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Simple Summary: In the present study we evaluated the frequency and the clinical relevance of
ESR1 mutations in high-grade serous ovarian cancer (HGSOC). Drop-off droplet digital PCR (ddPCR)
was first used to screen for ESR1 mutations in primary tumors (formalin-fixed paraffin-embedded,
FFPEs) from HGSOC patients and plasma cell-free DNA (cfDNA) samples from advanced and
metastatic ovarian cancer patients. We further used the recently developed ESR1-NAPA assay to
detect individual ESR1 mutations in drop-off ddPCR-positive samples. We report for the first time the
presence of ESR1 mutations in 15% of FFPEs and in 13.8% of plasma cfDNA samples from advanced
and metastatic ovarian cancer patients.

Abstract: ESR1 mutations have been recently associated with resistance to endocrine therapy in
metastatic breast cancer and their detection has led to the development and current evaluation of
novel, highly promising therapeutic strategies. In ovarian cancer there have been just a few reports on
the presence of ESR1 mutations. The aim of our study was to evaluate the frequency and the clinical
relevance of ESR1 mutations in high-grade serous ovarian cancer (HGSOC). Drop-off droplet digital
PCR (ddPCR) was first used to screen for ESR1 mutations in 60 primary tumors (FFPEs) from HGSOC
patients and in 80 plasma cell-free DNA (cfDNA) samples from advanced and metastatic ovarian
cancer patients. We further used our recently developed ESR1-NAPA assay to identify individual
ESR1 mutations in drop-off ddPCR-positive samples. We report for the first time the presence of ESR1
mutations in 15% of FFPEs and in 13.8% of plasma cfDNA samples from advanced and metastatic
ovarian cancer patients. To define the clinical significance of this finding, our results should be further
validated in a large and well-defined cohort of ovarian cancer patients.

Keywords: liquid biopsy; cell-free DNA; cfDNA; circulating tumor DNA; ctDNA; ESR1 mutations;
ovarian cancer; droplet digital PCR; drop-off ddPCR

1. Introduction

Ovarian cancer remains the cancer with the worst survival rates in women, as in
most cases it is diagnosed at an advanced stage [1]. It is the second most frequent ma-
lignancy, following breast cancer, in women over the age of 40, especially in developed
countries [2]. For primary disease, the customary treatment is debulking surgery accompa-
nied by first-line platinum and paclitaxel-based chemotherapy [1]. The majority of patients
respond to primary treatment but more than half of them will acquire chemo-resistance
and consequently recurrent disease [1]. Epithelial ovarian cancer is the most frequent
type, with histological and molecular heterogeneity [1,2]. Serous tumors are classified
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into high-grade serous carcinomas (HGSCs) and low-grade serous carcinomas (LGSCs) [2].
The former is a highly aggressive disease that is often diagnosed at an advanced FIGO
(International Federation of Gynecology and Obstetrics) stage [1]. Overall survival (OS)
remains low, even though there have been slight improvements in therapy [1]. There are a
few available targeted therapies for ovarian cancer, such us the anti-angiogenetic antibody
bevacizumab [3] and the PARP (poly (ADP-ribose) polymerase) inhibitors olaparib and ru-
caparib, which are FDA (Food and Drug Administration)-approved for platinum-sensitive
recurrent BRCA-mutated ovarian cancer patients [4,5].

The most commonly reported gene mutations, highly associated with epithelial ovar-
ian cancer, are for TP53, BRCA1/2, PIK3CA and KRAS genes [6]. The frequency of the
above-mentioned mutations varies among the subtypes of epithelial ovarian cancer. Muta-
tions in TP53 are present in more than 96% of ovarian cancer cases [6,7]. BRCA1/2 mutations
are associated with the majority of hereditary ovarian cancer or Lynch syndrome and the
mutation rate of BRCA1/2 increases in recurrent HGSOC [6,7]. PIK3CA mutations have
been also detected at high frequencies in ovarian clear cell carcinoma (OCCC) and en-
dometrioid ovarian cancer related to endometriosis [6]. NOTCH3 mutations have been
detected in 66% of HGSOC cases and NOTCH3 inactivation could be a potential therapeutic
approach [7]. Low-grade serous ovarian carcinomas (LGSOCs) are associated with BRAF
(especially V600E) and KRAS mutations [6–8]. LGSOCs present with a lower frequency
of somatic TP53 and BRCA1/2 mutations and are not associated with germline BRCA1/2
mutations [8]. RAD51C and RAD51D have been demonstrated to be inherited ovarian
cancer predisposition genes with mutation carriers showing HGSOC [8]. In addition, the
deleterious germline mutations BRP1 (BRCA1-interacting protein 1) are mainly associated
with the high-grade serous epithelial subtype [8,9].

