strong concordance between the number of cells within our predicted hemilineages and

previous cell counts (Figure 4—figure supplement 2A; Birkholz et al., 2015; Lacin et al., 2019).

This correlation of cell counts further supports our atlas having an approximately 1.5x coverage of

the VNC.

Many of the established lineage markers are expressed at low levels and in few cells (e.g., B-H1/

2, exex, tup), while others are robustly expressed (e.g., acj6, toy, Lim3) (Figure 4—figure supple-

ment 1). Nevertheless, the restricted cluster-specific expression of these established markers and

co-expression with more robust novel markers (Figure 4C; Figure 4—source data 1) allowed us to

assign cells to putative hemilineages. At present some hemilineages cannot be defined with cer-

tainty due to the lack of specific sets of established markers. For instance, there is no marker for

hemilineage 2A, other than VGlut, and hemilineage 3B’s Dbx expression does not persist past the

pupal stage (Lacin and Truman, 2016; Lacin et al., 2019). Similarly, unc-4 is currently the sole estab-

lished marker for many cholinergic hemilineages, including 7B, 12A, 18B and 19B. We observe multi-

ple cholinergic clusters enriched for unc-4 (Figure 1—source data 1; Figure 4—figure supplement

1). To assign these clusters to known hemilineages, additional cluster specific enriched genes can be

investigated by immunohistochemistry. Conversely, clusters 6, 69, and 110 express markers for both

hemilineages 8A (ems, ey, VGlut) and 24B (ems, toy, VGlut), suggesting that these lineages may

exhibit very similar transcriptional profiles and resolving them will likely require more cells

(Figure 4C).

We have identified several novel potential hemilineage marker genes (Figure 4—figure supple-

ment 1). Of the 59 most highly enriched hemilineage-defining genes, shown in Figure 4C, 34 are

TFs, approximately half of which contain homeodomains. Interestingly, 5 of these novel marker

genes encode lncRNAs. lncRNAs have been shown to have complex spatiotemporal regulation

throughout the embryo (Wilk et al., 2016; Karaiskos et al., 2017) and specifically during embryonic

neurogenesis (Scruggs et al., 2015), suggesting their functional importance during development.

Two of these lncRNAs, MRE23 and CR45141, are adjacent to and transcribed divergently to their

nearest neighbour protein coding genes, fork head (fkh) and vestigial (vg), respectively. These gene

pairs show clear positive correlations of expression within the hemilineages (Figure 4C), suggesting

they share a cis-regulatory landscape. Such divergent transcription has been shown to enhance tran-

scriptional output (Scruggs et al., 2015; Schor et al., 2018). As the roles of many of these novel

marker genes have yet to be studied either during development or in the adult nervous system, our

VNC analysis provides a valuable resource for future investigation of hemilineage cell types.

Figure 3 continued

(purple). Expressed genes used in defining each neuromere are in bold. (symbols represent the following: ‘:’ not,

‘^’ and, ‘_’ or, ‘~’ approximate).
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Many predicted hemilineages contain multiple clusters (Figure 4B; Figure 1—source data 2). We

propose that these clusters represent distinct variations within a hemilineage, partly informed by

birth order and partly related to thoracic vs. abdominal anatomical position. Consistent with a subdi-

vision based on birth order, many of our predicted hemilineages contain a distinct subgroup of
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Figure 4. Cellular identities defined by developmental lineages. (A) Heatmap of the mean scaled log-normalized expression of established lineage

markers genes (bottom) within predicated neuroblast hemilineage (right). (B) t-SNE plot of neuronal cells highlighting predicted hemilineages based on

the expression of established hemilineage marker genes (shown beside list of predicted hemilineages on the right). (C) Heatmap of the mean scaled

log-normalized expression of potential new hemilineage markers genes (bottom) within predicated neuroblast hemilineage (right). Full list of predicted

hemilineage markers can be found in Figure 4—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. List of marker genes for predicated hemilineages shown in Figure 4B.

Figure supplement 1. Neuroblast lineage marker gene expression in the VNC.

Figure supplement 2. Neurodevelopment gene expression.
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broad (br) expressing cells (Figure 4—figure supplement 2B). A specific isoform of br continues to

be expressed in the adult and marks cells born around L2-L3 ecdysis (Zhou et al., 2009). Other hem-

ilineage sub-division was evident when visualizing expression of neurodevelopmental genes such as

prospero (pros), datilografo (dati), maternal gene required for meiosis (mamo), and IGF-II mRNA-

binding protein (Imp) (Figure 4—figure supplement 2C). Expression of pros and Imp in the VNC

were negatively correlated (Figure 4—figure supplement 2D), as previously observed in the adult

brain (Davie et al., 2018). In contrast, expression of pros was highly correlated with that of dati,

while Imp and mamo were highly correlated, suggesting these pairs of genes may be co-regulated

in the adult (Figure 4—figure supplement 2D). pros and Imp also showed an anatomical bias, with

pros being negatively correlated with abdominally expressed abd-A and Abd-B, while Imp is posi-

tively correlated with these markers (Figure 4—figure supplement 2E). However, we did not

observe a striking physiological bias, as neither pros nor Imp showed correlation with fast-acting

neurotransmitter markers (Figure 4—figure supplement 2F). We saw consistent patterns of correla-

tion at the cluster-level expression, and between replicates. It has previously been shown that pros

labels late-born motor neurons from hemilineage 15B (Baek et al., 2013), and that a trade-off of

Imp and pros expression is essential for cell cycle exit of post-embryonic type I neuroblasts in the

VNC (Maurange et al., 2008; Yang et al., 2017). Studies investigating the transcriptomes of mature

(embryonic) vs. immature (post-embryonic) neurons in the larval VNC have shown that Imp is

enriched in embryonic neurons, and pros is enriched in post-embryonic neurons (Etheredge, 2017).

We propose that the continued expression of Imp in the adult VNC labels early-born and embryonic

neurons while pros labels late-born post-embryonic neurons.

Gene expression defines neuronal subtypes within a hemilineage
Hemilineage 23B marked by acj6, unc-4, and VAChT has four distinct clusters that can only be par-

tially explained by potential birth order and neuromere identity (Figure 3; Figure 4). acj6 is also a

marker for the cholinergic hemilineage 8B and the glutamatergic hemilineage 9B (Figure 4A;

Lacin et al., 2019). We examined acj6 expressing cells in more detail by visualizing the anatomical

distribution of acj6 expressing cell bodies and neuronal projections in the VNC using acj6GAL4 to

express the GAL4-responsive dual reporter UAS-Watermelon (WM), which simultaneously marks the

plasma membrane with GFP and the cell nucleus with mCherry (Figure 5A; Lee et al., 2018). We

also validated the accuracy of acj6GAL4 using an anti-Acj6 antibody (Clyne et al., 1999; Figure 5—

figure supplement 1). Consistent with previous reports, acj6GAL4 labeled distinct clusters of cells in

the three thoracic neuromeres of the VNC, which predominantly innervate the leg neuropils.

(Figure 5A; Harris et al., 2015; Shepherd et al., 2019). The acj6 expressing neurons were con-

firmed as hemilineages 8B, 9B, and 23B (D Shepherd, pers. comm.) on the basis of their primary neu-

rite projections (Shepherd et al., 2016).

