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Eighty-one stool samples from Taiwanese were collected for analysis of the association between the gut flora and obesity. The
supervised analysis showed that the most, abundant genera of bacteria in normal samples (from people with a body mass index
(BMI) ≤ 24) were Bacteroides (27.7%), Prevotella (19.4%), Escherichia (12%), Phascolarctobacterium (3.9%), and Eubacterium (3.5%).
Themost abundant genera of bacteria in case samples (with a BMI≥ 27)wereBacteroides (29%),Prevotella (21%),Escherichia (7.4%),
Megamonas (5.1%), and Phascolarctobacterium (3.8%). A principal coordinate analysis (PCoA) demonstrated that normal samples
were clustered more compactly than case samples. An unsupervised analysis demonstrated that bacterial communities in the gut
were clustered into twomain groups: N-like and OB-like groups. Remarkably, most normal samples (78%) were clustered in the N-
like group, andmost case samples (81%) were clustered in theOB-like group (Fisher’s𝑃 value = 1.61𝐸−07).The results showed that
bacterial communities in the gut were highly associated with obesity. This is the first study in Taiwan to investigate the association
between human gut flora and obesity, and the results provide new insights into the correlation of bacteria with the rising trend in
obesity.

1. Background

Enterobacteria, or gut microbiota, in the human gastroin-
testinal (GI) tract play important roles in the body’s func-
tions. For example, they can regulate immune responses and
metabolic functions of the host [1–4]. The gut microbiota

is frequently used to study the association between human
health and an individual’s lifestyle. In 2011, three major
kinds of enterotypes consisting of Bacteroides, Prevotella,
and Ruminococcus [5] provided new perspectives to classify
individuals. Ruminococcus was reported to be an ambiguous
enterotype, and the Bacteroides and Prevotella enterotypes

Hindawi Publishing Corporation
BioMed Research International
Volume 2014, Article ID 906168, 10 pages
http://dx.doi.org/10.1155/2014/906168

http://dx.doi.org/10.1155/2014/906168


2 BioMed Research International

were associated with dietary habits [6]. Animal protein and
saturated fats were highly correlated with the Bacteroides
enterotype. Low meat intake and plant-based nutrition
with high carbohydrates were correlated with the Prevotella
enterotype.

TheHumanMicrobiomeProject (HMP) [7]was launched
by the US National Institutes of Health in 2008, and
understanding the relationship between human health and
microbiota that live in or on the human body was recognized
as an important concept. To decipher this relationship, high-
throughput sequencing, also called next-generation sequenc-
ing (NGS), supporting a large number of sequences, can be
used to sequence 16S ribosomal (r)RNA to construct complex
microbial community profiles. 16S rRNA is considered the
standard for studying microbial communities and assigning
taxonomy to bacteria. Compared to conventional polymerase
chain reaction- (PCR-) based or culture-based methods, 16S
rRNA sequencing by NGS can detect hundreds to thousands
of bacteria at one time and offer relative quantification of the
bacteria. Interactions between different bacterial communi-
ties and their environments can be comprehensively analyzed
by metagenomics research. Associations between diseases
and specific bacteria have been described in previous studies,
for example, type 2 diabetes [8–11], irritable bowel syndrome
(IBS) [12–14], and colorectal cancer (CRC) [15–17].Moreover,
some bacteria which are significantly associated with specific
diseases were thought to be biomarkers for construction of a
disease risk prediction model [8, 18].

Obesity is a major public health problem worldwide,
and its prevalence is rapidly increasing [19]. Obesity is
related to several disorders, including type 2 diabetes [20–
23], cardiovascular disease [24–26], and cancer [26–28].
Recently, obesity was shown to be associated with an alter-
ation of the gut microbiota, both in human [29–32] and
animal models [30, 33, 34]. It was observed that a reduced
proportion of the Bacteroidetes and increased proportion
of the Firmicutes were associated with human obesity [30,
35, 36]. Also, an increase of Actinobacteria in obese indi-
viduals was reported [35]. In another study, amounts of
Archaea and Methanobacteriales were positively correlated
with obesity [37], and their amounts in obesity samples
decreased or disappeared after gastric bypass surgery. In
addition, another study also mentioned that the amounts
of Bifidobacterium and Ruminococcus decreased in obe-
sity samples [38]. However, some studies indicated that
the ratio of the proportions of Bacteroidetes and Firmi-
cutesis contradictory [39] or not associated [5, 40] with
obesity.