Liquid biopsy, now widely recognized as an important tool for the follow-up of cancer
patients, is mainly based on the analysis of circulating tumor cells (CTCs) and circulating
tumor DNA (ctDNA), which provide a source of diagnostic or/and prognostic markers.
The clinical significance of CTCs and ctDNA in ovarian cancer has been investigated in
many studies to date [1,10–16]. We have recently reported that ESR1 is methylated in
HGSOC patients, and that there is a statistically significant concordance between ESR1
methylation in primary tumors and paired ctDNA [17]. Recently, many studies have
investigated the mutation profile of ovarian cancer patients in plasma-cfDNA in many
genes, such as TP53, PIK3CA, KRAS, BRAC1, BRAC2 and EGFR [18–23].

ESR1 mutations have emerged as a key mechanism of resistance to endocrine therapy
in patients with ER-positive metastatic breast cancer [24] and their detection is now con-
sidered to be highly promising as a prognostic and predictive biomarker in this type of
cancer [24,25]. To date, only a few studies have investigated the presence of ESR1 mutations
in endometrial and cervical cancer [26–30]. According to the cBioPortal cancer genomics
database, ESR1 mutations have been detected in 4–6% of uterine corpus endometrial carci-
noma samples [31]. As for ovarian cancer, the cBioPortal cancer genomics database includes
one ovarian serous cystadenocarcinoma study in which ESR1 mutations were detected
in 0.8% of samples [31]. In 2018, Stover et al., using targeted next-generation sequencing
(NGS), detected a Y537S ESR1 mutation in one patient with low-grade serous ovarian
cancer (LGSOC); this particular patient developed a single site of progressive disease in
an abdominal wall nodule and maintained stable low-volume peritoneal disease during
endocrine therapy for almost five years, but later presented progressive disease after a
durable response to hormonal therapy [32].

The aim of our study was to evaluate the frequency and the clinical relevance of ESR1
mutations in HGSOC (HGSOC). We applied our recently developed highly sensitive and
specific ESR1-NAPA assay for the detection of ESR1 hotspot mutations (Y537S, Y537C,
L536R, Y537N and D538G) [33] in combination with drop-off ddPCR [34] to investigate
ESR1 mutational status in primary tumors and plasma cfDNA in HGSOC patients.
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2. Materials and Methods
2.1. Clinical Samples

The study material consisted of (a) primary formalin-fixed paraffin-embedded tumor
tissues (FFPEs) from patients with HGSOC prior to any systemic treatment (n = 60) and,
as a corresponding non-cancerous control, a group of 10 normal fallopian tube FFPEs
that were obtained from women at the productive age; and (b) plasma-cfDNA samples
from 80 patients with advanced (n = 20) and metastatic ovarian cancer (n = 60), and
as a corresponding control, plasma-cfDNA samples from female healthy donors (HD,
n = 11). All patients received at least six cycles of carboplatinum AUC 5 and paclitaxel at
175 mg/m2. Patients provided written informed consent to participate in the study, which
was approved by the Local Essen Research Ethics Committee (16-6916-BO; 17-7859-BO),
and the General University Hospital of Alexandroupolis’ ethics committee (date: 25 June
2020). The available clinicopathological features are shown in Tables 1 and 2.

Table 1. Clinicopathological characteristics of the advanced HGSOC patients.

Clinicopathological Characteristics Primary FFPE Tumor Tissues (Total n = 60) n%

Histology

Serous 60 (100)

Tumor grade (G)

G1 2 (3.3)

G2 26 (43.3)

G3 32 (53.4)

FIGO stage

I 4 (6.7)

II 2 (3.3)

III 46 (76.7)

IV 8 (13.3)

Age Median age = 63

≥median age 30 (50.0)

<median age 30 (50.0)

Distant metastasis (M)

M0 51 (85.0)

M1 8 (13.3)

Unknown 1 (1.7)

Table 2. Clinicopathological characteristics of the advanced and metastatic ovarian cancer patients.