The acj6 expressing clusters in the single-cell data set are highlighted in Figure 5B. Based on co-

expression of additional markers, we could assign acj6-expressing hemilineages within the VNC

data; lin8B expresses acj6, Lim3, and VAChT; lin9B acj6, Lim3, VGlut, and tup; Lin23B acj6, unc-4,

and VAChT (Figure 5C). Of the 4 distinct clusters within predicted hemilineage 23B, the genes knot

(kn/collier) and tiwaz (twz) (Crozatier et al., 1996; Williams et al., 2014) are significantly enriched in

two independent clusters; 51 and 93, respectively (Figure 5D; Figure 1—source data 1). We vali-

dated the co-expression evident in the single-cell data using GAL4 lines that represent kn and twz

expression, and co-stained these VNCs with anti-Acj6 antibody (Figure 5E and F; Figure 5—figure

supplement 2). We also used a reporter for the established marker Lim3, which is co-expressed with

acj6 in hemilineages 8B and 9B, but not 23B (Figure 5B; Lacin and Truman, 2016). Hemilineage 23B

is located dorsolaterally at the posterior edge of each of the three thoracic neuromeres, whereas 8B

and 9B are both located laterally at the anterior side of each thoracic neuromere with 8B located

near the ventral surface and 9B located more dorsally (Figure 5E; Lacin et al., 2019;

Shepherd et al., 2019). Focusing on the ProNm-MesoNm border, which encompasses prothoracic

23B and mesothoracic 8B and 9B, we found that a subset of 23B co-expressed kn and a subset co-

expressed twz (Figure 5F; Video 1; Video 2). Of the 40 dorsolateral Acj6+ 23B cells, 14 were kn+

and 9 were twz+ (Figure 5—source data 1; Figure 5—figure supplement 3). These proportions

(34% and 21%) are roughly consistent with that seen in the single-cell data (31% and 18% for kn and

twz, respectively). Lim3 expression was restricted to 8B and 9B, with 90% of Acj6+ 8B and 9B cells

expressing Lim3, and 0% co-expression in hemilineage 23B (Figure 5F; Figure 5—source data 1;
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Figure 5. acj6 expression, hemilineage identity, and novel sub-lineage marker co-expression in the VNC. (A) Visualization of acj6 expressing cells in the

5 day old adult VNC. Maximal coronal projection, and hemi-maximal sagittal projectionof acj6GAL4 driving expression of UAS-WM, enabling the

visualization of cell nuclei (nRFP; green) and neuronal morphology (mGFP; magenta). Neuropil is counterstained (Brp; blue). A, Anterior, P, posterior, D,

dorsal; scale bars = 50 mm. (B) t-SNE plot of acj6 expression in the VNC. Predicted hemilineage 8B, 9B, and 23B, based on known markers (shown

below) are highlighted. (C) t-SNE plots of predicted hemilineage 23B, showing expression of markers acj6, unc-4, and VAChT. (D) t-SNE plots of

predicted hemilineage 23B, showing expression of novel sub-type markers kn and twz. (B–D) Expression shown in black, intensity is proportional to the

log-normalized expression levels. (E) Maximal coronal view (left) and hemi-maximal sagittal view (right) of Acj6 expression (green) in the 5 day old adult

VNC. The posterior prothoracic hemilineages 23B (dashed white box) and the anterior mesothoracic 8B and 9B (dashed yellow box) are marked. A,

Anterior, P, posterior, D, dorsal; Neuropil is counterstained (Cad-N; blue) scale bars = 50 mm. (F) Close-up maximal coronal views of dorsolateral

hemilineage 23B showing the co-expression of knGAL4 and twzGAL4 driven UAS-Stinger expression (nGFP; magenta) with Acj6 (green). Co-positive cells

Figure 5 continued on next page
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Video 3; Figure 5—figure supplement 3). kn was also expressed in a subset of predicted hemiline-

age 9B in the single cell data (Figure 5—figure supplement 2), and co-expression was seen

between knGAL4 and Acj6 in the 8B/9B cluster in vivo (Figure 5—figure supplement 3; Figure 5—

source data 1). Full expression patterns in the VNC are shown in Figure 5—figure supplement 2.

These findings highlight the predictive power of the single-cell transcriptome to identify new

markers that refine our understanding of hemilineage subtypes which contribute to neuronal cell

diversity in post-embryonic lineages.

Classification using fast-acting neurotransmitters
A recent comprehensive map of fast-acting neurotransmitter (FAN) usage across the VNC found that

neurons within a post-embryonic hemilineage use the same neurotransmitter; either acetylcholine,

gamma-aminobutyric acid (GABA), or glutamate, unifying their shared developmental and functional

identities (Lacin et al., 2019). We examined FAN usage in the VNC using expression of established

biosynthetic and vesicular loading markers: Choline acetyltransferase (ChAT) and Vesicular acetylcho-

line transporter (VAChT) for acetylcholine, VGlut for glutamate, and Glutamic acid decarboxylase 1

(Gad1) and Vesicular GABA Transporter (VGAT) for GABA (Figure 6A). Clusters showed mutually

exclusive enrichment of VAChT, VGlut, and Gad1 (Figure 6B). However, this exclusivity partially

breaks down at the cell-by-cell level. Although expression levels of VAChT, VGlut, and Gad1 were

negatively correlated (Figure 6—figure supplement 1A), we also observed significant levels of co-

expression, with 31% of cells expressing at least two of these markers (Figure 6—figure supplement

1B). A similar pattern of co-expression was observed in single-cell data from the adult brain

(Croset et al., 2018; Davie et al., 2018). However, immunostaining of the intact adult VNC sug-

gested that cytoplasmic co-expression of these markers does not occur (Lacin et al., 2019). Nuclear

transcriptomic profiles of neuronal subtypes from both the visual system and the mushroom body

found no evidence for FAN co-release (Davis et al., 2020; Shih et al., 2019). Co-expression in the

VNC may therefore represent contamination due to ambient RNA present in the cell suspension (dis-

cussed below). Since the cells cluster due to hemilineage identity and hemilineages are restricted to

a single FAN, we assigned FAN identity by comparing the average expression of these FAN markers

at the cluster level (Figure 6—figure supplement 1C; Figure 1—source data 2). Amongst the co-

expressing cells, the expression of FAN makers is negatively correlated, and cells assigned to one

FAN identity tended to show higher expression

of the corresponding marker (Figure 6—figure

supplement 1D). This is, however, not always

the case, presumably due to the much higher

expression levels seen for VGlut and Gad1

(Figure 6A; Figure 6—figure supplement 1D).

With these criteria (see methods), we estimate

that the VNC is 40% cholinergic, 38% GABAer-

gic, and 18% glutamatergic. The remaining 4%

of neurons did not show a strong signature for

any FAN (Figure 6C and D). These proportions

differ to those in the adult brain (Croset et al.,

2018; Davie et al., 2018), with inhibitory

GABAergic neurons being much more promi-

nent in the VNC (38% vs 15% in the adult

Figure 5 continued

(white) are indicated with arrow heads. Lim3GAL4 driven expression did not colocalize with Acj6 in hemilineage 23B. GOI = gene of interest, scale

bars = 10 mm.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Cell counts of novel sub-lineage marker co-expression in the VNC.

Figure supplement 1. acj6GAL4 recapitulates Acj6 protein expression in the adult VNC.

Figure supplement 2. Novel sub-lineage marker expression in the VNC.

Figure supplement 3. Single slices of novel sub-lineage marker co-expression in the VNC.

Video 1. Video of 3D volume showing the co-

expression of Acj6 (anti-Acj6; green) with knGAL4 driven

expression of UAS-Stinger (nGFP; magenta) in the 5

day adult VNC, with neuropil counterstained (CadN; blue).

https://elifesciences.org/articles/54074#video1
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midbrain). The inhibitory glutamate receptor, GluCla (Cully et al., 1996), was broadly expressed in

Video 2. Video of 3D volume showing the co-

expression of Acj6 (anti-Acj6; green) with twzGAL4

driven expression of UAS-Stinger (nGFP; magenta) in

the 5 day adult VNC, with neuropil counterstained

(CadN; blue).

https://elifesciences.org/articles/54074#video2

Video 3. Video of 3D volume showing the co-

expression of Acj6 (anti-Acj6; green) with Lim3GAL4

driven expression of UAS-Stinger (nGFP; magenta) in

the 5 day adult VNC, with neuropil counterstained

(CadN; blue).

https://elifesciences.org/articles/54074#video3
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Figure 6. Fast-acting neurotransmitter usage in the VNC. (A) t-SNE plots showing distribution of cells expressing biomarkers for the fact-acting

neurotransmitters acetylcholine (VAChT, ChAT), glutamate (VGlut) and GABA (VGAT, Gad1). Expression shown in black, intensity is proportional to the

log-normalized expression levels. (B) Chord diagram comparing the relationship between fast-acting neurotransmitter cluster markers (left, genes) and

the clusters in which they are significantly enriched (right, clusters). (C) t-SNE plot colored according to fast-acting neurotransmitter usage based on

assigned cluster identity. (D) Percentage of cells in the VNC assigned as releasing distinct fast-acting neurotransmitters.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Expression of fast-acting neurotransmitter biomarkers in the VNC.

Allen et al. eLife 2020;9:e54074. DOI: https://doi.org/10.7554/eLife.54074 13 of 32

Research article Genetics and Genomics Neuroscience

https://elifesciences.org/articles/54074#video2
https://elifesciences.org/articles/54074#video3
https://doi.org/10.7554/eLife.54074


these data and is particularly enriched in cluster 103 (see Figure 1—source data 1), suggesting that

a portion of glutamatergic signaling is also inhibitory. We expect this relative abundance of inhibi-

tory signaling reflects the importance of inhibition in the initiation, maintenance, and termination of

complex motor programs (Burrows, 1992; Grillner, 2006), especially in coordination between bilat-

eral and intersegmental circuits (Gowda et al., 2018).