With different ethnicities and regions, dietary habits and
environmental factors can widely vary, and there is a lack
of studies focusing on Taiwanese samples. Therefore, herein
we collected 81 stool samples from Taiwanese for analysis of
the association between gut flora and obesity. According to
a study by Pan et al. [41], Taiwan adopted body mass index
(BMI) values of 24 and 27 as the cutoff points for being
overweight and obese, respectively. In this study, the stools of
36 obese (BMI ≥ 27) and 45 normal persons (BMI ≤ 24) were

Table 1: Study participant characteristics and demographics.

Participant characteristic
Gender (number of samples)

Male 30
Female 51

Age (years)
Range 20∼89
Mean 41.2

Height (cm)
Range 148.5∼181
Mean 164

Weight (kg)
Range 45∼110
Mean 69.7

Body mass index (kg/m2) (number of samples)
≤24 45
≥27 36

Bacteroides (28%)

Prevotella (20%)

Escherichia (9.7%)
Phascolarctobacterium 

(3.9%)

Eubacterium (3.2%)
Megamonas (3%)

Faecalibacterium 
(2.9%)

Gemmiger (2.2%)
Sutterella (2%)

Fusobacterium (1.9%)
Salmonella (1.9%)

Megasphaera (1.3%)
Dialister (1.2%)

Bifidobacterium (1.1%)
Akkermansia (1%)

Others (17%)
All samples

Figure 1: The distribution of genera among all samples.

collected, and 16S rRNA sequencing was used to assess the
association between obesity and the taxonomic composition
of the gut microbiota.

2. Results

Participant metadata are summarized in Table 1, and detailed
sample profiles are given in Table S1 available online in Sup-
plementarymaterial at http://dx.doi.org/10.1155/2014/906168,
including the number of reads, gender, age, height, weight,
and BMI. In total, 4,152,740 sequence reads were obtained
from the 81 samples, and amean of 51,268 readswith amedian
read length of 125 bp was obtained per study participant.
Sequence reads were processed through our taxonomic map-
ping process, and the distribution of genera in samples is
depicted in Figure 1. The sequencing results showed that the
most abundant genera in all samples were Bacteroides (28%),
Prevotella (20%), Escherichia (9.7%), Phascolarctobacterium
(3.9%), Eubacterium (3.2%), Megamonas (3%), Faecalibac-
terium (2.9%), Gemmiger (2.2%), and Sutterella (2%).
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2.1. Unsupervised Clustering Analysis. Hierarchical clustering
was performed using the UniFrac unweighted distance, and
gut bacterial communities and clinical values of each sample
are shown in Figure 2. The results demonstrate that the
bacterial communities in the gutwere clustered into twomain
groups: anN-like group (including theN1 andN2 subgroups)
and an OB-like group (including the OB1, OB2, OB3, and
OB4 subgroups). Figure 3 shows that the most abundant
genera in N-like samples were Bacteroides (27.8%), Prevotella
(18.6%), Escherichia (12.7%), Phascolarctobacterium (4%),
and Eubacterium (3.5%). The most abundant genera in OB-
like samples were Bacteroides (28.8%), Prevotella (21.7%),
Escherichia (7.1%), Megamonas (4.4%), and Phascolarctobac-
terium (3.7%). Remarkably, most normal samples (78%) were
clustered in the N-like group, and most case samples (81%)
were clustered in theOB-like group (Fisher’s𝑃 value = 1.61𝐸−
07). The results showed that gut bacterial community types
were highly associated with obesity. The genera diversity
analysis showed that the bacterial communities in the N-like
group exhibited significantly higher alpha diversity and lower
beta diversity than those in the OB-like group (Figure 4).

