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Abstract: Genes involved in the same cellular process are often clustered together in an operon
whose expression is controlled by an upstream promoter. Generally, the activity of the promoter is
strictly controlled. However, spurious transcription undermines this strict regulation, particularly
affecting large operons. The negative effects of spurious transcription can be mitigated by the
presence of multiple terminators inside the operon, in combination with an antitermination system.
Antitermination systems modify the transcription elongation complexes and enable them to bypass
terminators. Bacterial conjugation is the process by which a conjugative DNA element is transferred
from a donor to a recipient cell. Conjugation involves many genes that are mostly organized in
one or a few large operons. It has recently been shown that many conjugation operons present on
plasmids replicating in Gram-positive bacteria possess a bipartite antitermination system that allows
not only many terminators inside the conjugation operon to be bypassed, but also the differential
expression of a subset of genes. Here, we show that some conjugation operons on plasmids belonging
to the Inc18 family of Gram-positive broad host-range plasmids do not possess an antitermination
system, suggesting that the absence of an antitermination system may have advantages. The possible
(dis)advantages of conjugation operons possessing (or not) an antitermination system are discussed.

Keywords: conjugation; antibiotic resistance; Gram-positive bacteria; antitermination; pLS20; pIP501;
Bacillus subtilis; Enterococcus faecalis

1. Introduction

Conjugation is a horizontal gene transfer (HGT) process by which a conjugative
element (CE) is transferred from a donor to a recipient cell through a channel connecting the
two cells. CEs can be integrated in bacterial chromosomes, which are named integrative and
conjugative elements, or on plasmids, named conjugative plasmids (for review, see [1–3]).
CEs often carry antibiotic resistance (AR), toxin and/or virulence genes [4]. Conjugation is
the main HGT route responsible for the distribution of these pernicious genes [5]. AR, in
particular, causes much damage, being responsible for tens of thousands of human deaths
annually as well as large economic losses [6]. In addition to CEs, some Gram-positive
(G+) bacteria also harbor small plasmids that encode AR genes and a relaxase gene, which
allows the plasmid to generate a single-stranded DNA. When present alone in a cell, these
small plasmids are unable to transfer horizontally to other cells. However, in the presence
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of a conjugative plasmid, the ssDNA can be transported into another cell by exploiting the
connecting channel generated by the co-residing conjugative plasmid in a process named
mobilization [7,8]. Thus, CEs can horizontally spread not only AR and other pernicious
genes located on the CEs, but also those on mobilizable plasmids via mobilization. A
detailed understanding of the different conjugation steps is a prerequisite to developing
strategies or drugs that can impede the conjugation-mediated spread of AR and other
pernicious genes.

CEs contain all of the genes necessary for carrying out the four principal steps of
conjugation: firstly, the recipient cell selection and attachment; secondly, the generation
of the connecting channel that is a Type IV secretion system; thirdly, the processing of
the DNA to generate an ssDNA copy of the CE, which in almost all conjugative systems
is the DNA form that is transferred; and finally, transport of the ssDNA through the
channel into the recipient cell, and subsequent conversion of the ss into double-stranded
DNA. So far, most conjugation studies are based on CEs from Gram-negative (G-) bacteria.
Among the best-studied CEs of G+ bacteria are the conjugative plasmids pIP501 from
Streptococcus agalactiae, pCF10 from Enterococcus faecalis, pCW3 from Clostridium perfringens
and pLS20 from Bacillus subtilis [9–16].

