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Abstract

Rank aggregation (RA), the process of combining multiple ranked lists into a single ranking, has played an important role in
integrating information from individual genomic studies that address the same biological question. In previous research,
attention has been focused on aggregating full lists. However, partial and/or top ranked lists are prevalent because of the
great heterogeneity of genomic studies and limited resources for follow-up investigation. To be able to handle such lists,
some ad hoc adjustments have been suggested in the past, but how RA methods perform on them (after the adjustments)
has never been fully evaluated. In this article, a systematic framework is proposed to define different situations that may
occur based on the nature of individually ranked lists. A comprehensive simulation study is conducted to examine the per-
formance characteristics of a collection of existing RA methods that are suitable for genomic applications under various set-
tings simulated to mimic practical situations. A non-small cell lung cancer data example is provided for further comparison.
Based on our numerical results, general guidelines about which methods perform the best/worst, and under what condi-
tions, are provided. Also, we discuss key factors that substantially affect the performance of the different methods.
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Introduction

The problem of rank aggregation (RA) is to combine multiple
ranked lists, referred to as ‘base rankers’ [1], into one single
ranked list, referred to as an ‘aggregated ranker’, which is in-
tended to be more reliable than the base rankers. It has a rich
history in the fields of information retrieval, marketing and ad-
vertisement research, applied psychology, social choice (polit-
ical election), etc. In recent years, with the rapid development of
technology, RA has been facing new challenges in areas like
meta-search engine building for Web page ranking and the
identification of ‘signal genes’ in high-throughput genomic
studies, the latter of which is the main focus of this article.

For an important biological question, it is often the case that
a large amount of genomic data from different laboratories or

research groups has been collected over time. Such data are in-
herently noisy because of various sources of heterogeneity,
which include, among others, different experimental designs,
various platforms as well as (completely) different data prepro-
cessing procedures, causing nonuniform inclusion of genes, dif-
ferent types of omics data, unequal sample sizes and possible
inclusion of non-informative and noisy data. To integrate such
data, researchers often take robust meta-analytic approaches
based on ranked lists [1–6], without going all the way back to
modeling the raw data, to arrive at more reliable conclusions as
well as enhance the validity and reproducibility of individual
studies [2]. For many such approaches, one main task is to con-
duct RA.

In the literature, various RA methods have been developed
for particular applications; however, they are often ill-suited for
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other applications. In addition, most methods are not clear
about which situations they can deal with. Several claim to
work for partial or top ranked lists; however, the concepts of
such lists are somewhat ambiguous. There exist several publi-
cations that summarize and compare existing aggregation
methods [1, 3, 7–9]. Lin [3] provides an elaborate review of exist-
ing methods and serves as a good introduction to the RA topic;
however, it compares different methods only through a data ex-
ample, and so lacks a formal evaluation via simulation where
the ground truth is known. Wald et al. [7] and Dittman et al. [8]
compare several RA methods specifically for ensemble gene se-
lection, the process of aggregating multiple feature selection
runs into a final ranked list, and it is also based on data ex-
amples only. Boulesteix and Slawski [9] promote the use of RA
to achieve stability of rankings when different ranking criteria
are used on the same data set or when the input data set is
slightly modified via perturbation (e.g. resampling and permu-
tation), and they discuss the strengths and limitations of sev-
eral RA methods under this context. Deng et al. [1] gives an
informative overview on existing methods in addition to pro-
posing a new Bayesian aggregation method. A relatively com-
plete simulation study is also provided, but it omits situations
where some of the items of interest are not included in some
base rankers (resulting in partial lists). Also, the length of the
lists considered (200) may not be adequate, especially for gen-
omic settings, where it varies widely from list to list and can be
up to a few thousands or even more than ten thousands.

In this article, we develop a systematic way of classifying RA
methods, set up a clear framework for different situations that
can occur frequently in genomic settings, discuss important
practical considerations, compare the performance of up-to-
date methods emphasizing those suitable for genomic applica-
tions via simulation and a data example and provide practical
guidelines for users as well as point out directions of future re-
search. For a list of important notation used in this article, see
Section S1 in Supplementary Material.