2.2. Supervised Clustering Analysis. To investigate the asso-
ciation between gut bacterial communities and obesity, 45
stool samples of participants with a BMI of ≤ 24 were defined
as normal samples, and 36 samples of participants with a
BMI ≥ 27 were used as case samples. Figure 5 shows that
the most abundant bacteria in normal samples were Bac-
teroides (27.7%), Prevotella (19.4%), Escherichia (12%), Phas-
colarctobacterium (3.9%), and Eubacterium (3.5%). The most
abundant bacteria in case samples were Bacteroides (29%),
Prevotella (21%), Escherichia (7.4%), Megamonas (5.1%), and
Phascolarctobacterium (3.8%). Normal samples had a signif-
icantly higher proportion of Escherichia, while case samples
had a higher proportion ofMegamonas.

Genera with significantly different proportions between
normal and case samples are listed in Table 2. Additionally,
genera with a significantly different presence between normal
and case samples are listed in Table 3, and significantly
different species are also provided in Table S2. The genera
of Shewanella, Citrobacter, Cronobacter, Leclercia, Tatumella,
and Acinetobacter exhibited significant differences in both
proportions and presence. Unweighted alpha and beta diver-
sities of genera in the normal and case samples are shown
in Figures 6(a) and 6(b), respectively. The results showed
that the bacterial communities in normal samples exhibited
significantly higher alpha diversity and lower beta diversity
than those in case
samples.

A PCoA of gut bacterial communities is shown in
Figure 7. The results showed that most normal samples
(green nodes) were located in the bottom left area, and case
samples (red nodes) were spread in other areas (Figure 7(a)).
Samples in the N1, N2, OB1, OB2, OB3, and OB4 subgroups
are depicted in Figure 7(b). The results show that bacterial
communities of N1 and N2 were highly associated with
normal-weight individuals, and others were associated with
obese individuals.

BMI

Subgroups

N1

N2

OB1

OB2

OB3

OB4

BMI ≥ 27 (case)
BMI ≤ 24 (normal)

Figure 2: Bacterial communities in the samples.
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Figure 3: Relatively abundant genera in the N-like and OB-like
groups.
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Table 2: Genera with significantly different proportions between normal and case samples.

Genus Fold change
(case/control)

KS test
𝑃 value

ANOVA
𝑃 value Case mean Control mean

Collinsella 0.56 0.01 0.37 0.001 0.002
Barnesiella 0.61 0.01 0.26 0.002 0.003
Clostridium 0.52 0.01 0.01 0.009 0.017
Coprococcus 0.54 0.04 0.37 0.001 0.001
Lachnospira 1.68 0.02 0.27 0.003 0.002
Oscillibacter 0.55 0.01 0.02 0.001 0.001
Megamonas 5.70 0.08 0.01 0.051 0.009
Veillonella 0.47 0.01 0.27 0.002 0.004
Shewanella 4.69 0.00 0.04 0.001 <0.001
Citrobacter 0.26 0.00 0.11 0.002 0.006
Cronobacter 0.08 0.00 0.00 <0.001 0.002
Enterobacter 0.38 0.00 0.07 0.001 0.002
Erwinia 0.18 0.00 0.00 <0.001 0.002
Escherichia 0.62 0.00 0.04 0.074 0.120
Leclercia 0.09 0.00 0.06 0.001 0.005
Morganella 0.05 0.01 0.07 <0.001 0.001
Serratia 0.02 0.00 0.00 <0.001 0.018
Tatumella 0.06 0.00 0.00 <0.001 0.001
Halomonas 3.51 0.00 0.08 0.005 0.002
Acinetobacter 116.08 0.00 0.03 0.002 <0.001
KS: Kolmogorov-Smirnov; ANOVA: analysis of variance.

Table 3: Genera with a significantly different presence between normal and case samples.

Genus Presence
Case/normal

Absence
Case/normal

Fisher’s test
𝑃 value

Odds ratio
(95% CI)