The expression of the multiple genes involved in the conjugation process poses a high
energetic burden on the cell. In addition, conjugation has large impacts on the host cell and
on the plasmid itself; for example, the conjugation proteins alter the surface and membrane
characteristics of the host, and the replication mode of the plasmid changes from the theta
to the rolling circle type of replication to generate the ssDNA form that is transferred. These
are probably the reasons why, in most cases, the conjugation genes are clustered together in
one operon that is preceded by a promoter whose activity is strictly controlled [11,15–17].
However, this organization also has disadvantages. For instance, it is very likely that proper
functioning of the conjugation process requires (i) different levels of proteins encoded by
the different genes, and (ii) temporal regulation of expression of proteins involved in the
different stages. In part, temporal expression may be achieved by the order of genes within
an operon, and the level of proteins can be modulated by translation efficiency and mRNA
stability. However, these fluctuations are limited when compared to the wide range in
expression levels that can be achieved by placing genes under the control of promoters with
different strengths. Another drawback of organizing genes in operon structures, especially
large ones, is spurious transcription, which is the generation of unintended RNA transcripts
due to transcription initiation events at non-promoter sites (aka cryptic promoters) [18–20].
Such spurious transcription occurs on a large scale in bacteria [21]. In the case of operons,
it undermines the strict control of the main promoter, resulting in the undesired expression
of some or many of the genes in the operon.

Bacteria possess two types of termination signals: intrinsic and Rho-dependent termi-
nators [22–27]. In G+ bacteria, intrinsic terminators are mainly used as termination signals
for coding DNA sequences. Intrinsic terminators are typically characterized by a GC-rich
inverted repeat separated by a few base pairs and followed by a stretch enriched in Ts in
the non-template DNA strand. When transcribed into RNA, this region forms a hairpin
structure followed by a U-rich tract, which is sufficient to terminate transcription [28,29].

Recently, we reported that pLS20 is the prototype of a family of related plasmids
and that the conjugation operons present on all these plasmids (i) contain multiple in-
trinsic terminators and (ii) start with a processive antitermination (P-AT) system, named
conAn [30,31]. The conAn system contributes to the strictly controlled expression of the
conjugation genes by minimizing the effects of spurious transcription and allowing the
differential expression of subsets of genes within the conjugation operon. P-AT systems
function by altering the transcription elongation complexes (TECs) through interaction with
an antiterminator factor, allowing the altered TECs to read through (multiple) transcription
terminating signals (for review, see [32,33]). In most cases, the antiterminator factor is a
protein. The best-studied P-AT systems are based on the antiterminator proteins N and
Q of the Escherichia coli phage lambda [34,35]. Other protein-based P-AT systems concern
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analogues of the transcription elongation factor NusG [36]. Two systems have also been
described in which the transcription factor was not a protein, but an RNA: the put system
of E. coli phage HK022 (a λ phage) and the EAR systems present in the exopolysaccharide
operons of B. subtilis and other bacilli [37–39]. The conAn system present at the start of
the conjugation operon on plasmid pLS20 and related plasmids is different because it is
composed of two components: ConAn1 (protein) and conAn2 (RNA). Whereas conAn2 is
responsible for antitermination, ConAn1 acts as a processivity factor allowing antitermina-
tion to take place even at large distances from the promoter. Only transcription elongation
complexes derived from the main conjugation promoter of pLS20, named Pc, can become
loaded with ConAn1 and conAn2. The altered complexes are then able to read through the
>20 terminators inside the pLS20 conjugation operon [30]. Any transcription elongation
complexes derived from spurious transcription events will not be associated with the
conAn1 and conAn2 components, and so will stop at the first terminator encountered. The
conAn system also allows differential expression of a subset of genes. One of the examples
is the third gene of the pLS20 conjugation operon, which is preceded by a constitutive weak
promoter. Transcripts starting at this promoter end at a terminator located two genes down-
stream, resulting in the constitutive low-level expression of these two genes. However,
upon activation of the much stronger conjugation promoter Pc, these two genes become
highly expressed. One of these two genes encodes the surface exclusion protein, and the
differential expression of this protein has important consequences for the functionality of
the exclusion system [40]. Thus, the presence of a conAn type P-AT system seems to be
beneficial by allowing the differential expression of subsets of genes within the conjugation
operon, while contributing to strict regulation of the conjugation genes. This may suggest
that all conjugation operons in G+ bacteria are furnished with a conAn or perhaps other
type of P-AT system.