Clinicopathological Characteristics Plasma-ctDNA Samples (Total n = 80) n%

Histology

Serous 80 (100)

Tumor grade (G)

G1 28

G2-G3 43

Unknown 7

FIGO stage

I -

II 11 (13.75)

III 8 (10.00)

IV 41 (51.25)

Unknown 20 (25.00)

Age Median age = 62

≥median age 41 (51.25)
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Table 2. Cont.

Clinicopathological Characteristics Plasma-ctDNA Samples (Total n = 80) n%

<median age 39 (48.75)

Metastasis (M)

M0 20 (25.00)

M1 58 (72.50)

Unknown 2 (2.50)

Therapy

Docetaxel/Carboplatin 35 (43.75)

Carboplatin 4 (5.00)

Docetaxel 2 (2.50)

Docetaxel/Carboplatin/Avastin 18 (22.5)

Docetaxel/Avastin 2 (2.50)

Paclitaxel (Taxol)/Carboplatin/Avastin 1 (1.25)

Paclitaxel (Ovapac, Taxol, Taxoprol)/Carboplatin 8 (10.00)

Oxaliplatin/Capecitabine 1 (1.30)

Unknown 8 (10.00)

2.2. DNA Isolation

FFPEs: FFPEs containing >60% tumor cells were used for genomic DNA (gDNA)
extraction. gDNA was isolated from FFPEs with using the QIAamp® DNA FFPE Tissue Kit
50 (Qiagen®, Hilden, Germany), according to the manufacturer’s instructions. The DNA
concentration was determined using a Nanodrop ND-1000 spectrophotometer (Nanodrop
Technologies, Wilmington, NC, USA).

Plasma: 10 mL of peripheral blood in EDTA were used within 2–4 h to isolate plasma
via centrifugation at 530× g for 10 min. Following a second centrifugation at 2000× g for
10 min, plasma was transferred into 2 mL tubes and stored at −70 ◦C until use. cfDNA was
further isolated using the QIAamp Circulating Nucleic Acid Kit (Qiagen, Hilden, Germany),
as previously described [35].

In all samples, cfDNA quality was checked prior to PCR using a previously described
protocol [36]. Serial dilutions of a wild-type sample with a known DNA concentration
(Human Reference DNA Female, Agilent Technologies, Santa Clara, CA, USA), prepared
via serial 10-fold dilution in concentrations ranging from 200 ng/µL down to 0.5 ng/µL,
were used to generate a standard curve for the quantification of the gDNA concentration in
all cfDNA samples using a LightCycler z480 (Roche).

2.3. Drop-Off ddPCR for ESR1 Mutations (Y537S, Y537C, Y537N, L536R, D538G)

All cfDNA samples and controls were screened for ESR1 mutations in exon 8, including
the Y537S, Y537C, Y537N, D538G and L536R mutations, using drop-off ddPCR in a QX200
Droplet Digital PCR System (Bio-Rad Laboratories, Hercules, CA, USA), as previously
described [34].

2.4. ESR1-NAPA Assay

All samples that were found to be positive for ESR1 mutations via the ESR1 drop-off
ddPCR and all controls were further analyzed to define each individual ESR1 mutation
using our previously developed and validated ultrasensitive ESR1-NAPA assay for Y537S,
Y537C, Y537N and D538G mutations [33]. Synthetic oligonucleotide sequences for each
individual ESR1 mutation were used as positive controls. In this study, we additionally
designed, analytically validated and added the L536R mutation into our ESR1-NAPA
assay. The experimental conditions for the ESR1-L536R mutation assay were optimized
in detail regarding the annealing temperature, time and concentration of primers, buffer,
MgCl2 (magnesium chloride solution), dNTPs (deoxyribonucleotide triphosphates) and
BSA (bovine serum albumin solution) (data not shown).
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2.5. Statistical Analysis

SPSS version 28.0 (IBM® SPSS® Statistics, Endicott, NK, USA) was used for statistical
analysis. Pearson’s χ2 and Cohen’s kappa coefficient tests were used to estimate the con-
cordance between ESR1 mutations in primary tumors and paired cfDNA. The correlation
between ESR1 mutations and the clinicopathological characteristics of the patients (Table 1)
were estimated using Pearson’s χ2 and Fischer’s exact test (p-values < 0.05 were considered
statistically significant). Kaplan–Meier analysis was used for overall survival (OS) and
progression-free survival (PFS) curves.