Butyricimonas 28/44 8/1 0.009 0.082 (0.002∼0.664)
Butyrivibrio 0/11 36/34 0.001 0.088 (0.002∼0.663)
Lachnobacterium 0/16 36/29 <0.001 0.052 (0.001∼0.371)
Lachnospira 22/43 14/2 <0.001 0.076 (0.008∼0.373)
Syntrophococcus 0/10 36/35 0.002 0.099 (0.002∼0.764)
Pectinatus 0/14 36/31 <0.001 0.063 (0.001∼0.460)
Comamonas 0/10 36/35 0.002 0.099 (0.002∼0.764)
Pseudoalteromonas 12/1 24/44 <0.001 21.261 (2.837∼956.295)
Shewanella 15/3 21/42 <0.001 9.703 (2.381∼58.040)
Citrobacter 17/43 19/2 <0.001 0.043 (0.004∼0.210)
Cronobacter 6/34 30/11 <0.001 0.068 (0.018∼0.218)
Leclercia 8/36 28/9 <0.001 0.075 (0.021∼0.233)
Rahnella 0/13 36/32 <0.001 0.070 (0.002∼0.516)
Shigella 5/31 31/14 <0.001 0.076 (0.019∼0.250)
Tatumella 2/23 34/22 <0.001 0.058 (0.006∼0.273)
Marinomonas 12/1 24/44 <0.001 21.261 (2.837∼956.295)
Acinetobacter 12/2 24/43 0.001 10.443 (2.070∼103.809)
Aliivibrio 8/1 28/44 0.009 12.231 (1.505∼568.466)
CI: confidence interval.
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Figure 4: Unweighted (a) alpha diversity and (b) beta diversity of bacterial communities in the N-like and OB-like groups.

Bacteroides (27.7%)

Prevotella (19.4%)
Escherichia (12%)

Phascolarctobacterium 
(3.9%)

Eubacterium (3.5%)
Megamonas (0.9%)

Faecalibacterium (2.5%)
Gemmiger (1.9%)
Sutterella (1.8%)

Fusobacterium (1.2%)
Salmonella (2%)

Megasphaera (0.7%)
Dialister (1.1%)

Bifidobacterium (1%)
Akkermansia (0.8%)

Others (19.6%)

Normal samples

(a)

Bacteroides (29%)

Prevotella (21%)
Escherichia (7.4%)

Phascolarctobacterium 
(3.8%)

Eubacterium (2.8%)
Megamonas (5.1%)

Faecalibacterium (3.2%)
Gemmiger (2.5%)
Sutterella (2.2%)

Fusobacterium (2.5%)
Salmonella (1.7%)

Megasphaera (1.8%)
Dialister (1.2%)

Bifidobacterium (1.1%)
Akkermansia (1%)

Others (13.7%)
Case samples

(b)

Figure 5: Relatively abundant genera in the normal and case samples.

2.3. Potential Markers for Classification of Normal Weight
and Obesity. The identified bacteria with statistical signifi-
cance were used for rule-based clustering. Threefold cross-
validation was used to evaluate the performance of the clas-
sification model. Two out of the significant species in Table
S2, Parabacteroides distasonis and Serratia sp. DAP4, were
selected as discriminating factors in the J48 decision tree. As
shown in Figure 8, the classification rules are described as
follows. (1) a sample is classified as normal if Parabacteroides
distasonis was absent. (2) A sample with the presence of
Parabacteroides distasonis and absence of Serratia sp. DAP4
was classified as a case; otherwise, it was classified as normal.
As shown in Table S3, the classifier performed well, and the
area under the receiver operating characteristic curve (AUC)

was 0.813. The results showed that Parabacteroides distasonis
and Serratia sp.DAP4might be potential markers for further
clinical analysis and investigation of obesity.

3. Discussion

Several relatively abundant genera were identified in sam-
ples (Figure 5), including Bacteroides, Prevotella, Escherichia,
Phascolarctobacterium, Eubacterium, Megamonas, Faecal-
ibacterium,Gemmiger, Sutterella, Fusobacterium, Salmonella,
Megasphaera, Dialister, Bifidobacterium, and Akkermansia.
In previous studies, the presence of Bacteroides, Prevotella,
and Sutterella was negatively associated with obesity [36, 42,
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Figure 6: Unweighted (a) alpha diversity and (b) beta diversity of bacterial communities in case and control samples.
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Figure 7: Unweighted principal coordinate analysis plot of (a) case and normal samples, (b) samples in N1, N2, OB1, OB2, OB3, and OB4
subgroups.

43]. In other related gastrointestinal diseases, Prevotella was
increased in children diagnosed with IBS [44]. Bacteroides,
Eubacterium, and Prevotella were increased, and Faecalibac-
terium was reduced in CRC patients [45, 46]. Increased
Bacteroides and reduced Eubacterium and Prevotella were
also found in a rat model of CRC [47].