The Incompatibility 18 (Inc18) group of plasmids contains one or more antibiotic
resistance genes encoding resistance to vancomycin, chloramphenicol and the macrolide–
lincosamide–streptogramin (MLS) group of antibiotics. These plasmids have a broad host
range and have frequently been found in bacterial genera, causing nosocomial infections
such as enterococci and staphylococci [41–43]. The DNA replication and segregation
modules of the Inc18 plasmids are conserved and share > 92% identity at the DNA level [44].
These essential modules can be combined with additional non-essential modules such
as AR genes. Only a subgroup of the Inc18 plasmids contains a conjugation module
allowing conjugative transfer [44]. Plasmids of this Inc18 subgroup have been shown to be
responsible for vancomycin resistance transfer to Staphylococcus aureus. Most vancomycin
resistant S. aureus (VRSA) are MRSA isolates that have acquired vanA-mediated vancomycin
resistance from enterococci [45] via a pSK41-like staphylococcal conjugative plasmid, most
likely pWZ909 [46,47]. The best-studied conjugative plasmids of the Inc18 group are pIP501
(30.6 kb), pAMβ1 (27.8 kb) and pRE25 (50.2 kb) [12,43,48,49]. Here, we demonstrate that
plasmid pIP501, and probably also pAMβ1 and pRE25, do not contain a P-AT system.
This suggests that, besides the advantages, the presence of a P-AT system also attributes
disadvantages. The possible (dis)advantages of a P-AT system and the implications for
host range are discussed.

2. Materials and Methods
2.1. Bacterial Strains, Plasmids, Media and Oligonucleotides

B. subtilis and E. coli strains were grown in lysogeny broth (LB) [50], without added
glucose. All bacteria were grown in liquid media with shaking or on 1.5% LB agar plates
at 37 ◦C. When appropriate, media were supplemented with the following antibiotics:
ampicillin (Amp, 100 µg/mL) for E. coli, and spectinomycin (Spec, 100 µg/mL) for B. subtilis.
The B. subtilis strains used were isogenic with B. subtilis strain 168. The bacterial strains,
plasmids and oligonucleotides are listed in Table 1. All oligonucleotides were purchased
from Integrated DNA Technologies (IDT) (Leuven, Belgium).
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Table 1. Strains, plasmids and oligonucleotides used.

Strains Description and Genotype Source or Reference

Escherichia coli

XL1-Blue
Used for regular cloning.

endA1 gyrA96 (nalR) thi-1 recA1 relA1 lac glnV44 F’[Tn10 proAB+ lacIq

∆(lacZ)M15] hsdR17 (rK
- mK

+)
Laboratory stock (Stratagene)

Bacillus subtilis
168 (1A700) trpC2 BGSC 1

AND101 B. subtilis 168 transformed with pAND101. trpC2, amyE:Pspank-gfp (SpecR) [30]

AND127 B. subtilis 168 transformed with pAND101. trpC2,
amyE:Pspank-[Ter30pLS20]-gfp (SpecR) [30]

EEF7 B. subtilis 168 transformed with pEEF7. trpC2,
amyE:Pspank-[Ter1pIP501]-gfp (SpecR) This work

Plasmids Description Source or Reference

pEEF7
pAND128 derivative containing terminator Ter1. Cloned fragment was
generated by hybridization of primers oTer501_1A (SalI) and oTer501_1B

(NheI). (AmpR) and (SpecR).
This work

Oligonucleotides Sequence Description

oTer501_1A tcgacGTAACGTCTGTTTATGCAGATGAATTTCACTTTTTATTGAAG

Hybridization primer for
generating TerInc18 fragment.

Used in combination with
oTer501_1B. SalI restriction site

extension at the 5´end

oTer501_1B ctagCTTCAATAAAAAGTGAAATTCATCTGCATAAACAGACGTTACg

Hybridization primer for
generating TerInc18 fragment.

Used in combination with
oTer501_1A. NheI restriction site

extension at the 5’ end

pDR111_U_sec TGACTTTATCTACAAGGTGTGGC
Forward primer for verifying
sequences of PCR fragments

cloned into pAND101.
1 Bacillus Genetic Stock Center, Biological Sciences 556, 484 W. 12th Ave. Columbus, OH, USA. 5´ nucleotides
shown in bold, and lowercase correspondto the protruding overhangs generated after hybridization of the pair of
complementary oligonucleotides. They are compatible with the overhangs generated by NheI and SalI digestions.

