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ABSTRACT

Background: Pirarubicin (THP) is an anthracycline antibiotic used to treat various malignancies in
humans. The clinical usefulness of THP is unfortunately limited by its dose-related cardiotoxicity. Gin-
senoside F1 (GF1) is a metabolite formed when the ginsenosides Re and Rg1 are hydrolyzed. However,
the protective effects and underlying mechanisms of GF1 on THP-induced cardiotoxicity remain unclear.
Methods: We investigated the anti-apoptotic and anti-oxidative stress effects of GF1 on an in vitro model,
using H9c2 cells stimulated by THP, plus trigonelline or AKT inhibitor imidazoquinoxaline (IMQ), as well
as an in vivo model using THP-induced cardiotoxicity in rats. Using an enzyme-linked immunosorbent
test, the levels of malondialdehyde (MDA), brain natriuretic peptide (BNP), creatine kinase (CK-MB),
cardiac troponin (c-TnT), lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione
(GSH) were determined. Nuclear factor (erythroid-derived2)-like 2 (Nrf2) and the expression of Nrf2
target genes, including heme oxygenase-1 (HO-1), glutathione-S-transferase (Gst), glutamate-cysteine
ligase modifier subunit (GCLM), and expression levels of AKT/Bcl-2 signaling pathway proteins were
detected using Western blot analysis.
Results: THP-induced myocardial histopathological damage, electrocardiogram (ECG) abnormalities, and
cardiac dysfunction were reduced in vivo by GF1. GF1 also decreased MDA, BNP, CK-MB, ¢-TnT, and LDH
levels in the serum, while raising SOD and GSH levels. GF1 boosted Nrf2 nuclear translocation and Nrf2
target gene expression, including HO-1, Gst, and GCLM. Furthermore, GF1 regulated apoptosis by acti-
vating AKT/Bcl-2 signaling pathways. Employing Nrf2 inhibitor trigonelline and AKT inhibitor IMQ
revealed that GF1 lacked antioxidant and anti-apoptotic effects.
Conclusion: In conclusion, GF1 was found to alleviate THP-induced cardiotoxicity via modulating Nrf2
and AKT/Bcl-2 signaling pathways, ultimately alleviating myocardial oxidative stress and apoptosis.
© 2022 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Ginsenoside F1 (GF1) is a metabolite formed when the ginse-
nosides Re and Rg1 are hydrolyzed [5]. Recent research suggests

Because of its high efficiency and broad-spectrum, pirarubicin
(THP), an anthracycline antibiotic, is commonly utilized in clinical
practice to treat malignancies. [1]. However, it has been determined
to cause toxicity [2], limiting its medical use [3]. The most serious
toxicity of THP is cardiotoxicity, which worsens with increasing
medication doses [4].
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that GF1 has potent anti-aging, anti-oxidation, and anti-cancer
properties [6]. Furthermore, it's great that we were able to extract
a large amount of GF1 through ginsenoside Rg1 bioconversion,
which encourages GF1 research [5,7].

Nrf2 is a transcription factor activated by oxidative stress that
increases antioxidant and detoxifying enzymes to combat ROS and
toxic metabolites [8]. In normal conditions, Nrf2 is anchored in the
cytoplasm [9]. When Nrf2 translocates into the nucleus in response
to oxidative stress, it regulates the expression stages of several anti-
oxidative genes and enzymes [10,11]. Apoptosis plays an important
role in the pathogenesis of THP-induced cardiotoxicity via acti-
vating caspases [12]. Many proteins, such as caspases, promote
apoptosis, whereas Bcl-2 family proteins, such as Bcl-2, suppress
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apoptosis [13]. When Bcl-2 expression is reduced, cytochrome c
(cyt-c) is released through the mitochondrial membrane, resulting
in apoptosome formation [14,15]. The apoptosome turns to activate
the effector caspase 3. In addition, protein kinase B (AKT) is a
critical molecule in THP-induced apoptosis. AKT phosphorylation
can activate Bcl-2 and protect cardiomyocytes from apoptosis [16].