Monoaminergic neurons
Cells that produce and likely release monoamines in the VNC can be identified based on expression

of the Vesicular monoamine transporter (Vmat) gene (Greer et al., 2005). To examine the anatomi-

cal distribution of Vmat expressing nuclei and projections in the VNC we combined VmatGAL4 with

UAS-Watermelon (WM) (Figure 7A). VmatGAL4 labels 115 ± 6.3 neurons distributed across every neu-

romere of the VNC (n = 9, data not shown). Each neuromere has a main cluster of cells located on

the ventral surface, near the midline, consistent with known developmental origins of monoaminer-

gic neurons. Serotonin- and dopamine-producing neurons are born from the ventromedially located

paired neuroblast 7–3, and octopamine-producing neurons are born from the ventral midline

unpaired median neuroblast (Bossing et al., 1996; Schmid et al., 1999). Projections of Vmat-labeled

neurons formed thick fascicles of fibers projecting from each cluster to the dorsal surface of the VNC

(Figure 7A, sagittal view). Each thoracic neuromere has one main fiber tract, whereas the ANm has

8 parallel tracts, one for each abdominal segment. Despite the relatively small number of Vmat

expressing cells, they project throughout the VNC and densely innervate the entire neuropil. Addi-

tional Vmat nuclei associated with the VNC are consistent with its reported expression in perineural

surface glia (DeSalvo et al., 2014). Surface glial Vmat expressing cells can be seen in cluster 98 of

our primary t-SNE plot (Figure 1—figure supplement 4; Figure 1—source data 1).

Neurons that express Vmat co-cluster in the single-cell data (Clusters 72 and 84, Figure 1—figure

supplement 4; Figure 7B). To define the specific monoaminergic identity of Vmat expressing neu-

rons, we sub-clustered these Vmat+ cells from clusters 72 and 84 (Figure 7C) and identified distinct

groups synthesizing specific monoamines, as defined by expression of known biosynthetic and trans-

porter markers (Figure 7D; Martin and Krantz, 2014). All replicates contributed to all clusters and

showed high correlation of cluster level expression (Figure 7—figure supplement 1).

Histaminergic neurons
Histamine (HA) is well established as the primary fast neurotransmitter of adult photoreceptors in

many insects, including Drosophila (Hardie, 1987; Nässel et al., 1988). The VNC contains 18 ventral

HA-immunoreactive neurons with extensive axons and projections, six in the thoracic neuromeres

and twelve in the abdominal neuromere (Buchner et al., 1993; Nässel et al., 1990). Potential new

markers for HA neurons, distinguishing them from other monoaminergic neurons, include Frequenin

1 (Frq1), a Ca2+-binding protein that regulates neurotransmitter release (Dason et al., 2009), and

CG43795; an uncharacterized GPCR predicted to have Glutamate/GABA receptor activity

(Agrawal et al., 2013).

Tyraminergic and octopaminergic neurons
Tyramine (TA) and Octopamine (OA) neurons innervate and modulate many tissues throughout the

fly, including female and male reproductive systems, skeletal muscles, and sensory organs

(Pauls et al., 2018; Rezával et al., 2014). Tdc2 encoded tyrosine decarboxylase catalyzes the syn-

thesis of TA (Cole et al., 2005), which can also be converted to OA by Tbh encoded Tyramine beta-

hydroxylase (Monastirioti et al., 1996). All Tdc2 expressing neurons in the VNC also express Tbh

suggesting that they are likely to be octopaminergic, consistent with a previous report using

Tdc2GAL4 in the VNC (Pauls et al., 2018). Prior work in the larval VNC suggested that the TA:OA

ratio might be altered in a state-dependent manner (Schützler et al., 2019).

Dopaminergic neurons
Dopamine (DA) is a critical neuromodulator controlling learning and state-dependent plasticity in

the fly brain (Cognigni et al., 2018). Dopamine and DA neurons in the VNC have been implicated in

motor behaviors such as grooming and copulation (Crickmore and Vosshall, 2013; Yellman et al.,

1997). Novel DA markers in the VNC include beat-Ib and beat-Ic, a likely recent duplication in the
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beat family of genes which act as heterophilic cell-cell adhesion molecules (Pipes et al., 2001). VNC

DA neurons overexpress PDGF- and VEGF-related growth factor (Pvf3) and kekkon 1 (kek1) which

encodes a transmembrane protein that binds the EGF receptor and controls the activity of this path-

way. Adult midbrain DA neurons also overexpress these genes (Croset et al., 2018), suggesting a

possible common role for Pvf3 and kek1 in DA neuron function. The Toll-6 neurotrophin-like
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Figure 7. Identification and characterization of monoaminergic cell sub-types. (A) Visualization of Vmat expressing cells in the 5 day old adult VNC.

Coronal and sagittal views of VmatGAL4 driving expression of UAS-WM, enabling the visualization of cell nuclei (nRFP; magenta) and neuronal

morphology (mGFP; green). Neuropil is counterstained (Brp; blue). A, Anterior, P, posterior, D, dorsal; scale bars = 50 mm. (B) t-SNE plot of Vmat

expression in black, intensity is proportional to the scaled log-normalized expression level. Vmat enriched Cluster 72 is highlighted with arrowhead. (C)

t-SNE plot showing sub-clustering analysis of Vmat+ cells from clusters 72 and 84. Four sub-clusters are identified representing dopaminergic (DA),

octopaminergic/tyraminergic (OA/TA), histaminergic (HA), and serotonergic neurons (5-HT). (D) Expression of established monoaminergic subtype-

specific biomarkers used to determine cluster identity. Histidine decarboxylase (Hdc) labels Histamine (HA) neurons, Tyrosine decarboxylase 2 (Tdc-2)

labels Tyramine (TA) and Octopamine (OA) neurons, Dopamine transporter (DAT) labels Dopamine (DA) neurons and Serotonin transporter (SerT)

labels Serotonin (5-HT) neurons. (E) Dot plot of the top genes in each monoaminergic sub-type based on fold-enrichment (Figure 8—source data 1).

Size of dots represent percent of cells in cluster expressing gene of interest (GOI); intensity of color reflects average scaled expression. Figure 7—

source data 1 contain the full list of significantly enriched genes.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. List of marker genes for the Vmat+ sub-clusters shown in Figure 7C.

Figure supplement 1. Individual replicate contribution to Vmat+ sub-clusters.
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receptor implicated in neuronal survival and motor-axon targeting (McIlroy et al., 2013), appears

specifically enriched in VNC DA neurons.

Serotonergic neurons
Serotonin (5-hydroxytryptamine, 5-HT) releasing neurons within the thoracic neuromeres of the VNC

modulate walking speed in a context-independent manner as well as in response to startling

stimuli (Howard et al., 2019). In the abdominal ganglion, two clusters of sexually dimorphic neurons

expressing 5-HT and fruitless (approximately ten cells per cluster in males) innervate the internal

reproductive organs. These abdominal clusters control transfer of sperm and seminal fluid during

copulation (Billeter et al., 2006; Lee and Hall, 2001; Lee et al., 2001). 5-HT neurons in the VNC

express the 5-HT receptor 5-HT1A, suggesting auto-regulatory/autocrine control of 5-HT neurons.

VNC 5-HT neurons also express the amino acid transporter encoded by juvenile hormone inducible

21 (JhI-21) which is required for 5-HT-dependent evaluation of dietary protein (Ro et al., 2016).

Finding JhI-21 expression in 5-HT neurons in the VNC, therefore suggests that some 5-HT neurons

may directly sense circulating amino acids.

A transcription factor code for monoaminergic neurons
The top group of genes defining each subclass of monoaminergic neurons types also included

unique expression of Homeobox-containing TFs (Bürglin and Affolter, 2016; Figure 7E). orthope-

dia (otp) and the LIM homeobox transcription factor 1 alpha (Lmx1a) define the HA cluster. DA neu-

rons are enriched for the Hox co-factor homothorax (hth) as well as the Iroquois homeobox TF

mirror (mirr). Lastly, 5-HT neurons express the homeobox TFs ventral veins lacking (vvl), eyeless (ey)

and Lim3. Although these different combinations of homeobox genes likely act in these cells to

specify position-specific patterning decisions and wiring specificity during development, it is also

possible that they contribute to the function of mature monoaminergic neurons.