2.2. Construction of Plasmids and Strains

DNA techniques were performed using standard molecular methods [51]. The plasmid
isolation from E. coli and PCR fragment purification were performed using “Wizard Plus
SV Minipreps DNA Purification Systems” and “Wizard SV Gel and PCR Clean-Up System”
(Promega), respectively. Plasmid pEEF7 was constructed as follows. First, complementary
primers containing the Ter1 sequence were annealed in a 200 µl reaction mixture containing
2000 pmol of each primer (in 50 mM NaCl, 40 mM Tris pH 7.5), by boiling for 10 min and
then slowly cooling down to room temperature. Next, the hybridized oligonucleotides
were used as the insert and were ligated to plasmid pAND101 digested with SalI and NheI
restriction enzymes. All enzymes used were purchased from New England Biolabs, USA.
The sequences of the cloned fragments were verified by DNA sequencing.

2.3. Transformation

Chemically competent E. coli cells were prepared by the fermentation service of
Centro de Biología Molecular Severo Ochoa (CBMSO) and transformation was carried out
using standard methods [51]. The generation of naturally competent B. subtilis cells and
transformation were performed as described [52]. Plasmid pEEF7 was used to transform
B. subtilis 168 competent cells and transformants were selected on LB plates supplemented
with spectinomycin. Transformants resulting from double cross-over events were identified
by amylase-negative phenotype.
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2.4. Flow Cytometry

Fluorescence quantification using flow cytometry was performed as described be-
fore [40]. In short, overnight cultures (37 ◦C) of strains containing a transcriptional gfp
fusion were diluted 100-fold in prewarmed LB medium and grown at 37 ◦C with shaking
(180 rpm) until the cultures reached an OD600 of 0.8–1. The cells were then collected by
centrifugation (1 min 14,000 rpm) in 2 mL Eppendorf tubes. After two washing steps with
phosphate buffered saline (PBS, 146 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, and 1.5 mM
KH2PO4, pH 7.0) solution passed through a 0.22 µm filter (Merck Millipore, Burlington,
MA, USA) to remove any small particles, the cells were resuspended in 2 mL of filtered
PBS. The fluorescence levels were expressed as the mean value of the Geomean values of
100,000 cells obtained in three independent experiments.

2.5. Identification of Putative Termination Sequences

The DNA sequences of conjugative plasmids were screened for the presence of putative
Rho-independent transcriptional terminators by (i) the “ARNold” Web server (rna.igmors.u-
psud.fr/toolbox) that uses two algorithms: Erpin and RNAmotif [53,54], and by (ii) the
TransTermHP Web server (transterm.cbcg.umd.edu), which uses an algorithm that is
distinct from the Erpin and RNAmotif algorithms [55].

3. Results
3.1. Highly Similar Conjugation Operons of Inc18 Plasmids pIP501, pRE25 and pAMβ1 Contain
Two Putative Transcriptional Terminators

Plasmids in a subgroup of the Inc18 family contain a conjugation operon and are self-
transmissible [43,44], of which pIP501, pAMβ1 and pRE25 are the best-studied [12,43,48,49].
These conjugation operons are generally smaller than those of the pLS20-family plasmids,
which all contain a P-AT system. We wanted to know whether these conjugation operons
also contain a P-AT system. Interestingly, in silico analyses did not result in the identification
of sequences showing similarity to the conAn systems or other antitermination systems.
We then performed in silico analyses to investigate whether the conjugation operons of
these three plasmids contain putative transcriptional terminator(s), because the presence
of intrinsic transcriptional terminators within an operon is a good indication that the
operon contains a P-AT system. First, we analyzed the similarity between these conjugation
operons, which revealed that their DNA sequences are highly conserved (>97%) (Figure S1).
Next, we screened the sequences of the three conjugation operons for the presence of
putative transcriptional terminators. For each conjugation operon, two possible intrinsic
terminators were detected, which we tentatively named Ter1 and Ter2. These terminators
are located at identical positions in the three conjugation operons. Moreover, the sequences
of the three Ter1 terminators are identical, and except for one position in the trailing
T-stretch, the Ter2 sequences are also identical (Table 2).