Therefore, this work aimed to investigate the defensive impact
of GF1 against THP-induced cardiotoxicity and determine whether
or not this effect was mediated by adjusting Nrf2 and AKT/Bcl-2
signaling pathways, ultimately regulating myocardial oxidative
stress and apoptosis.

2. Materials and methods
2.1. Chemicals and reagents

Ginsenoside F1 (GF1, purity>98.0%) was obtained from Chengdu
GELIPU Biotechnology Co,., Ltd (Chengdu, China). HAN HUI PHAR-
MACEUTICALS Co,., Ltd. (Jiangsu, China) provided the pirarubicin
(THP). Jiangsu Aosaikang Pharmaceutical Co,., Ltd. (Jiangsu, China)
provided the dexrazoxane (DZR). Shanghai Meixuan Biological
Science and Technology Ltd (Shanghai, China) provided test kits for
BNP, CK-MB, and c-TnT. Commercial assay kits for hematoxylin-
eosin (HE) dye, MDA, LDH, SOD, and GSH kits were obtained from
Nanjing Jian Cheng Biological Engineering Research Institute
(Nanjing, China). Anti-AKT, anti-p-AKT, anti-Bcl-2, anti-caspase 3,
anti-pro-caspase 9, anti-GAPDH, anti-Bax, anti-Nrf2, anti-Lamin B,
anti-Keap1, anti—HO-1, anti-Gst, and anti-GCLM antibodies were
purchased from Abcam (MA, USA). Imidazoquinoxaline (AKT in-
hibitor, IMQ) and nuclear and cytoplasmic Protein Extraction Kit
were obtained from Beyotime Institute of Biotechnology (Jiangsu,
China). Trigonelline (Nrf2 inhibitor) was supplied by MedChe-
mExpress (Shanghai, China). Methyl thiazolyl tetrazolium (MTT,
A100793) was purchased from Sangon Biotech (Shanghai) Co,., Ltd.
All other reagents and chemicals, unless indicated, were obtained
from Beijing Chemical Works (Beijing, China).

2.2. Animals and experimental protocol

This study was approved by the Animal Care and Ethics Com-
mittee of Jilin University (Changchun, China; Grant no. 20170503)
and was performed following the National Institutes of Health
Guidelines for the Care and Use of Laboratory Animals. The Animal
Experiment Center of Jilin University provided 40 male Wistar rats
of clean grade, weighing 200 + 20 g. The rats were housed in a
typical environment with a temperature of 22 + 3°C, a humidity of
50 + 10%, and 12 h of light/dark cycles. All experimental animals
were euthanized by inhalation of CO, (30% volume displacement
per minute).

After adaptive breeding for one week, the rats were randomly
divided into five groups (n=8): (1) Control (CON), (2) THP (3 mg/kg/
weekly), (3) THP + Dexrazoxane (DZR) (30 mg/kg/weekly), (4)
THP + low-dose GF1L (25 mg/kg/d), and (5) THP + high-dose GF1H
(50 mg/kg/d). GF1-treated rats were given varying doses of GF1
every day for a week before receiving THP injections. For a week,
THP and DZR-treated rats were given sodium carboxymethylcel-
lulose (CMC-Na) via gavage. In addition, a weekly dose of 3 mg/kg
THP was administered for six weeks through caudal vein injection
to develop the cardiotoxicity model [20]. DZR (30 mg/kg) was
subsequently given to rats through intraperitoneal injection once a
week for six weeks. In the control group, rats were given CMC-Na
via gavage for seven days, then saline via caudal vein injection for
six weeks.
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2.3. Detection of hemodynamic indexes and electrocardiogram