Peptidergic neurons
Neuropeptides are the largest family of signaling molecules in the nervous system and act as impor-

tant regulators of development, physiology, and behavior (Nässel and Zandawala, 2019). We ana-

lyzed neuropeptide expression in the adult VNC by looking at the expression of genes encoding

neuropeptide precursors, from which active neuropeptides are derived. We identified 28 neuropep-

tides that are expressed in at least one cell, at a level of 10 or more transcripts per cell (Figure 8A).

Some neuropeptides are known to be co-expressed with FANs, where they serve to increase signal-

ing flexibility within neural networks (Croset et al., 2018; Nässel, 2018; Nusbaum et al., 2017). We

found that in the VNC some neuropeptide genes are predominantly co-expressed with particular

FANs, e.g. sNPF and spab in cholinergic neurons, MIP and CCHa2 in GABAergic neurons, and Ilp7

and Proc in glutamatergic neurons (Figure 8A; Figure 6). A few neuropeptides were also co-

expressed in the same cells, e.g. AstC and CCHa2 in GABAergic cluster 94. Some of these associa-

tions are similar to what was observed previously in mid-brain single-cell data (Croset et al., 2018),

e.g. sNPF and spab in cholinergic neurons, but others are strikingly different. AstC and CCHa2 are

robustly expressed in GABAergic neurons in the VNC but are notably absent from Gad1 expressing

neurons in the mid-brain.

Some neuropeptides are also expressed in ‘neurosecretory’ neurons that lack FANs. Peptides

released from these cells into circulation provide neuroendocrine signals, whereas those released

into the nervous system have neuromodulatory function. Cells in cluster 84 exhibit several character-

istics of neurosecretory cells. The TF dimmed (dimm) is required for the differentiation of neurose-

cretory cells (Hamanaka et al., 2010; Hewes et al., 2003; Park et al., 2008). Although dimm is

detected at very low levels and in few cells in our dataset, it showed a bias to cluster 84 (10.7% of

cells express dimm vs. 0.03% elsewhere). Cluster 84 is also particularly enriched for neuropeptide

expression (Figure 8A and B) and lacking strong expression of FAN or monoaminergic neuron

markers (Figure 1—figure supplement 7; Figure 6C; Figure 7B). They also express several genes

involved in neuropeptide processing (see Figure 8C and D; Figure 1—source data 1). Most neuro-

peptides are expressed in non-overlapping subsets of the cluster (Figure 8E), suggesting that a par-

ticular neuropeptide does not drive the unifying identity of the cluster, but rather that it is

generically peptidergic. The Glycoprotein hormone alpha 2 (Gpa2) and Glycoprotein hormone beta
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5 (Gpb5) genes, whose peptides form heterodimers, are co-expressed in the same cells in this pepti-

dergic cluster (Sellami et al., 2011).
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Figure 8. Identification of neuropeptide expressing cells. (A) Heatmap of the mean log-normalized expression (0–4), by cluster (bottom), of

neuropeptide genes (right). Only clusters with at least one neuropeptide gene expressing in excess of mean log-normalized value of 10 are shown.

Only neuropeptide genes that were expressed in at least one cell at a level >10 transcripts per cell are shown. Arrowhead highlights cluster 84.

Dendrograms represent hierarchical clustering. (B) t-SNE plot highlighting neuropeptide expressing cluster 84. (C) Schematic of neuropeptide

processing steps highlighting enzymes (in red) identified as enriched markers for cluster 84. Propeptides are cleaved by the pro-hormone convertase

Amontillado (Amon); the carboxypeptidase Silver (Svr) then removes the C-terminal cleavage sequence. C-terminal amidation occurs through the

combined actions of Peptidyl-a-hydroxyglycine-a-amidating lyase 2 (Pal2) and Peptidylglycin-a-hydroxylating monooxygenase (Phm) (reviewed in

Pauls et al., 2014). (D, E). Expression of neuropeptide processing enzymes (D) and multiple neuropeptide genes (E) in t-SNE cluster 84. Intensity of red

is proportional to the log-normalized expression level.

The online version of this article includes the following source data and figure supplement(s) for figure 8:

Source data 1. Neuropeptide expression levels.

Figure supplement 1. Neuropeptide gene expression levels.

Figure supplement 2. Analysis of VNC data removing upper limit on transcript number (UMI) per cell.

Figure supplement 3. Orcokinin expression analysis.
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High neuropeptide gene expression reveals important technical
considerations
When investigating neuropeptide expressing cluster 84 (NP cluster) we noticed that the median

number of transcripts in the cluster was 5277, which was far greater than that observed in the data

set as a whole, 2497 (Figure 8—figure supplement 1A). This large number of transcripts is due, in

part, to high expression levels of the neuropeptide genes themselves. For example, the maximum

expression level of Leucokinin (Lk) was 2629 transcripts in a single cell (Figure 8—figure supplement

1B), whereas the maximum expression level of an average gene was 11 transcripts per cell. Amongst

neuropeptide genes, Lk is not an anomaly, as 18 of the top 40 most highly expressed genes per cell

encode neuropeptides (Figure 8—figure supplement 1C). All 28 of the expressed neuropeptide

genes had a maximum observed expression above the 93rd percentile (see methods), with 23 of the

28 above the 99th percentile (Figure 8—source data 1). In some cases, these genes represented

40% of a cell’s captured transcriptional output (Figure 8—figure supplement 1D). Similar patterns

of high neuropeptide precursor gene expression have also been seen in the mouse cortex

(Smith et al., 2019).

For all previous data analyses, we used an upper limit of 10,000 total transcripts (nUMI) per cell

to remove potential outliers. Given the high expression seen for neuropeptide genes, we repeated

our analysis without this cut-off, revealing that many cells in the neuropeptide (NP) and Proctolin+

motor neuron (Proc+ MN) clusters express more than 10,000 transcripts (Figure 8—figure supple-

ment 2). It is worth considering the filtering cut-off when studying cells with high transcriptional out-

put, and the genes expressed therein, whose expression can exceed the threshold. For example, the

maximum observed expression of Orcokinin was 23,092 transcripts.

Another important consideration when investigating cells expressing genes at very high levels, as

many neuropeptide cells do, is the consequence of these cells rupturing during the dissociation pro-

cess. Once ruptured, large numbers of neuropeptide transcripts could be present in the ambient

solution, leading to background levels of neuropeptide transcripts being ‘picked up’ with non-

expressing cells. Our data for the neuropeptide Orcokinin illustrates this point (Figure 8—figure

supplement 3). Orcokinin is expressed in just 5 neurons in the adult VNC, two pairs of neurons in

thoracic neuromeres, with additional expression in one unpaired neuron in the abdominal neuromere

(Chen et al., 2015). In our data, 5 cells in the NP cluster show Orcokinin expression at a level of

more than 100 transcripts (Figure 8—figure supplement 3). However, almost 8000 cells, across all

clusters, also appear to express Orcokinin at a level of just 1–10 transcripts (Figure 8—figure sup-

plement 3). We speculate that the low-level expression outside the NP cluster reflects background

levels, due to rupture of Orcokinin expressing cells, while the expression above 100 transcripts

within the NP cluster is bona fide.

Non-neuronal cell types: Glia
Glia are key regulators of nervous system physiology maintaining the concentration of chemicals in

the extracellular environment. We identified glia cells in our VNC data using the established glial

markers reversed polarity (repo) (Xiong et al., 1994) and the long non-coding RNA MRE16

(Davie et al., 2018; Figure 1—figure supplement 7). Five clusters, representing 3.6% of the total

cells, were highly enriched for repo and MRE16. In addition, these clusters lacked expression of neu-

ronal markers, such as elav, nSyb, and noe (Figure 1—figure supplement 7). Two of these clusters

contained cells that were positive for both glial markers and cells positive for neuronal markers, sug-

gesting mixed populations. To define specific glial cell types, we performed a sub-clustering analysis

of the five glial clusters (Figure 9A), while removing any cell with a neuronal signature (see methods).

This sub-clustering revealed four distinct glial subpopulations that could be classified based on

enriched expression of established markers (Figure 9B): astrocytic leucine-rich repeat molecule

(alrm) for astrocytes (Doherty et al., 2009), I’m not dead yet (Indy) for surface glia (Knauf et al.,

2002), wrapper for cortex glia (Noordermeer et al., 1998), and Excitatory amino acid transporter 2

(Eaat2) for ensheathing glia (Stahl et al., 2018).