Table 2. Putative terminators detected in the conjugation operons of Inc18 plasmids pIP501, pAMβ1
and pRE25.

Name Plasmid Position * Sequence (5′-3′) †

Ter1
pIP501 5076 GCAAATTGTAACGTCTGTTTATGCAGATGaaTTTCACTTTTTA
pAMβ1 5076 GCAAATTGTAACGTCTGTTTATGCAGATGaaTTTCACTTTTTA
pRE25 5076 GCAAATTGTAACGTCTGTTTATGCAGATGaaTTTCACTTTTTA

Ter2
pIP501 14.848 GTATTTATAAAAGCATGGTCGCAAGTTTCACTAGCAGCCATGCTTTTATTGAATC
pAMβ1 14.853 GTATTTTTAAAAGCATGGTCGCAAGTTTCACTAGCAGCCATGCTTTTTTTGAATC
pRE25 14.792 GTAAATTTAAAAGCATGGTCGCAAGTTTCACTAGCAGCCATGCTTTTTTTGAATC

* Positions correspond to the sequences shown in Supplemental Figure S1. † Sequences predicted to form stem
and loop when transcribed into RNA are shown in blue and red, respectively. Nucleotides in the sequence trailing
the inverted repeat sequence that are not Ts are shown in lowercase.
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To rule out the possibility that the slight differences in the sequences of the conjugation
operons between pIP501, pAMβ1 and pRE25 might result in the presence or absence of a
putative terminator, all of these regions were screened for the possibility of forming dyad
symmetries preceding stretches enriched in Ts. These analyses did not reveal additional
putative terminators besides Ter1 and Ter2 identified by algorithms designed to detect
intrinsic terminators.

A schematic overview of the almost 15 kb conjugation operon of pIP501, in which the
positions of the predicted terminators Ter1 and Ter2 are indicated, is shown in Figure 1A.
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Figure 1. Features of the conjugation operon of plasmid pIP501. (A) Schematic genetic map of
the pIP501 conjugation operon. Genes are indicated with arrows. The positions of the putative
terminators Ter1 and Ter2 are indicated with red lollipops. oriT = origin of transfer. The conjugation
promoter Ptra is followed by traA, the first gene in the operon. The functions of the following tra
genes are known: traA (relaxase), traE (ATPase), traG (lytic transglycosylase), traH (secretion channel
protein), traI and -J (coupling protein), traL (secretion channel protein), traM (secretion channel
protein), traN (repressor). (B) Schematic view of the putative terminator Ter1 located within the traE
gene. Part of the traE sequence encompassing the putative intrinsic terminator is shown. Inverted
repeat sequences and the nucleotides separating them are given in blue and red, respectively (left
panel). The stem loop structure predicted to be formed when this region is transcribed into RNA is
shown on the right using the same color code as in the left panel.

As expected, one of the two putative intrinsic terminator signals (Ter2) is present
downstream of the last conjugation gene traO (Figure 1A). Previous results have provided
strong evidence that this is a functional terminator in vivo [56] (see Discussion). The
predicted Ter2 sequences of pAMβ1 and pRE25 are also located immediately downstream
of the last gene in the operon, which encode TraO homologues (Figure S1). The only
other predicted terminator, Ter1, is located in the traE gene of pIP501, pAMβ1 and pRE25
(Figure 1A,B and Figure S1). This is in great contrast to pLS20, where 23 putative terminators
were found within the conjugation operon [30].
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3.2. Putative Terminator Ter1 Present in Conjugation Operons of pIP501, pAMβ1 and pRE25 Is
Not Functional In Vivo