Pentobarbital sodium intraperitoneal injection was used to
anesthetize the rats. A plastic cannula with an inner diameter of 1
mm was placed into the left ventricle of rats and attached to the BL-
420E biological function experiment system after the right com-
mon carotid artery was fixed and separated [4]. We measured the
left ventricular systolic pressure (LVSP), left ventricular end-
diastolic pressure (LVEDP), and the maximal rate of change in left
ventricular pressure (+dp/dtmax). The rat ECG was examined using
the conventional limb II

2.4. Assessment of biochemical parameters

Blood samples were taken from the abdominal aorta and
centrifuged at 3000 rpm for 15 min after being left to stand for six
hours. Following that, serum levels of BNP, CK-MB, c-TnT, MDA,
LDH, GSH, and SOD were measured using ELISA detection Kits, as
directed by the manufacturer.

2.5. Hematoxylin-eosin (HE) staining

The cardiac samples were fixed with 10% formalin before
paraffin embedding. Each group's paraffin slices were stained with
HE solution. At 200x magnification, HE-stained pictures were
viewed using a Nikon Eclipse 80i microscope (Nikon, Chiyoda,
Japan).

2.6. Immunohistochemistry (IHC) and immunofluorescence (IF)
analysis

During IHC staining, paraffin slices were deparaffinized, hy-
drated, and then incubated at 4°C in a humidified chamber over-
night [17], with primary antibodies against cytochrome c (cyt-c)
(1:50) and phospho-AKT (p-AKT) (1:100). They were then incu-
bated with horseradish peroxidase-conjugated secondary anti-
bodies at 25 °C for 20 min and stained with hematoxylin for 8 min.

During immunofluorescence staining, cardiac sections were
deparaffinized, hydrated, and then incubated at 4 °C in a humidified
chamber overnight, with primary antibody against caspase 3, fol-
lowed by incubation with secondary antibodies at 25 °C for 20 min
[17]. The nucleus was stained with DAPI.

IHC and IF stained images were visualized using a Nikon Eclipse
80i microscope (Nikon, Chiyoda, Japan) at 200x magnification, and
the intensity of positive cell expression was quantified with Image-
Pro Plus 6.0.

2.7. Separation of nucleus and cytoplasm

Under low osmotic pressure conditions, the cells were fully
swelled, the cell membrane was destroyed, cytoplasmic proteins
were released, and then the nucleus pellet was obtained by
centrifugation [18]. Finally, a high-salt nucleoprotein extraction
reagent was used to extract the nucleoproteins.

2.8. Cell culture

Rat cardiac myocytes (H9c2) were obtained from the American
Type Culture Collection. H9c2 cells were grown in DMEM (con-
taining 4.5 mg/mL of glucose), supplemented with 10% foetal
bovine serum. Cells were cultured in 5% CO, at 37 °C, and the
culture medium was replaced every 2 to 3 days.
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2.9. Cytotoxicity of GF1 and THP-induced cell injury/GF1 inhibits
THP-induced cell injury

The cells were seeded into 96-well plates at a density of 5 x 10*
cells/mL earlier than therapy, with distinct concentrations of GF1
(0,10, 20, 40, 60, and 80 uM) or THP (1, 3, 5, 7, and 9 uM). The cells in
CON were handled with equal quantities of serum-free medium.
Furthermore, cell viability was determined using the MTT test after
6,12, 24, and 36 h incubation.

H9c2 cells were pretreated with different doses of GF1 (10, 15,
20, 25, 30, 40, and 60 uM) for 30 minutes, before being challenged
with THP (5 uM). Equal amounts of serum-free media were given to
the cells in CON. Finally, cell viabilities were detected using the MTT
assay.