Surface glia
Consistent with the established metabolic role of glia in the brain, many solute carrier (SLC) mem-

brane transporters are enriched in glial cell types (Figure 9D; Figure 9—source data 1). Surface
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glia, which form the blood-brain barrier (BBB), metabolically insulate the nervous system from the

hemolymph. The BBB also subserves the considerable energetic demands of the nervous system

(Laughlin et al., 1998), by efficiently transporting sugars, ions, and metabolites between the hemo-

lymph and brain (Limmer et al., 2014). Surface glia strongly express the previously described sur-

face glia marker SLC2 Trehalose transporter 1–1 (Tret1-1), which as the name suggests transports

trehalose, the main carbohydrate in the hemolymph, into the nervous system (Volkenhoff et al.,

2015). Surface glia also contain high levels of a putative SLC2 sugar transporter CG4797, previously

reported to be expressed in the perineural glia of the optic lobe (Figure 9D; Konstantinides et al.,

2018). Both of these sugar transporters are proton-dependent and therefore, efficient sugar trans-

port requires glial cells to have lower H+ concentration than the hemolymph (Kikuta et al., 2012).

We found enriched expression of multiple V-type ATPase H+ pumping genes (p-value=3.9�10�9

based on DAVID analysis; Figure 9—source data 1; Chintapalli et al., 2013) in surface glia. Expres-

sion of the SLC bicarbonate transporter CG8177, which has been shown to reduce extracellular pH

(Overend et al., 2016), and the Ecdysone-inducible gene L2 (ImpL2) were also enriched in surface

glia (Figure 9D). ImpL2 antagonizes insulin-like peptide 2 (Dilp2) and inhibits insulin/insulin-like

growth factor signaling (Honegger et al., 2008) suggesting that the BBB is responsive to the meta-

bolic demands of the fly.

Astrocytes and ensheathing glia
Over 70% of the VNC astrocyte cell-specific markers are shared with those in astrocytes in the mid-

brain (Croset et al., 2018). This similarity suggests that there is minimal regional specialization of

astrocyte identity and function within the CNS. All astrocytes and ensheathing glia in the thoracic

VNC are derived from the same lineages as leg motor neurons (Enriquez et al., 2018). However, we

did not find evidence of a lineage-specific transcriptional code in these glial cell types (Figure 9—
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Figure 9. Identification and characterization of glial cell sub-types. (A) t-SNE plot highlighting glial cell clusters. Clusters 23, 24, 70, 98, and 106 are

shown in black, as they were determined to be glia based on differential expression of established glial and neuronal biomarkers (Figure 1—figure

supplement 7). (B) t-SNE plot showing sub-clustering analysis of glial cells. Distinct clusters are color-coded and named. (C) Expression of established

glial subtype-specific biomarkers used to determine cluster identity. astrocytic leucine-rich repeat molecule (alrm), for astrocytes; I’m not dead yet (Indy)

for surface glia; wrapper for cortex glia; Excitatory amino acid transporter 2 (Eaat2) for ensheathing glia. Expression shown in black, intensity is

proportional to the log-normalized expression levels. (D) Dot plot of the top 10 genes in each glial sub-type based on fold-enrichment (Figure 9—

source data 1). Size of dots represent percent of cells in cluster expressing gene of interest (GOI); intensity of color reflects average scaled expression.

Figure 9—source data 1 contain the full list of significantly enriched genes.

The online version of this article includes the following source data and figure supplement(s) for figure 9:

Source data 1. List of marker genes for the glial sub-clusters shown in Figure 9D.

Figure supplement 1. Identification of neuronal and glia clusters.
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source data 1). Astrocytes instead, strongly express the paired-like homeobox TF CG34367, previ-

ously reported to be expressed in astrocytes throughout development (Huang et al., 2015). In con-

trast, ensheathing glia express the POU homeobox TF ventral veins lacking (vvl) (Anderson et al.,

1995). These TFs can, therefore, be considered as novel markers for these adult VNC cell types. The

rarity of TF markers is in accord with the finding that the morphological specificity of motor neurons

depends on a unique TF code, whereas astrocytes and ensheathing glia show plasticity in their mor-

phologies dependent on their position, rather than a distinct TF code (Enriquez et al., 2018).

Non-neural ‘contamination’
We identified two clusters of cells that represent contamination during the dissection process (Fig-

ure 1—figure supplement 7B). Cluster 99 was determined to be salivary gland tissue, since the clus-

ter markers for cluster 99 contains 8 of the top 10 genes enriched in salivary gland tissue in the

FlyAtlas 2 dataset (Figure 1—source data 1; Leader et al., 2018). Cluster 116 appears to be sperm

as many of the markers for this cluster are unique to the testis and sperm (Figure 1—source data 1;

Witt et al., 2019).

Discussion
As the field tries to categorize nervous systems at higher resolution, the question arises what pre-

cisely constitutes a cell type? The goal itself seems straightforward in principle, to find a way to

define different groups of cells that carry out distinct tasks. Single-cell mRNA sequencing techniques

provide a possible route to answering this question by allowing the neuronal transcriptome of thou-

sands of individual cells within a complex nervous system to be collected in parallel. To this end, we

generated a single-cell transcriptional atlas that reveals extensive cellular diversity in the adult Dro-

sophila ventral nerve cord. In combination with previous single-cell data from the antennal lobe,

optic lobe, and brain (Croset et al., 2018; Davie et al., 2018; Konstantinides et al., 2018; Li et al.,

2017), our data contribute towards a comprehensive cell atlas representative of the entire adult cen-

tral nervous system.

Distinguishing between some cell types such as neurons and glia is relatively straightforward, but

the extent of neuronal diversity provides a real challenge. Different neuronal types transmit particu-

lar neurotransmitters, neuropeptides and monoamines, and they also respond to a variety of these

signals using their complement of cell-surface receptors. Specific neurons might also express unique

ion-channels and cell-signaling cascades that provide the cell with a range of electrophysiological

characteristics, and potential mechanisms of plasticity. In principle, we can also define neuronal cell

types by characterizing their neuroanatomy - where the neurons are located and to which neurons

they are pre- and post-synaptically connected. Since neurons acquire their anatomy through devel-

opmental programs, it was not known whether this information would remain accessible in any form

in the snapshot of the transcriptome of mature fully differentiated adult VNC. However, one of the

most evident cluster-defining features of our VNC data is the abundance of transcription factors and

cell-adhesion molecules that are classically thought of as being developmental.

The cluster-defining TFs are particularly useful for annotating the cell types in the VNC. Decades

of work has investigated the development and structural organization of the VNC and has described

roles for these genes in developmental specification of hemilineages (Baek and Mann, 2009;

Birkholz et al., 2015; Bossing et al., 1996; Lacin et al., 2019; Lacin and Truman, 2016;

Prokop and Technau, 1991; Schmid et al., 1999; Shepherd et al., 2016; Shepherd et al., 2019;

Truman and Bate, 1988; Truman et al., 2004). Hemilineages have been proposed to be the func-

tional units of the VNC, representing fundamental organizational principles for connectivity

(Harris et al., 2015). Our data are entirely consistent with the hemilineages as functional units with

each hemilineage made up of a population of neurons that share morphological, transcriptional, and

neurochemical features. They represent a familial unit and our data clearly in an unbiased way, pulls

them out as separate and identifiable genetic units, reinforcing the idea that the hemilineages are

functional groups that share molecular/genetic identity as well as morphology and function. More-

over, we can see that hemilineages are not all homogenous in their composition; there are distinct

subtypes evident from the single-cell data. For example, we documented that kn and twz are

expressed in distinct subsets of hemilineage 23B. The fact that subtypes are seen in our data, as well
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as the number of subtypes for a given hemilineage, is consistent with what others have observed

anatomically (D. Shepherd, pers. comm).

We also found continued expression in hemilineages of neurodevelopment genes, such as br,

Imp, and pros, which may signify cell birth order and therefore further distinguish cell types. Expres-

sion levels of pros indicate the birth order of post-embryonic leg motor neurons belonging to hemili-

neage 15B, that precedes muscle-specific innervation (Baek et al., 2013; Baek and Mann, 2009).