At the genus level, the presence of Acinetobacter, Ali-
ivibrio, Marinomonas, Pseudoalteromonas, and Shewanella

had positive associations with obesity (Table 3). Acinetobac-
ter is a genus of Gram-negative bacteria, and the species
Acinetobacter baumannii is a key pathogen of infections in
hospitals [48]. Aliivibrio is a reclassified genus from the
“Vibrio fischeri species group” [49], and species of Aliivibrio
are symbiotic with marine animals or are described as fish
pathogens [50–52]. Shewanella is a genus of marine bacteria,
and some species can cause infections [53, 54]. Lachnospira
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Figure 8: Classification rule and potential markers for discriminat-
ing between obese and normal-weight individuals.

[37], Citrobacter [43], and Shigella [43] were reported to
be positively associated with obesity. Lachnobacterium [18]
showed a negative association with obesity.

At the species level, the presence of Parabacteroides dis-
tasonis, Lactobacillus kunkeei, Pseudoalteromonas piscicida,
Shewanella algae, Marinomonas posidonica, and Aliivibrio
fischeri was positively associated with obesity (Table S2).
Species of Bacteroides and Parabacteroides represent oppor-
tunistic pathogens in infectious diseases, and they are able to
develop antimicrobial drug resistance [55]. Parabacteroides
distasonis, previously known as Bacteroides distasonis [56],
is prominently found in the gut of healthy individuals
[57]. It is also related to improved human bowel health
release [58] and negatively associated with celiac disease
[59]. Our results revealed a positive association between
Parabacteroides distasonis and obesity. Blautia producta [60]
and Enterobacter cloacae [61] were suggested to be related to
a high-fat diet causing obesity in a mouse model. Serratia is a
genus of Gram-negative, facultatively anaerobic, rod-shaped
bacteria. In hospitals, Serratia species tend to colonize the
respiratory and urinary tracts causing nosocomial infections
[62, 63]. In related studies of the GI tract, Serratia increased
in formula-fed mice [64] and was positively correlated with
infants with colic [65].

In the alpha diversity analysis (Figure 6(a)), the Chao
richness index between normal and case groups exhibited a
significant difference (𝑃 = 0.002). This shows that bacterial
communities in normal samples had a greater genera richness
than those in case samples. Results of the beta diversity
analysis (Figure 6(b)) showed that bacterial communities in
normal samplesweremore similar than those in case samples.
The unweighted PCoA plot (Figure 7) showed that bacterial
communities in the N-like group (including N1 and N2)
were highly associated with normal individuals, and bacterial
communities in the OB-like group (including OB1, OB2,
OB3, and OB4) were more associated with obese individuals.
The unsupervised clustering heatmap of all samples (Figure

S1(A)) was generated using Spearman correlations, and the
results showed that most normal samples and most case
sampleswere, respectively, clustered together, when all genera
were used for clustering. However, when only relatively
abundant genera were used for clustering, normal, and case
samples were interwoven with each other (Figure S1(B)).
This indicates that some genera found in small proportions
might be important for distinguishing obese from normal
individuals.

4. Conclusions

This is the first study in Taiwan to investigate the association
between human gut microbiota and obesity using metage-
nomic sequencing. The results showed that bacterial com-
munities in the gut were clustered into N-like and OB-like
groups which were highly associated with normal and obese
subjects, respectively. Several relatively abundant bacteria
with significantly different distributions between normal and
case samples were identified and used to establish a rule-
based classificationmodel. Althoughdetailed functional roles
or mechanisms of these bacteria are needed for further
validation, the results provide new insights about bacterial
communities in the gut with a rising trend of obesity.

5. Methods

5.1. Sample Collection and DNA Extraction. Eighty-one stool
samples were collected by Sigma-transwab (Medical Wire)
into a tube with Liquid Amies Transport Medium and stored
at 4∘C until being processed. Fresh faeces were obtained
from participants, and DNA was directly extracted from
stool samples using a QIAamp DNA Stool Mini Kit (Qia-
gen). A swab was vigorously vortexed and incubated at
room temperature for 1min. The sample was transferred to
microcentrifuge tubes containing 560 𝜇L of Buffer ASL, then
vortexed, and incubated at 37∘C for 30min. In addition, the
suspension was incubated at 95∘C for 15min, vortexed, and
centrifuged at 14,000 rpm for 1min to obtain pelletized stool
particles. Extraction was performed following the protocol
of the QIAamp DNA Stool Mini Kit. DNA was eluted with
50 𝜇L Buffer AE, centrifuged at 14,000 rpm for 1min, and
then the DNA extract was stored at −20∘C until being further
analyzed.