2.10. Cell treatments

H9c2 cells were divided into five groups. Control group (CON):
in which cells were cultured in serum-free DMEM high-glycemic
culture medium; THP group (THP): cells were cultured in serum-
free DMEM high-glycemic culture medium containing 5 uM THP;
GF1 group (GF1): cells were treated with 40 uM GF1 30 min before
addition of 5 uM THP; AKT inhibitor group (imidazoquinoxaline,
IMQ) or Nrf2 inhibitor group (trigonelline): cells were treated with
1 uM IMQ or 150 puM trigonelline 30 min before treatment with 5
uM THP. In the GF1+ AKT inhibitor group (IMQ) or Nrf2 inhibitor
group (trigonelline), serum-free DMEM high-glycemic culture
medium containing 40 uM GF1 and 1 pM IMQ or 150 uM trig-
onelline were added 30 min before addition of 5 uM THP. Cells in
the various groups were incubated for 24 h.

2.11. Western blotting analysis

Using sodium dodecyl sulfate-polyacrylamide gel electropho-
resis (SDS-PAGE), equivalent amounts of protein samples were
separated and transferred to a PVDF membrane [17]. The mem-
branes were blocked with 5% milk in Tris-buffered saline (TBS),
then incubated with the appropriate primary antibodies against
AKT (1:1000), p-AKT (1:1000), pro-caspase 9 (1:1000), pro-caspase
3 (1:1000), cleaved-caspase 3 (1:1000), Bax (1:1000), Bcl-2
(1:1000), Nrf2 (1:500), Keapl (1:1000), HO-1 (1:1000), Gst
(1:1000), and GCLM (1:1000). The membranes were incubated at 4
°C overnight and rinsed three times before being incubated with
secondary antibodies (1:5000) for 60 min, and enhanced chem-
iluminescence reagents were used to visualize the protein bands. A
gel imaging system was used to examine the levels of protein
expression (Alpha Imager2200, Alpha Innotech Corporation, San
Leandro, CA, USA).

2.12. Statistical analysis

Differences in gray values of bands produced by Western blot-
ting were analyzed using Image ] software. The data were
expressed using mean =+ SD, and all data were compared with SPSS
16.0 software, using one-way ANOVA and Duncan's Multiple Range
Test. P < 0.05 denotes a statistically significant outcome.

3. Results
3.1. GF1 ameliorated rat body weight

As indicated in Table S1, rats in the THP group reveal significant
weight loss compared with the CON group. Compared with THP

group, the weight of rats in GF1L and GF1H groups significantly
increased. In terms of relieving weight loss, GF1H group

108

Journal of Ginseng Research 47 (2023) 106—116

outperformed Dexrazoxane (DZR) group, while GF1L group had no
statistically significant difference from DZR group.

3.2. Effects of GF1 on THP-induced hemodynamics and
electrocardiograph

Compared with CON group, THP group had significantly lower
LVSP and +dp/dtmax values, but the LVEDP value was significantly
higher. Compared with the THP group, the DZR and GF1 groups
have lower LVEDP values, whereas LVSP and +dp/dtmax signifi-
cantly increased. Compared with the DZR group, LVSP levels in rats
in the GF1L group significantly increased; the LVEDP of rats in the
GF1H group decreased, while LVSP and +dp/dtmax significantly
increased (Fig. 1A—D).

Compared with CON group, QRS complex voltage of THP group
was significantly reduced, Q-T interval of rats was prolonged, and
heart rate (HR) was significantly weakened. Compared with THP
group, QRS complex voltage and HR of rats in DZR and GF1 groups
increased significantly, but the Q-T interval was shortened. The
GF1H group outperformed DZR group on various electrocardiogram
indicators (Fig. 1E-G).

3.3. Effects of GF1 on THP-induced myocardial enzymes

Myocardial enzymes are commonly used indicators in myocar-
dial injury (Fig. 1TH—K). The serum LDH, CKMB, c-TnT, and BNP
levels of rats in the THP group are significantly higher than in the
CON group. Compared with the THP group, DZR and GF1 rats had
significantly reduced LDH, CKMB, c-TnT, and BNP content. The
GF1H group reveals a better reduction of LDH, c-TnT, and BNP
content than DZR rats.