Relative levels of Imp and pros in our predicted hemilineage 15B, can therefore be used to infer

muscle-specific innervation along the leg. Imp and pros expression may also distinguish between

embryonic born and post-embryonic born neurons. Mature (embryonic) neurons of the larval VNC

show elevated Imp expression, whereas immature (post-embryonic) neurons have higher levels of

pros, relative to each other (Etheredge, 2017). Dopaminergic neurons in the PAM1 cluster in the

larva are the only dopaminergic neurons to be born post-embryonically (Hartenstein et al., 2017).

So, in some instances, embryonic vs. post-embryonic identity can also be used to identify neurons

within a given class.

Fast-acting neurotransmitter identity is acquired in a hemilineage dependent manner, amongst

post-embryonic neurons (Lacin et al., 2019), but the underlying transcriptional programs appear to

be complex (Estacio-Gómez et al., 2019). We did not identify single TFs that globally defined FAN

identity. Different neurons have been reported to use different TFs to define the same FAN identity

in the adult fly optic lobes (Konstantinides et al., 2018) and in C. elegans (Hobert and Kratsios,

2019). In addition, a recent gene-profiling study of cholinergic, glutamatergic, and GABAergic neu-

rons across development found that many FAN-specific TFs are transiently expressed at particular

times, and only a few remain constant (Estacio-Gómez et al., 2019). As noted previously

(Lacin et al., 2019), we found some TFs that are restricted to individual FAN-specific clusters. Some

GABAergic clusters express Dbx, vg, D; some cholinergic neurons express unc-4 and some glutama-

tergic neurons express ems. We also found Lim3 to be expressed in cholinergic and glutamatergic

neurons, but not in GABAergic neurons (Lacin et al., 2019). This is in contrast to what is seen in the

optic lobes, where Lim3 specifically regulates GABAergic cellular identity (Konstantinides et al.,

2018). Yet, consistent with the optic lobes, Lim3 is only expressed in Notchoff hemilineages in the

VNC (Li et al., 2017). Therefore, the TF code specifying FAN identity may change across develop-

ment and also differ depending on the regional context.

Hox gene expression (Antp, Ubx, abd-A, and Abd-B) developmentally define the neuromeres of

the VNC. Finding that established neuromere- and hemilineage-enriched developmental markers are

expressed in the 5 day old adult, suggests they may continue to act in these differentiated cells to

maintain the distinct transcriptional profile underlying neuronal identity and function (Deneris and

Hobert, 2014). It will therefore be interesting to investigate functional consequences of disrupting

these potential maintenance programs.

Not all cells group by their developmental lineage, for example, monoaminergic cells formed a

distinct cluster, despite originating from multiple different neuroblasts (Schmid et al., 1999). We

also identified a cluster of neurosecretory cells that includes cells with different developmental ori-

gins (Park et al., 2008). High expression levels of neuropeptides in this cluster is consistent with fea-

tures of neurosecretory biology. Neuropeptides are often produced by small numbers of cells, yet

they can be broadly released and by volume transmission and/or secretion into the hemolymph act

at a distance to modulate disparate neural circuits, physiological functions and behaviors (Näs-

sel, 2018). The extraordinarily high-level expression of pre-pro-neuropeptide genes in these cells

suggests that producing these molecules presents a considerable burden. The TF dimmed (dimm),

which marks neurosecretory cells of this type, has been shown to promote neurosecretory identity

and suppress FAN identity (Hewes et al., 2003; Park et al., 2008).

In this study, we have demonstrated the predictive power of the single-cell atlas of the VNC.

Despite the caveats associated with this technique, such as sparse sampling of a cell’s transcriptome

and ambient RNA contamination, cellular identity signals, especially developmental programs, are

surprisingly robust. Defining cell types based on clustering should be viewed as an exploratory

rather than a confirmatory process (Crow and Gillis, 2019). It is worth noting that the genes identi-

fied using this technique that most robustly define cell clusters do not necessarily reflect their impor-

tance for cell type function, however many will no doubt be useful for the generation of tools to

study and ultimately define cell phenotypes. Our results suggest many new directions for further

investigation. For example, understanding the correspondence and potential causal relationships
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between transcriptomic signatures and specific anatomical, physiological and functional properties,

and how these relationships change depending on cell state.

Materials and methods

Fly strains and husbandry
The fly strain used for VNC analysis (+/w*; UAS-Stinger, 13XLexAop2-IVS-tdTomato.nls/+;

dsxGAL4/+) was a genetic cross between w*; UAS-Stinger, 13XLexAop2-IVS-tdTomato.nls males and

+; +; dsxGAL4 virgin females (Rideout et al., 2010). All flies were reared at 25˚C in a 12:12 hr light:

dark cycle on standard food at 40–50% relative humidity. Virgin males and females were collected

and stored individually. Flies were aged 5 days post-eclosion at 25˚C prior to dissection. Additional

fly strains used in this study include: (1) wild-type Canton-S (2) y1w*; Mi{Trojan-GAL4.0}Vmat

[MI07680-TG4.0] (BDSC:66806) (3) y1w*; Mi{Trojan-GAL4.1}Lim3[MI03817-TG4.1]/SM6a

(BDSC:67450) (4) y1w*; {Mi{Trojan-GAL4.2}kn[MI15480-TG4.2]/SM6a (BDSC:67516) (5) y1w*; Mi{Tro-

jan-GAL4.2}twz[MI14153-TG4.2]/SM6a (BDSC:76758) (6) y1w* Mi{Trojan-GAL4.0}acj6[MI07818-

TG4.0]/FM7c (BDSC:77788) (7) w*; {UAS-Stinger} denoted as UAS-nGFP (Barolo et al., 2000) (8) w*;

UAS-myr-GFP-V5-P2A-H2B-mCherry-HA/TM3, Ser (aka UAS-WM; Chang et al., 2019).

VNC single-cell sample preparation
The VNC dissociation protocol was carried out as described previously (Croset et al., 2018). 40

Male and 40 female VNCs (20 per sexed replicate) were individually dissected in toxin-supplemented

ice-cold calcium- and magnesium-free DPBS (Gibco, 14190–086 + 50 mM D(�)�2-Amino-5-phospho-

novaleric acid, 20 mM 6,7-dinitroquinoxaline-2,3-dione and 0.1 mM tetrodotoxin). Each replicate was

then washed in 1 mL ice-cold toxin-supplemented Schneider’s medium (tSM: Gibco, 21720–001 +

toxins, as above). VNCs were then incubated for 30 min in 0.5 mL of tSM containing 1 mg/mL papain

(Sigma, P4762) and 1 mg/mL collagenase I (Sigma, C2674). VNCs were washed once more with tSM

and subsequently triturated with flame-rounded 200 mL pipette tips. Dissociated VNCs were resus-

pended into 1 mL PBS + 0.01% BSA and filtered through a 10 mm CellTrix strainer (Sysmex, 04-

0042-2314).

Data processing
Libraries were made using the Chromium Single Cell 3’ v2 kit from 10x Genomics. Cells were loaded

in accordance with 10x Genomics documentation, with the aim of 5000–8000 cells per sample. The

samples were sequenced with 8 lanes of Illumina HiSeq4000 by Oxford Genomics Centre. We

obtained a mean of 20,550 reads per cell and mean sequence saturation of 71%. The fastq data

were processed with Drop-seq_tools v2.1.0 (Macosko et al., 2015) and aligned to the D. mela-

nogaster genome (R6.13) to generate digital expression matrices for each sample.

Data analysis with seurat
The digital expression matrices were analyzed with the Seurat 2.3.4 R package (Satija et al., 2015).

Genes expressed in fewer than 3 GEMs (Gel Bead-In EMulsions) were removed. GEMs with more

than 10,000 UMI (1.4% of GEMs, 3.6 standard deviations away from the median) were removed as

outliers (unless otherwise mentioned). GEMs with fewer than 1,200 UMI were removed. The lower

limit was determined using a histogram of the number of UMI per GEM. This distribution has a local

minimum between 1000 and 1,200 UMI. GEMs with fewer than 200 genes, or more than 15% mito-

chondrial derived UMI were removed. This resulted in 26,768 cells in total and 2590, 9060, 6522,

8596 cells for the four replicates, respectively. Sex-specific replicates were merged with the ‘Merge-

Seurat’ function and normalized with the ‘NormalizeData’ function, using default parameters. The

merged sex-specific groups were then scaled with the ‘ScaleData’ function while regressing out vari-

ation due to replicate, nUMI, and proportion mitochondrial transcript. Low expression level, and low

dispersion cut-offs of 0.001 were used to identify variable expressed genes in each sex. The intersec-

tion of these genes was used to perform a canonical correlation analysis (CCA) with the first 45

dimensions. t-distributed stochastic neighbor embedding (t-SNE) was performed, with perplexity of

30, theta of 0.05, and 20,000 iterations, on the data to reduce the dimensionality to 2 for visualiza-

tion. Clusters were defined using the ‘FindClusters’ function with the default Louvain algorithm and
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using 45 dimensions and a cluster resolution of 12 (unless otherwise mentioned). Comparison of dif-

ferent cluster resolutions was evaluated with the ‘clustree’ package (Zappia and Oshlack, 2018).