3. Results

A schematic flowchart of our study is given in Figure 1.
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Figure 1. Schematic flowchart of the study.

3.1. Detection of ESR1 Mutations in FFPEs

To ensure the specificity of the drop-off ddPCR assay we first evaluated the mutant
allelic frequency (MAF) in 10 non-cancerous fallopian tube samples. A cut-off value was
calculated by adding the 2SD (standard deviation) to the mean of the MAF values of these
control samples. The MAF% was estimated using the program developed by Attali et al.
specifically for this type of ddPCR assay [37]. Based on the defined cut-off (1.15), we
detected the presence of ESR1 mutations in 9/60 (15%) of FFPE samples tested (Figure 2).

In this patient group the median PFS was 41 months, and the median OS was 47 months.
There was no significant correlation between OS, PFS, and ESR1 mutations in FFPEs when
our results were evaluated via Kaplan–Meier analysis (data not shown). Furthermore,
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no significant correlation between ESR1 mutations and the patients’ clinicopathological
characteristics was observed.
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mutant allele frequency).

3.2. Detection of ESR1 Mutations in Plasma-cfDNA

Using drop-off ddPCR, ESR1 mutations were detected in 11/80 (13.8%) plasma-cfDNA
samples (Figure 3), more specifically, in eight plasma-cfDNA samples from patients with
metastatic ovarian cancer (8/60, 13.3%) and in three plasma-cfDNA samples from patients
with advanced ovarian cancer (3/20, 15%). All these ESR1-mutation-positive samples
were further analyzed to define ESR1 mutations using the ESR1-NAPA assay (Figure 4).
The D538G mutation was detected in three plasma-cfDNA samples from patients with
metastatic ovarian cancer and L536R was detected in two plasma-cfDNA samples from
patients with metastatic ovarian cancer and in one plasma-cfDNA sample from one patient
with advanced ovarian cancer. It should be mentioned that in one patient with metastatic
ovarian cancer, both D538G and L536R were detected in plasma-cfDNA.
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The median PFS was 38 months and the median OS was 38 months in the group of
n = 20 patients with advanced ovarian cancer, and the median PFS was 19 months and the
median OS was 31 months in the group of n = 60 patients with metastatic ovarian cancer.
Kaplan–Meier analysis was performed to estimate the correlation between OS and PFS with
the detection of ESR1 mutations in both groups. No significant correlations were observed
among OS, PFS and ESR1 mutations for both groups (data not shown). Furthermore,
no significant correlations between ESR1 mutations and the patients’ clinicopathological
characteristics were observed.

4. Discussion

We report, for the first time, the detection of ESR1 mutations in primary tumors
(FFPEs) in plasma cfDNA samples from patients with advanced and metastatic ovarian
cancer patients using highly sensitive and specific methodologies based on drop-off ddPCR
for screening and the ESR1-NAPA assay for the definition of Y537S, Y537C, Y537N, L536R
and D538G ESR1 mutations.

To date, the detection of ESR1 mutations has been reported in cervical squamous
cell carcinoma [26] and in a patient with endometrial cancer treated with an aromatase
inhibitor [27]. It has also been reported that the presence of ESR1 mutations is associated
with worse outcomes in endometrial cancer [28]. Apart from endometrial cancer studies,
there are very few studies that show the existence of ESR1 mutations in ovarian cancer.
More specifically, in 2017, McIntyre et al. detected ESR1 Y537S mutation in one patient with
low-grade serous ovarian carcinoma, when analyzing 26 primary tumor samples using
NGS [38]. In 2018, Stover et al., using targeted NGS, detected a Y537S ESR1 mutation in one
patient with LGSOC; this particular patient developed a single site of progressive disease
in an abdominal wall nodule and maintained stable low-volume peritoneal disease during
endocrine therapy for almost five years, but later presented progressive disease after a
durable response to hormonal therapy [32]. In 2019, Gaillard et al. reported that ESR1
mutations were detected in 4.4% (24/548) of uterine endometrioid carcinomas vs. 0.2%
(1/446) of uterine serous carcinomas and 3.5% (5/144) of ovarian endometrioid carcinomas
compared to 0.3% (12/3502) of ovarian serous carcinomas, whereas in an ovarian serous
carcinoma both ESR1 Y537S and D538G mutations were detected [39]. Since then, there
have been no reports on the detection of ESR1 mutations in ovarian cancer.