5.2. Library Construction and Sequencing of the V4 Region of
16S rDNA. The PCR primers, F515 (5-GTGCCAGCMGCC-
GCGGTAA-3) and R806 (5-GGACTACHVGGGTWTCT-
AAT-3), were designed to amplify the V4 region of bacterial
16S rDNA as described previously [66]. Polymerase chain
reaction (PCR) amplification was performed in a 50 𝜇L reac-
tion volume containing 25 𝜇L 2x Taq Master Mix (Thermo
Scientific), 0.2 𝜇M of each forward and reverse primer, and
20 ng of a DNA template. The reaction conditions included
an initial temperature of 95∘C for 5min, followed by 30
cycles of 95∘C for 30 s, 54∘C for 1min, and 72∘C for 1min,
with a final extension of 72∘C for 5min. Next, amplified
products were checked by 2% agarose gel electrophoresis



8 BioMed Research International

and ethidium bromide staining. Amplicons were purified
using the AMPure XP PCR Purification Kit (Agencourt) and
quantified using the Qubit dsDNA HS Assay Kit (Qubit)
on a Qubit 2.0 Fluorometer (Qubit), all according to the
respective manufacturer’s instructions. For V4 library prepa-
ration, Illumina adapters were attached to the amplicons
using the Illumina TruSeq DNA Sample Preparation v2 Kit.
Purified libraries were processed for cluster generation and
sequencing using the MiSeq system.

5.3. Filtering 16S rRNA (rDNA) Sequencing Data for Quality.
TheFASTX-Toolkit (http://hannonlab.cshl.edu/fastx toolkit)
was used to process the raw fastq read data files from Illumina
Miseq. The sequence quality criteria were as follows: (1) the
minimum acceptable phred quality score of sequences was 30
with a score of>70%of sequence bases of≥20; (2) after quality
trimming from the sequence tail, sequences of >100 bp were
retained, and they also had an acceptable phred quality score
of 30; and (3) both forward and reverse sequencing reads
which met the first and second requirements were retained
for subsequent analysis. Sequencing reads from different
samples were identified and separated according to specific
barcodes in the 5 end of the sequence (with two mismatches
allowed).

5.4. Taxonomic Assignments of Bacterial 16S rRNA Sequences.
Paired-end sequences were obtained, and their qualities were
assessed using the FASTX-Toolkit. To generate taxonomic
assignments, Bowtie2 was used to align sequencing reads
against the collection of a 16S rRNA sequences database. A
standard of 97% similarity against the database was applied.
16S rRNA sequences of bacteria were retrieved from the
SILVA ribosomal RNA sequence database [67]. Following
sequence data collection, sequences were extracted using V4
forward and reverse primers. To prevent repetitive sequence
assignments, V4 sequences from SILVA were then clustered
into several clusters by 97% similarity using UCLUST [68].
Results of the taxonomic assignment were filtered to retain
assignments with >10 sequences.

5.5. Bacterial Community Analysis. After taxonomic assign-
ment, an operational taxonomic unit (OTU) table was
generated. To normalize the sample size of all samples, a
rarefaction process was performed on the OTU table. Alpha
and beta diversities were calculated based on a rarified
OTU table. The Kolmogorov-Smirnov test and an analysis of
variance (ANOVA) test with the Bonferroni correction were
used to investigate significant differences between different
sample groups. To observe relationships between samples and
explore taxonomic associations, weighted and unweighted
UniFrac [69] distance metrics were also generated based
on the rarified OTU table. A principal coordinate analysis
(PCoA) and unsupervised clustering were performed based
on the UniFac distance matrix. To explore relationships
between clinical features and different sample groups, Spear-
man’s correlation coefficient and regression analysis were
performed. The statistical analytical process was done in
R language. The J48 machine learning method in Weka

3.6.7 [70] was used to construct a classification rule for
discriminating between obese and normal individuals.
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