Previously, we constructed an in vivo terminator screening system based on the
B. subtilis amyE integration vector pAND101, which contains a gfp reporter gene controlled
by the IPTG-inducible Pspank promoter, and a multiple cloning site in between Pspank and
gfp (see Figure 2 for schematic representation). Derivatives of pAND101 were generated
by cloning the DNA fragment predicted to contain a functional terminator in between the
Pspank promoter and the gfp gene. These plasmids were then used to construct isogenic
B. subtilis strains containing a single copy of the cassette “Pspank-gfp” or “Pspank-[fragment
X]-gfp” at their amyE loci.
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Figure 2. Features of the transcription terminator screening vector pAND101. Top: Vector pAND101
is a derivative of the B. subtilis amyE integration vector pDR110. A colE1 origin of replication (ori E. coli)
confers replication in E. coli and the β-lactamase gene (β-lac) provides resistance to ampicillin in
E. coli. The remaining part of the vector corresponds to the cassette that becomes integrated at the
amyE locus when the plasmid is introduced into B. subtilis cells by transformation. The regions
corresponding to the N- and C-terminal regions of the amyE gene are shown in orange. Bottom:
Schematic presentations of the double cross-over recombination event. The genomic configuration of
the B. subtilis amyE region of the chromosome in the parent strain and the resulting transformants
are shown below the circular plasmid. The thick black lines at the two ends indicate B. subtilis
chromosomal DNA. The cassette that becomes integrated via double cross-over at the amyE locus
(not to scale) encompasses the spectinomycin resistance gene (gray arrow indicated with “spec”),
the lacI gene encoding the Pspank repressor (gray arrow indicated with “lacI”), which is under the
control of a constitutive promoter, and the gfp reporter gene (green arrow indicated with “gfp”) that is
under the control of the IPTG-inducible Pspank promoter (blue box indicated “Pspank”). The unique
restriction sites HindIII, SalI and NheI are located in between the Pspank promoter and the ribosomal
binding site (RBS, yellow triangle) of the gfp gene, and permit the insertion of a sequence of interest
in front of the gfp reporter gene.

When grown in the presence of IPTG, the cells of the B. subtilis control strain AND101
lacking a terminator (Pspank-gfp) are highly fluorescent, but isogenic cells containing a
functional terminator (Pspank-[Ter]-gfp) are not or are less fluorescent, similar to AND101
cells growing in the absence of IPTG [30]. We used this system to construct strain EEF7
(Pspank-[Ter1]-gfp) and then used flow cytometry analysis to determine the fluorescence
levels of EEF7 cells, and those of the control strains AND101 (Pspank-gfp) and AND127
(Pspank-[Ter30]-gfp), with the latter containing the functional terminator Ter30 located down-
stream of pLS20 gene 30 [30]. The results of the flow cytometry experiments are shown
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in Figure 3. As expected, high and low fluorescence levels were obtained for the control
strains AND101 (Pspank-gfp) and AND127 (Pspank-[Ter30]-gfp), respectively, when cells were
grown in the presence of 1 mM IPTG. The fluorescence levels of EEF7 cells containing
the putative terminator Ter1 were similar to those obtained for cells of the control strain
without a terminator (AND101), demonstrating that the cloned fragment does not encode a
functional terminator.
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Figure 3. Fluorescence levels determined by flow cytometry analysis of cells grown in the absence
or presence of 1 mM IPTG. Samples were withdrawn from late exponentially growing cultures
(OD600 between 0.8 and 1). Gray bar: control strain AND101 (Pspank-gfp). Black bars: strains AND127
(Pspank-[Ter30]-gfp), indicated as Ter30, pLS20, and EEF7 (Pspank-[Ter1]-gfp), right bar indicated as Ter1,
pIP501. Fluorescence levels are expressed as the mean value of the Geomean values of 100,000 cells
obtained in three independent experiments. Error bars represent standard deviation.

In summary, the only putative terminator identified within the conjugation operon
of plasmids pIP501, pAMβ1 and pRE25 by in silico analysis appears not to be functional
in vivo.

3.3. Additional Evidence That pIP501, pAMβ1 and pRE25 Do Not Contain a Processive
Antitermination System: Their Conjugation Operons Start with Relaxase Gene

The minimization of the deleterious effects of spurious transcription will be most
effective when an antitermination system is located at the start of an operon. Indeed, the
conAn-type antitermination systems present in the conjugation operons of pLS20 and other
related conjugative plasmids of G+ bacteria are all located at the start of the operon [30].
However, the main conjugation promoter, Ptra of pIP501, and also pAMβ1 and pRE25, is
located 140 bp upstream of traA, encoding the relaxase (Figure S1), and for pIP501, it has
been shown that TraA regulates the activity of this promoter [11,43,56] (see Figure 4 for a
schematic representation). Therefore, the genetic organization of plasmids pIP501, pAMβ1
and pRE25 is fundamentally different from that of pLS20 and the other plasmids containing
a conAn-type antitermination system.
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traO), as indicated by the green dotted line.