Cluster resolutions above 12 yielded few new clusters and increased the between cluster exchanges.

Positively enriched cluster markers were identified using the ‘FindAllMarkers’ function with a nega-

tive binomial distribution test and fold enrichment of at least 0.5 and a Bonferroni adjusted p-value

of less than 0.05. Neuronal identity was determined by having an average scaled expression (calcu-

lated with the ‘AverageExpression’ function in ‘Seurat’) of at least 0.15 for any of the following neu-

ronal markers (elav, nSyb, para, VAChT, ChAT, Gad1, VGAT, VGlut, noe). All other clusters were

deemed to be non-neuronal, with the exception of neuropeptide-expressing cluster 84. Glial identity

was determined in a similar manner with the following glial markers (repo, alrm, wrapper, Indy).

Functionally related gene enrichment analysis on neuronal cluster markers was performed using

DAVID (Huang et al., 2009).

Comparisons to bulk sequence data and between replicates
FlyAtlas 2 bulk RNA-seq data of the adult VNC was obtained from http://flyatlas.gla.ac.uk/FlyAtlas2/

index.html (Leader et al., 2018). The convert IDs tool from Flybase was used to convert gene sym-

bols and Flybase ID between release versions (http://flybase.org/convert/id). Pseudo-bulk normal-

ized expression from the filtered single-cell VNC data was then compared to the pooled female and

male FPKM from the FlyAtlas 2 data set. Pearson correlation coefficients were calculated with the

‘stat_cor’ function from the ‘ggpubr’ package. Pseudo-bulk normalized expression from each repli-

cate were compared to each other, and correlations were calculated with ‘stat_cor’. Alignment of

the replicates was assessed with the ‘CalcAlignmentMetric’ function in ‘Seurat’. The ‘AverageExpres-

sion’ function in ‘Seurat’ along with the ‘correlate’ function in ‘corrr’ were used to determine the cor-

relations of gene expression between the replicates at the cluster level.

Comparison with brain Single-Cell data
Loom files for the mid-brain (Croset et al., 2018) and the whole (Davie et al., 2018) were down-

loaded from ‘scope.aertslab.org’. Digital expression matrices of filtered cells were extracted from

the loom files and reanalyzed with similar parameters to those used for the VNC. The data were nor-

malized with the ‘NormalizeData’ function with default parameters. The data were scaled with the

‘ScaleData’ function while regressing out variation due to nUMI and proportion mitochondrial

expression. Variably expressed genes were identified with the ‘FindVariableGenes’ function with the

following cutoffs: x.low.cutoff = 0.001, x.high.cutoff = Inf, y.cutoff = 0.001. A principal component

analysis was performed using the identified variable genes. Clusters were identified with the

‘FindClusters’ function using the default Louvain algorithm. A cluster resolution of 2.5 and the first

50 PCAs were used for the mid-brain data (Croset et al., 2018), and a cluster resolution of 2 and

the first 82 PCAs were used for the brain data (Davie et al., 2018). t-SNE was performed with per-

plexity of 30, theta of 0.1, and 20,000 iterations, on the data to reduce the dimensionality to two for

visualization. Significantly enriched genes for each cluster were identified using the ‘FindAllMarkers’

function using the negative binomial test with a log fold-change threshold of 0.5 while repressing

out variation due to replicate, and a Bonferroni adjusted p-value of less than 0.05. The resulting clus-

ter markers for the mid-brain and brain data sets were compared to the VNC data cluster markers

(excluding the salivary gland cluster and the sperm cluster). The overlap of markers was visualized

with an Euler plot using the ‘eulerr’ package in R.

Predicting hemilineage identity
The average expression of previously established hemilineage markers (Lacin et al., 2019;

Venkatasubramanian and Mann, 2019) across all neuronal clusters was calculated with the ‘Avera-

geExpression’ function in ‘Seurat’. Predicted hemilineage identities were deduced from these

expression patterns. With these assignments, we used the ‘FindAllMarkers’ function (with the above

settings) to identify novel biomarkers for each predicted hemilineage. Hemilineage specific cell

counts (inferred from Birkholz et al., 2015 and Lacin et al., 2019) were compared to the cell counts

from our predicted labeled hemilineages. To approximate post-embryonic thoracic cells, only pros+,

abd-A-, Abd-B- cells were considered.
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Assigning fast-acting neurotransmitter identity
The following genes were used to assign fast-acting neurotransmitter (FAN) identity; Vesicular ace-

tylcholine transporter (VAChT) and Choline acetyltransferase (ChAT) for acetylcholine, Vesicular glu-

tamate transporter (VGlut) for glutamate, and Vesicular GABA Transporter (VGAT) and Glutamic

acid decarboxylase 1 (Gad1) for GABA. Cells from clusters with average scaled expression above 0.5

for Gad1 or VGAT, and average scaled expression less than 0 for the other markers were all assigned

to be GABAergic. Glutamatergic and cholinergic cells were assigned similarly. For clusters with an

average expression less than 0.5 for all markers, cells were assigned FAN identity at a cell-by-cell

level. For these remaining cells, we established different criteria for assigning cholinergic vs. gluta-

matergic or GABAergic since the cholinergic markers were expressed at much lower levels. If both

VAChT and ChAT had a log-normalized expression greater than 0, then the cells were assigned to

be cholinergic. Additionally, if either VAChT or ChAT had a log-normalized expression greater than

2, the cells were assigned to be cholinergic. Otherwise, if VGlut had a log-normalized expression

greater than 2 and greater than either VAChT or Gad1, then the cells were assigned to be glutama-

tergic. Otherwise, if Gad1 had a log-normalized expression greater than 2 and greater than either

VAChT or VGlut, the cells were assigned to be GABAergic. All remaining cells were labelled

undefined.

Sub-clustering of monoaminergic cells
Vmat expressing cells from clusters 72 and 84 were sub-clustered. Identification of variable genes

and canonical correlation analysis were performed as above. t-SNE was performed using the first 7

dimensions and a cluster resolution of 1.2 was used to identify clusters. Positively enriched cluster

markers were identified as above.

Sub-clustering of glial cells
Clusters 23, 24, 70, 98, and 106 were identified as being predominantly glial cells. Cells from these

clusters were sub-clustered. Any cell expressing elav, nSyb, VAChT, VGlut, or Gad1 was removed.

Identification of variable genes and canonical correlation analysis were performed as above. t-SNE

was performed using the first 6 dimensions and a cluster resolution of 0.9 was used to identify clus-

ters. Positively enriched cluster markers were identified as above.

R packages and plotting
Expression heatmaps were drawn using the ‘pheatmap’ package, correlation heatmaps were drawn

using the ‘ggcorplot’ package. Chord diagrams were drawn using the ‘circlize’ package (Gu et al.,

2014), and represent the relationship between cluster markers and the clusters in which they are sig-

nificantly enriched, the data is taken from Figure 1—source data 1. No weighted relationships are

inferred in chord diagrams. Scatter plots and bar charts were drawn using ggplot2 in R. A full list of

packages used, with their version numbers can be found at https://github.com/aaron-allen/VNC_

scRNAseq/blob/master/sessionInfo.txt. All plots were edited in Adobe Illustrator.

Phylogeny
The multiple sequence alignment (not shown) and the phylogenetic tree were created with Clustal

Omega (Sievers and Higgins, 2018) and FigTreeV1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/),

respectively.

Immunohistochemistry
Flies were reared at 25˚C and aged for 5 days prior to dissection and staining as per Rideout et al.