3.4. Effects of GF1 on THP-induced oxidative stress in rats heart
tissue

Compared with the CON group, the THP group exhibits a
decrease in rat serum SOD and GSH levels and an increase in MDA
content. Compared with the THP group, DZR, GF1L, and GF1H
groups had significantly increased SOD and GSH levels and reduced
MDA content (Fig. 2A—C).

The expression levels of nuclear Nrf2, HO-1, Gst, and GCLM in
THP group were significantly lower than in the CON group, while
those of cytoplasmic Nrf2 and Keapl were significantly higher.
Nuclear Nrf2, HO-1, Gst, and GCLM expression levels in DZR, GF1L,
and GF1H groups were significantly higher than in the THP group;
however, cytoplasmic Nrf2 and Keapl expression levels were
significantly lower. Compared with the DZR group, the expression
level of nuclear Nrf2 was higher in the GFIL group, and the
expression level of nuclear Nrf2, HO-1, Gst, and GCLM increased
significantly in the GF1H group (Fig. 2D—]J).

3.5. Effect of GF1 on THP-induced myocardial histopathological
change

The pathological changes in myocardial tissue are illustrated in
Fig. 2K and L. HE staining reveals that the myocardial tissue of the
CON group is normal, with no visible hypertrophy of myocardial
cells or inflammatory cell infiltration. After THP treatment, rat
myocardial fibers are arranged irregularly, myocardial cells are
edematous, gaps are significantly widened, and cytoplasmic lysis
can produce vacuolar degeneration and inflammatory cell infiltra-
tion. All these changes indicate severe myocardial damage. After
GF1 and DZR intervention, the intercellular space is reduced, the
arrangement becomes more regular, and vacuole-like degeneration
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Fig. 1. GF1's effects on THP-induced hemodynamic indices, electrocardiograms, and serum cardiac enzymes in rats. (A) Left ventricular systolic pressure (LVSP); (B) left ventricular
end-diastolic pressure (LVEDP); (C and D) maximal left ventricular pressure change (+dp/dtmax); (E) cardiac QRS complex; (F) representative cardiac Q-T interval; (G) repre-
sentative heart rate; (H) representative levels of lactate dehydrogenase (LDH); (I) representative levels of creatine kinase MB (CK-MB); (J) representative cardiac troponin T levels (c-
TnT); and (K) representative brain natriuretic peptide levels (BNP). *P < 0.05 in comparison to the CON group; *P < 0.05 in comparison to the THP group; 2P < 0.05 in comparison to
the DZR group. Each data value represents mean + SD of in each group (n =6).

and GF1H groups are significantly reduced. The effect of reducing
the expression level of caspase 3 in the GF1H group outperforms
that in the DZR group (Fig. 3E and F).

is reduced in a scattered distribution. The GF1H group has the most
significant improvement in reducing vacuole degeneration.

3.6. GF1 attenuates the expression of apoptosis-related proteins
3.7. Effect of GF1 on AKT/ Bcl-2 signaling pathway in rats heart
The CON group has very low levels of cyt-c and p-AKT expres- tissue
sion. After THP exposure, the positive expression of cyt-c is obvious,
but p-AKT expression is further reduced. Compared with THP
group, the positive expression of cyt-c was significantly reduced in
GF1L and GF1H groups, and p-AKT expression was significantly
increased. The GF1H group has a better effect on lowering cyt-c
protein level and increasing p-AKT protein level than the DZR
group (Fig. 3A—D).
The level of caspase 3 protein in the CON group is low. After THP
exposure, the expression of caspase 3 protein is evident. Compared
with the THP group, the expression levels of caspase 3 in the GF1L

Compared with the CON group, the expression levels of p-AKT/
AKT, pro-caspase 9, pro-caspase 3, and Bcl-2/Bax ratio in the THP
group are considerably lower, but the level of cleaved-caspase 3 is
significantly higher. In the DZR, GF1L, and GF1H groups, the
expression levels of p-AKT/AKT, pro-caspase 9, pro-caspase 3, and
Bcl-2/Bax ratio are considerably higher than in the THP group,
whereas the level of cleaved-caspase 3 is significantly lower. The
expression levels of pro-caspase 3 and cleaved-caspase 3 in the
GF1L group are considerably higher than in the DZR group; the
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expression levels of p-AKT/AKT and pro-caspase 3 in the GF1H
group are significantly higher than those in the DZR group
(Fig. 3G—L).