4. Discussion

Recently, it has been shown that many conjugative plasmids of Gram-positive bacteria
contain a conAn type P-AT system that is located at the start of the conjugation operon.
Antitermination systems provide at least two benefits: they allow the differential expres-
sion of subsets of genes within the conjugation operon, and they contribute to the strict
control of the expression of the conjugation genes by minimizing the deleterious effects of
spurious transcription [30]. Based on this, it seemed plausible that all conjugative operons
on Gram-positive plasmids contain an antitermination system. However, here we show
that this is not the case. Firstly, no sequences sharing similarity with P-AT systems could be
identified on the conjugation operons present on the Inc18 plasmids pIP501, pAMβ1 and
pRE25. Secondly, we provided evidence that these conjugation operons do not contain any
functional intrinsic terminators within the operon. Thus, although the conjugation operons
of these three plasmids were predicted by in silico analysis to contain one intrinsic termina-
tor (Ter1), the results of our terminator screening assays showed that it was not a functional
terminator in vivo. Furthermore, it has been reported that the presence of three uridines
immediately following the stem loop is the most highly conserved characteristic of intrinsic
terminators, and that its presence is critical for terminator functionality [57,58]. Inspection
of the Ter1 sequence shows that the stem of the putative Ter1 sequence is followed by
two adenosines, not uridines, which could explain why this sequence does not generate a
functional terminator. In the case of pIP501, our conclusion that its conjugation operon does
not contain a functional intrinsic terminator is further supported by data from our previous
Reverse-Transcription (RT)-PCR analyses, which showed co-transcription between flanking
genes in the conjugation operon, including the genes flanking Ter1. These analyses also
provided evidence that the second putative terminator that we identified, Ter2, located
downstream of the last conjugation gene traO, is functional, because no co-transcription
could be detected when a primer pair between pIP501 traO and the downstream gene copR
was used in the RT-PCR experiments [56,59].

In addition to the absence of a functional terminator in the conjugation operon, several
other lines of evidence support our view that the conjugation operons of these Inc18
plasmids do not contain an antitermination system. First, in conjugation operons containing
conAn systems, as well as in most other operons containing a P-AT system, the gene(s) of
the P-AT system are located near the start of the operon. The conjugation operons of the
Inc18 plasmids we analyzed all start with the relaxase gene.

The absence of an antitermination system in these conjugation systems prompted us
to speculate whether not possessing an antitermination system could provide benefits for
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the plasmid that outweigh the advantages of having an antitermination system, and how
the absence of an antitermination system might affect the conjugation process. Below, we
discuss these possible effects and benefits.

Spurious transcription will affect large operons more than small ones. The conjugation
operon of plasmid pLS20 has a size of >30 kb [30]. Recently, we have shown that pLS20
is the prototype of a family of related conjugative plasmids that all contain a conAn-type
antitermination system [31]. Like pLS20, the conjugation operons of the other plasmids
in the family, and those present on non-pLS20 family plasmids containing a conAn type
antitermination system, all have a size of >30 kb [30,31]. The conjugation operons on the
Inc18 plasmids, on the other hand, are about half the size (about 15 kb). It is possible
that the smaller size of the conjugation operons of the Inc18 plasmids is a result of the
lack of an antitermination system. The size difference of the conjugation operons between
the Inc18 plasmids and those containing a conAn antitermination system is intriguing.
On the one hand, this might be an indication that the conjugation genes on the Inc18
plasmids are distributed in more than one operon, as is the case in the conjugative plasmid
RP4 from Gram-negative bacteria [60]. However, there is no evidence that supports this
hypothesis. On the other hand, the genes present in the conjugation operons on the Inc18
plasmids may correspond to the minimum set of genes required for conjugation, and the
non-orthologous genes present in the large conjugation operons may play auxiliary roles in
conjugation. The fact that the conjugation operon of pLS20 and many conjugation operons
of its related plasmids contain a rok gene, whose encoded protein inhibits the developmental
pathway of competence of its host B. subtilis [61], supports the latter hypothesis. Therefore,
the identification of the orthologous genes present in conjugation operons of both small
and large sizes may help distinguish the genes encoding essential and auxiliary roles
in conjugation.