(2010) with the following modifications: VNC samples were fixed in 4% PFA (40 mins at room tem-

perature) immediately following dissection, to maintain tissue integrity and minimize cell loss. Sam-

ples were pre-incubated in 5% NGS overnight at 4˚C. Samples were then incubated with primary

antibodies for 3 days at 4˚C, followed by an overnight incubation in secondary antibodies at 4˚C. Pri-

mary antibodies used were: mouse mAb nC82 (1:50), mouse anti-AbdA (1:100, C-11), mouse anti-

AbdB (1:10, 1A2E9-s), mouse anti-Acj6-s (1:20), mouse anti-AntP (1:20, 8C11-s), mouse anti-Ubx

(1:20, FP3.38-s), rat anti-CadN (1:30, DN-Ex #8;) from DSHB, Univ. of Iowa. Additional primary anti-

bodies used were chicken anti-GFP (1:1200, Abcam) and anti-AbdA (1:100, C-11 Santa Cruz
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Biotechnology). Secondary antibodies used included: anti-chicken Alexa Fluor488, anti-mouse Alexa

Fluor633, anti-rat Alexa Fluor546, (1:300, Invitrogen Molecular Probes, Carlsbad, CA). Samples were

left in 70% Glycerol/30% PBT overnight at 4˚C prior to mounting with Vectashield (Vector Labs) and

imaged with a Leica SP5 Microscope. Stacks of optical sections were generated at 0.5 mm intervals.

Images were processed in Imaris 8.2.1 (Bitplane Scientific, AG, Zürich).

Data and code availability
Raw sequencing files (fastq) and digital expression matrices from each replicate are available from

the Gene Expression Omnibus (GSE141807). Code used in this analysis is available from GitHub

(https://github.com/aaron-allen/VNC_scRNAseq; Allen, 2020; copy archived at https://github.com/

elifesciences-publications/VNC_scRNAseq).
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Estacio-Gómez A, Hassan A, Walmsley E, Lee L, Southall TD. 2019. Dynamic neurotransmitter specific
transcription factor expression profiles during Drosophila development. bioRxiv. DOI: https://doi.org/10.1101/
830315

Etheredge J. 2017. Transcriptional Profiling of Drosophila Larval Ventral Nervous System Hemilineages and
Neuroscience. University of Cambridge Development Physiology. DOI: https://doi.org/10.17863/CAM.17445

Gowda SBM, Paranjpe PD, Reddy OV, Thiagarajan D, Palliyil S, Reichert H, VijayRaghavan K. 2018. GABAergic
inhibition of leg motoneurons is required for normal walking behavior in freely moving Drosophila. PNAS 115:
E2115–E2124. DOI: https://doi.org/10.1073/pnas.1713869115, PMID: 29440493

Greer CL, Grygoruk A, Patton DE, Ley B, Romero-Calderon R, Chang HY, Houshyar R, Bainton RJ, Diantonio A,
Krantz DE. 2005. A splice variant of the Drosophila vesicular monoamine transporter contains a conserved
trafficking domain and functions in the storage of dopamine, serotonin, and octopamine. Journal of
Neurobiology 64:239–258. DOI: https://doi.org/10.1002/neu.20146, PMID: 15849736

Grillner S. 2006. Biological pattern generation: the cellular and computational logic of networks in motion.
Neuron 52:751–766. DOI: https://doi.org/10.1016/j.neuron.2006.11.008, PMID: 17145498

Gu Z, Gu L, Eils R, Schlesner M, Brors B. 2014. Circlize implements and enhances circular visualization in R.
Bioinformatics 30:2811–2812. DOI: https://doi.org/10.1093/bioinformatics/btu393, PMID: 24930139

Hamanaka Y, Park D, Yin P, Annangudi SP, Edwards TN, Sweedler J, Meinertzhagen IA, Taghert PH. 2010.
Transcriptional orchestration of the regulated secretory pathway in neurons by the bHLH protein DIMM.
Current Biology 20:9–18. DOI: https://doi.org/10.1016/j.cub.2009.11.065, PMID: 20045330

Hanlon CD, Andrew DJ. 2015. Outside-in signaling–a brief review of GPCR signaling with a focus on the
Drosophila GPCR family. Journal of Cell Science 128:3533–3542. DOI: https://doi.org/10.1242/jcs.175158,
PMID: 26345366

Hardie RC. 1987. Is histamine a neurotransmitter in insect photoreceptors? Journal of Comparative Physiology A
161:201–213. DOI: https://doi.org/10.1007/BF00615241, PMID: 2442380

Harris RM, Pfeiffer BD, Rubin GM, Truman JW. 2015. Neuron hemilineages provide the functional ground plan
for the Drosophila ventral nervous system. eLife 4:e09443. DOI: https://doi.org/10.7554/eLife.04493

Hartenstein V, Cruz L, Lovick JK, Guo M. 2017. Developmental analysis of the dopamine-containing neurons of
the Drosophila brain. The Journal of Comparative Neurology 525:363–379. DOI: https://doi.org/10.1002/cne.
24069, PMID: 27350102

Hartenstein V. 2018. Development of the Nervous System of Invertebrates. In: Byrne J. H (Ed). The Oxford
Handbook of Invertebrate Neurobiology. Oxford University Press. DOI: https://doi.org/10.1093/oxfordhb/
9780190456757.001.0001

Hewes RS, Park D, Gauthier SA, Schaefer AM, Taghert PH. 2003. The bHLH protein dimmed controls
neuroendocrine cell differentiation in Drosophila. Development 130:1771–1781. DOI: https://doi.org/10.1242/
dev.00404, PMID: 12642483

Hobert O, Kratsios P. 2019. Neuronal identity control by terminal selectors in worms, flies, and chordates.
Current Opinion in Neurobiology 56:97–105. DOI: https://doi.org/10.1016/j.conb.2018.12.006, PMID: 306650
84

Allen et al. eLife 2020;9:e54074. DOI: https://doi.org/10.7554/eLife.54074 28 of 32

Research article Genetics and Genomics Neuroscience

https://doi.org/10.1074/jbc.271.33.20187
http://www.ncbi.nlm.nih.gov/pubmed/8702744
https://doi.org/10.1242/jcs.055095
http://www.ncbi.nlm.nih.gov/pubmed/19861494
https://doi.org/10.1016/j.cell.2018.05.057
http://www.ncbi.nlm.nih.gov/pubmed/29909982
https://doi.org/10.7554/eLife.50901
https://doi.org/10.7554/eLife.50901
http://www.ncbi.nlm.nih.gov/pubmed/31939737
https://doi.org/10.1038/nn.3731
http://www.ncbi.nlm.nih.gov/pubmed/24929660
https://doi.org/10.3389/fnins.2014.00346
http://www.ncbi.nlm.nih.gov/pubmed/25426014
https://doi.org/10.1523/JNEUROSCI.13-11-04924.1993
http://www.ncbi.nlm.nih.gov/pubmed/8229205
https://doi.org/10.1523/JNEUROSCI.5951-08.2009
https://doi.org/10.1523/JNEUROSCI.5951-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19369546
https://doi.org/10.1016/j.neuron.2018.01.007
http://www.ncbi.nlm.nih.gov/pubmed/29395908
https://doi.org/10.1101/830315
https://doi.org/10.1101/830315
https://doi.org/10.17863/CAM.17445
https://doi.org/10.1073/pnas.1713869115
http://www.ncbi.nlm.nih.gov/pubmed/29440493
https://doi.org/10.1002/neu.20146
http://www.ncbi.nlm.nih.gov/pubmed/15849736
https://doi.org/10.1016/j.neuron.2006.11.008
http://www.ncbi.nlm.nih.gov/pubmed/17145498
https://doi.org/10.1093/bioinformatics/btu393
http://www.ncbi.nlm.nih.gov/pubmed/24930139
https://doi.org/10.1016/j.cub.2009.11.065
http://www.ncbi.nlm.nih.gov/pubmed/20045330
https://doi.org/10.1242/jcs.175158
http://www.ncbi.nlm.nih.gov/pubmed/26345366
https://doi.org/10.1007/BF00615241
http://www.ncbi.nlm.nih.gov/pubmed/2442380
https://doi.org/10.7554/eLife.04493
https://doi.org/10.1002/cne.24069
https://doi.org/10.1002/cne.24069
http://www.ncbi.nlm.nih.gov/pubmed/27350102
https://doi.org/10.1093/oxfordhb/9780190456757.001.0001
https://doi.org/10.1093/oxfordhb/9780190456757.001.0001
https://doi.org/10.1242/dev.00404
https://doi.org/10.1242/dev.00404
http://www.ncbi.nlm.nih.gov/pubmed/12642483
https://doi.org/10.1016/j.conb.2018.12.006
http://www.ncbi.nlm.nih.gov/pubmed/30665084
http://www.ncbi.nlm.nih.gov/pubmed/30665084
https://doi.org/10.7554/eLife.54074
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