In the present study, we report that, using drop-off ddPCR, ESR1 mutations were
detected in 15% of primary tumor tissues and in 13.8% of plasma-cfDNA samples tested.
More specifically, eight plasma-cfDNA samples from patients with metastatic cancer and
three plasma-cfDNA samples from patients with advanced ovarian cancer were found to
be positive for ESR1 mutations. All plasma-cfDNA samples found to be positive via ESR1
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drop-off ddPCR were further analyzed using the ESR1-NAPA assay in order to define the
specific mutation. In patients with metastatic ovarian cancer, the D538G mutation was
detected in three plasma-cfDNA samples and L536R was detected in two plasma-cfDNA
samples, whereas both D538G and L536R were detected in one patient. In patients with
advanced ovarian cancer, L536R was detected only in one plasma-cfDNA sample. Drop-off
ddPCR screens for ESR1 mutations were clustered in exon 8. Hence, any mutation in this
region could be detected in addition to Y537S, Y537C, Y537N, L536R and D538G. In this
region, additional mutations were present, such as L536H, which has been detected in
endometrial cancer [29,39].

These findings could be of clinical importance if we consider that in metastatic breast
cancer the detection of ESR1 mutations has led to the development of novel highly promis-
ing therapeutic strategies. In patients with metastatic breast cancer that are positive for
ESR1 mutations, selective estrogen receptor modulators (SERMs) and selective estrogen
receptor covalent antagonists (SERCAs) are now being evaluated as promising drugs. Laso-
foxifene is currently in Phase 2 trials for patients with ESR1 mutations and for patients after
progression on endocrine therapy and CDK4/6 inhibition [40]. The FDA has granted a
fast-track designation to lasofoxifene for use as a treatment of female patients with estrogen
receptor (ER)-positive, HER2-negative metastatic breast cancer who harbor ESR1 mutations.
Bazedoxifene, a SERM/SERD hybrid, which has been approved for use in postmenopausal
hot flashes and osteoporosis, is now in a Phase 2 trial for patients after progression on
endocrine therapy (NCT02448771) [40]. Fanning et al. reported that bazedoxifene pos-
sessed improved inhibitory potency against the Y537S and D538G mutants compared to
tamoxifen and had additional inhibitory activity in combination with the CDK4/6 inhibitor
palbociclib [41]. In parallel, the efficacy of H3B-6545, a drug optimized from the SERCA
class, against ESR1 mutations was demonstrated in patients with metastatic breast cancer
previously treated with endocrine therapy and CDK4/6i [42]. H3B-6545 is now in a Phase 2
trial for patients after progression on endocrine therapy and CDK4/6i (NCT03250676) [40].
The combined analysis of SoFEA and EFFECT showed that patients with ESR1 mutations
detected in plasma-cfDNA samples [43] had shorter PFS and OS when treated with exemes-
tane therapy, compared with fulvestrant. In the PALOMA-3 trial, patients on fulvestrant
and a placebo tended to have poorer PFS in the presence of mutations compared to the
absence of mutations [44]. O’Leary et al. reported that ESR1 Y537S mutation promotes
resistance to fulvestrant and that acquired mutations from fulvestrant are a major driver of
resistance to fulvestrant and palbociclib combination therapy [45]. In the phase 3 PADA-1
trial presented at the 2021 San Antonio Breast Cancer Symposium, it was observed that
when switching from an aromatase inhibitor plus palbociclib to fulvestrant and palbociclib
upon early identification of the ESR1 mutation in plasma—before disease progression—the
median PFS was doubled. This trial has also shown that ESR1 mutations are rarely detected
in the plasma-cfDNA of ER + HER2− metastatic breast cancer patients with no overt
resistance to aromatase inhibitors and that the detection of ESR1 mutations was associated
with a significantly shorter PFS, suggesting that the presence of the ESR1 mutation at
baseline could accelerate the outset of resistance to AI-palbociclib [46,47]. Novel thera-
pies could include possible strategies to overcome the endocrine resistance induced by
ESR1 mutations.

5. Conclusions

To our knowledge, this is the first time that the presence of ESR1 mutations has
been reported in primary tumors and plasma-cfDNA from HGSOC patients. The clinical
significance of this finding should be examined prospectively in a large group of ovarian
cancer patients.
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