Effective antitermination requires that the component(s) of an antitermination system
makes specific interactions with constituents of the TEC of the host, enabling the adapted
complex to bypass terminators, which is necessary for the proper expression of the conju-
gation genes and, hence, conjugation. In the case of the conAn-type antitermination system,
we have previously shown that (i) processive antitermination requires both ConAn1 and
conAn2 to be functional in the host, and (ii) the conAn components encoded by different
plasmids show different host-range specificities [30]. Thus, the conAn-type antitermination
systems, and likely also other antitermination systems, will pose limitations to the host
range in which the conjugation process can function. This view may be supported by the
observation that plasmids of the pLS20 family are all harbored by different Bacillus species,
suggesting that they have a narrow host range [31]. Consistent with this view, the Inc18
plasmids are known to have a very broad host range [43,62–64]. It has been shown that
the plasmids pIP501 and pAMβ1 can be introduced by conjugation into a wide variety of
Gram-positive bacteria, and that the conjugation systems of these plasmids are functional in
non-native hosts [43,65–69]. It should be noted that the host range of a conjugative plasmid
depends not only on the functionality of the conjugation system, but also on its replication
functions. It is therefore important to determine whether the replication functions of pLS20
family plasmids can sustain replication in bacteria other than bacilli.

To date, the only known P-AT system that affects the expression of conjugation operons
in Gram-negative bacteria is mediated by the antiterminator RfaH, a chromosomally
encoded protein previously named SfrB [70]. RfaH is a NusG paralog. The association of
RfaH instead of NusG with the RNA polymerase prevents Rho-dependent termination and
increases the transcription processivity of the conjugation operon (for review, see [33,71,72]).
RfaH is recruited by binding to the non-template DNA strand of the operon polarity
suppressor (ops) site (GGGCGGTAGCGT) located in the conjugation operon. All F-like
plasmids, which have narrow host ranges, contain ops sites in their conjugation operons [72].
Interestingly, the conjugation genes in the Gram-negative broad host range plasmid RP4
are distributed in two different operons, and the largest operon is similar to the conjugation
operons of the Inc18 plasmids (~15 kb) in terms of size. However, the operon contains an
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ops site, suggesting that it is also regulated by the RfaH P-AT system [73]. The RfaH-based
P-AT systems are different from the conAn systems in several aspects: RfaH is host-encoded
and functions in trans, and the system primarily acts on Rho-dependent terminators. We do
not know whether the relationships between the presence of a P-AT system, the size of the
conjugation operon, and the host range that we have observed also apply to Gram-negative
bacteria, and whether the difference in the cell wall structure between the Gram-positive
and negative bacteria influences these relationships.

In summary, here we have shown that the conjugation operons present on the plas-
mids of Gram-positive bacteria can be equipped with or without an antitermination system.
Based on our current knowledge, the presence of an antitermination system provides
benefits by allowing differential gene expression and stricter control of the expression
of the conjugation genes. However, antitermination factors display different host-range
compatibilities with components of the TEC of the hosts, which will limit the potential con-
jugative spread of the plasmid. This drawback does not apply to conjugative plasmids not
containing an antitermination system, whose conjugation operon seems to be considerably
smaller, permitting them to have a broader conjugative host range in return for not having
the advantages that antitermination systems and bigger operons can provide. Additional
research is needed to confirm this view. If verified, this will have important implications for
our understanding of the conjugation-mediated spread of AR, virulence and toxin genes.

Supplementary Materials: Figure S1 is available online at https://www.mdpi.com/article/10.3390/
microorganisms10030587/s1, Figure S1: Alignment of the DNA sequences of the conjugation operons
of Inc18 plasmids pIP501, pAMβ1 and pRE25.
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