3.8. GF1 reduces THP-induced H9c2 cells damage

At time points 6, 12, 24, and 36 h, cell viability in each group did
not change significantly, indicating that GF1 has no toxic effect on

H9c2 cells (Fig. 4A). The screening was continued to determine the
optimal concentration and time for THP-induced damage to H9c2
cells. Compared with the CON group, cell survival rates at different
time points were higher than 70% after treatment with 1 and 3 pM
THP; treatment with 7 and 9 uM THP for 6 h and after 12 h revealed
a cell survival rate higher than 70%. After 24 h and 36 h, the cell
survival rate was lower than 50%, and the cell survival rate was too
low; only the survival rate of H9c2 cells treated with 5 uM THP for
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Plus 6.0 software was used to assess the immunohistochemical intensity of p-AKT expression; (E) Representative caspase 3 immunofluorescence images in rat cardiac tissue; (F)
Image-Pro Plus 6.0 software was used to evaluate the fluorescence intensity of caspase 3; (G) Protein expression of the p-AKT, Bcl-2, Bax, and caspase families; GAPDH was used as
an internal control; (H) p-AKT and AKT protein ratios; (I-K) representative caspase family and GAPDH ratios; (L) Bcl-2 and Bax ratios. *P < 0.05 in comparison to the CON group; #P
<0.05 in comparison to the THP group; 2P <0.05 in comparison to the DZR group. Each data value represents mean + SD of in each group (n =3).
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24 h was higher than 60%, while that of H9c2 cells treated with 5
WM THP for 36 h was less than 50%, and the cell survival rate was too
low. Therefore, the optimal concentration and time of THP-induced
H9c2 cell injury model were selected as 5 M and 24 h, respectively
(Fig. 4B).

Furthermore, the viability of H9c2 cells treated with 5 uM THP
was once drastically reduced compared to the CON group. However,
GF1 at the doses of 40 and 60 uM considerably elevated the via-
bilities of H9c2 cells compared to the THP group (Fig. 4C). Therefore,
an GF1 concentration of 40 pM was determined to reduce the
damage in THP-induced H9c2 cells.
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3.9. GF1 reduces THP-induced apoptosis through AKT/Bcl-2
signaling pathway in H9c2 cells

The expression levels of p-AKT/AKT, pro-caspase 9, pro-caspase
3, and Bcl-2/Bax ratio in the THP group are considerably lower than
in the CON group, but the level of cleaved-caspase 3 is significantly
higher. The expression levels of p-AKT/AKT, pro-caspase 9, pro-
caspase 3, and the Bcl-2/Bax ratio in the IMQ group are consider-
ably lower than in the THP group, while the level of cleaved-
caspase 3 is significantly higher, whereas the GF1 group had the
opposite outcome. The expression levels of p-AKT/AKT, pro-caspase
9, pro-caspase 3, and the Bcl-2/Bax ratio in the GF1+IMQ group are
considerably lower than in the GF1 group, but the level of cleaved-
caspase 3 is significantly higher (Fig. 4 D—I).
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Fig. 5. THP-induced oxidative stress in H9c2 cells and the effects of GF1. (A) Representative levels of superoxide dismutase (SOD); (B) representative levels of malondialdehyde
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cytosolic Nrf2 and GAPDH protein ratios; and (G-]) representative cytosolic keap1, HO-1, Gst, and GCLM and GAPDH protein ratios. *P < 0.05 in comparison to CON group; *P <0.05
in comparison to THP group; 2P <0.05 in comparison to GF1 group. Each data value represents mean + SD of in each group (n =3).

3.10. GF1 reduces THP-induced oxidative stress in H9c2 cells group decreased SOD and GSH levels while increasing MDA content
(Fig. 5A—C).
Compared with the CON group, the THP group significantly The expression levels of nuclear Nrf2, HO-1, Gst, and GCLM in

increased MDA content while decreasing SOD and GSH levels in the THP group are significantly lower than in the CON group, while
H9c2 cells. Compared with the THP group, the trigonelline group those of cytoplasmic Nrf2 and Keap1 are significantly higher. The
markedly increased MDA content and reduced SOD and GSH levels; expression levels of nuclear Nrf2, Gst, and GCLM in the trigonelline
GF1 significantly decreased MDA content and increased SOD and group are significantly lower than in the THP group, while that of
GSH levels. Compared with the GF1 group, the GF1 + trigonelline cytoplasmic Nrf2 is significantly higher, although the levels of HO-1

and Keap1 are unchanged. Nuclear Nrf2, HO-1, Gst, and GCLM
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Fig. 6. Scheme summarizes GF1 against THP-induced myocardial toxicity via activation Nrf2 and AKT/Bcl-2 signaling pathways to inhibit oxidative stress and apoptosis.

expression levels in the GF1 group are considerably higher than in
the THP group, but cytoplasmic Nrf2 and Keap1 expression levels
are significantly lower. Nuclear Nrf2, HO-1, Gst, and GCLM
expression levels are lower in the GF1 + trigonelline group
compared to the GF1 group, but cytoplasmic Nrf2 and Keapl
expression levels are higher (Fig. 5D—]).

4. Discussion

Cardiotoxicity is the most serious toxicity of THP and is often
progressive and irreversible, eventually resulting in heart failure
and death [3,19]. As a result, it is particularly important to actively
prevent and monitor THP-induced cardiotoxicity.

We measured body weight, hemodynamic indicators, electro-
cardiogram, and the content of related myocardial enzymes. Our
group has adopted a regimen of a single tail vein injection of 3 mg/
kg THP once a week for six weeks, accurately replicating a rat model
of THP-induced myocardial injury. THP entered the body of rats,
causing weight loss and impaired cardiac function. Shi et alet al.
found that after intravenous injection of 3 mg/kg THP for eight
weeks, a series of systemic and cardiac toxicity changes occurred in
SD rats, including abnormal body weight and food intake, adverse
changes in echocardiography and electrocardiogram readings, and
cardiac tissue structure damage [20]. Following GF1 treatment, the
rats' cardiac function was partially restored, and their weight
increased. The results indicate that GF1 treatment can significantly
reduce the changes in THP-induced cardiac function. Zhang et al.
found that GF1 administration increases cerebral micro vessel
density and improves focal blood perfusion in ischemic regions of
rats subjected to MCAO [21]. The above experiments show that GF1
has a therapeutic effect on cardiovascular and cerebrovascular
diseases.
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Additionally, HE results reveal that GF1 can significantly atten-
uate THP-induced structural changes in cardiomyocytes. Cardiac
markers, such as c-TnT, LDH, CK-MB, and BNP, have been employed
clinically to diagnose myocardial necrosis. Zhang et al. showed that
DOX caused a significant increase in intracellular space, cyto-
plasmic vacuolation, and myocardial cell disorders, with plasma
BNP, CK-MB, CTnT, and LDH activities significantly elevated [16]. His
findings are consistent with the experimental findings of this study,
whereby GF1 administration decreased serum marker levels and
reversed these changes in cardiac morphology. At the same time, it
has been found that GF1 also has anti-atherosclerosis pharmaco-
logical effects. Qin et al. found that GF1-treated mice had a signif-
icantly reduced lesion size compared with model group mice [22].

Currently, the mechanism of anthracycline-induced cardiotox-
icity is mainly based on the oxidative stress theory and its depen-
dent molecular pathways [23]. The heart tissue has a shallow
content of antioxidant enzymes, has a limited ability to resist
oxidation, and is more sensitive to ROS [24]. Elevated serum MDA,
diminished serum SOD, and GSH levels have been determined in
this study, indicating that THP can cause oxidative stress. Wang
et al. also showed that treatment with pirarubicin alone signifi-
cantly decreased serum SOD levels compared to the normal control
group [4]. In our investigation, GF1 at a dose of 25—50 mg/kg, or 40
M, significantly reduced serum MDA and increased serum SOD and
GSH levels, demonstrating that GF1 has antioxidant characteristics.
Furthermore, GF1 has been shown to have notable antioxidant ef-
fects in various cardiac tissue disease models. Wang et al. suggested
that GF1 attenuated oxidative stress-induced mitochondrial dam-
age in cardiomyocytes by activating SIRT1 [25].

By regulating oxidative stress, Nrf2 is thought to act as an
endogenous suppressor of THP-induced cardiac toxicity [26]. Zhao
et al. showed DOX-induced cardiotoxicity by promoting myocardial
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oxidative stress via targeting Nrf2 and Sirt2 [27]. By activating the
Keap1/Nrf2/ARE antioxidant pathway, GF1 substantially reduces
triptolide-induced cytotoxicity in HL-7702 cells [28]. In this
investigation, we discovered that THP decreased Nrf2 expression in
the nucleus in both in vitro and in vivo experiments. Furthermore,
we discovered that GF1 increased Nrf2 nuclear translocation,
influencing the expression levels of HO-1, Gst, GCLM, and Keap1, as
well as reducing THP-induced cardiac oxidative stress. The afore-
said GF1 actions are diminished when trigonelline (an Nrf2 inhib-
itor) is added.

Bcl-2, an anti-apoptotic protein and a regulator of apoptotic
genes, primarily regulates apoptosis via mitochondria [29]. When
the outer mitochondrial membrane permeability changes, cyt-c is
released into the cytoplasm, apoptosis-inducing factors are
released, and the caspase cascade response is initiated [30]. AKT is
at the center of multiple pathways. AKT can mediate apoptosis and
phosphorylate Bax, a member of the Bc1-2 family to regulate
apoptosis [31]. Wang et al. observed that compared with the control
group, the THP group had significantly lower p-PI3K, p-Akt, and p-
mTOR [32]. In our study, in comparison to the CON group, THP
treatment increased cytoplasmic cyt-c levels and cleaved-caspase 3
protein expression while lowering Bcl-2/Bax and p-AKT/AKT ratios.
Compared to the THP-only group, GF1 treatment dramatically
increased Bcl-2/Bax and p-AKT/AKT ratios, as well as pro-caspase 9
and pro-caspase 3, while lowering cyt-c in the cytoplasm and
cleaved-caspase 3 levels. The aforesaid GF1 actions are diminished
when imidazoquinoxaline (an AKT inhibitor) is added. Lee et al.
investigated that protection from ultraviolet-B-induced apoptosis
is tightly correlated with GF1 mediated inhibition of ultraviolet-B-
induced downregulation of Bcl-2 and Brn-3a expression [33]. These
experiments indicate that the anti-apoptotic effect of GF1 is related
to the AKT/Bcl-2 signaling pathway.

Finally, our findings showed that GF1 significantly reduced THP-
induced cardiotoxicity by modifying Nrf2 and AKT/Bcl-2 signaling
pathways, reducing myocardial oxidative stress and apoptosis
(Fig. 6). Indeed, more research into the underlying processes and
clinical applications of this natural substance against THP-induced
cardiotoxicity is needed.
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