Categorization of RA methods

Recent efforts to classify RA methods include Lin [3] and Deng
et al. [1]. Lin [3] divides existing methods into three categories:
distributional-based, heuristic and stochastic optimization algo-
rithms, and provides a detailed overview of the methods falling
in each category. Deng et al. [1] present a review based on a dif-
ferent categorization (i.e. methods based on summary statistics,
based on optimization/Markov chains, based on weighted lists
and via boosting). However, novel aggregation methods are con-
stantly being proposed [1, 10, 11]. Below, we provide a

systematic and updated classification, mainly based on differ-
ences in the methodologies used, of which a diagram is given in
Figure 1.

In general, RA methods can be divided into two categories:
supervised versus unsupervised methods. Supervised methods
such as supervised rank aggregation (SRA) by Liu et al. [12] and
RankBoost by Freund et al. [13] make use of training data sets
containing true relative ranks of some items via supervised
learning algorithms. Liu et al. [12] sets up a general framework
to conduct SRA that corresponds to existing methods like
Borda’s method [14] and Markov chain methods [15, 16] with a
focus on the latter. RankBoost uses boosting, a machine learn-
ing method, to iteratively update a series of ‘weak rankers’ and
finally use their weighted average as the aggregated ranker.

As no labeled data are available in most applications, un-
supervised RA has been dominant in the literature. Below, we
focus on unsupervised methods, which can be first grouped
into Bayesian and frequentist methods. Performance evaluation
will be done in ‘Performance evaluation’ and ‘Data example’
sections for unsupervised methods only.

Bayesian methods

In general, Bayesian methods rely on certain quantities
involved in posterior inference (e.g. posterior probability, Bayes
factor) to determine the aggregated ranking. Some Bayesian ap-
plications in RA are problem-specific. For example, [17] and [18]
use Bayesian approaches to analyze rank data arising from pri-
mate intelligence experiments and to interpret review scores
from peer assessments, respectively, and so they will not be
considered in our performance evaluation. Other Bayesian
methods, including Bayesian Aggregation of Rank Data (BARD)
by Deng et al. [1] and Bayesian Iterative Robust Rank
Aggregation (BIRRA) by Badgeley, Sealfon and Chikina [11], are
applicable to general RA problems. BARD uses a Bayesian model
selection formulation and associates a quality parameter to
each base ranker to quantify the reliability of that ranker. It as-
signs entities into two groups: relevant and irrelevant, and ig-
nores the actual rankings. For each base ranker, the relative
ranks of all irrelevant items are assumed to be purely random,
and that of a relevant item is assumed to follow a power law
distribution. The posterior probability of each item being rele-
vant is used to obtain the aggregated ranker. BIRRA starts with
the mean ranks to obtain an initial aggregate ranking and as-
sign top ranked items to be relevant and the rest to be irrelevant
based on their prior probabilities. The data set is then discre-
tized into multiple bins. The algorithm iteratively computes
bin-wise Bayes factors for each base ranker and calculates the
posterior probability of each item being relevant via the Bayes
theorem to update the ranks until rankings are unchanged or a
prespecified maximum number of iterations has been reached.
Additionally, several heuristic techniques are used in BIRRA to
make it more robust to noise. Yi, Li and Liu [19] propose a
Bayesian model for Aggregating Rank data with Covariates
(BARC) and its weighted version, BARCW, to incorporate covari-
ates information and to distinguish high-quality rankers from
spam rankers. Further detail of BARC is omitted as we focus on
the more general case that has no covariates.

Frequentist methods

Although Bayesian methods have become increasingly popular,
the majority of RA methods are frequentist, which can be classi-
fied into parametric and nonparametric methods. In this article,

Figure 1. A classification diagram of RA methods.
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‘nonparametric’ means no use of any underlying data model or
other distributional information. Depending on whether a
method aims to optimize a certain criterion, nonparametric
methods can be grouped into non-optimization-based and
optimization-based methods. In contrast, parametric methods
are based on some underlying models or distributions, and can
be further divided into distribution-based and Markov chain-
based methods.

Non-optimization-based methods
Some of the earliest aggregation methods, including those in
Borda’s collection [3, 14], simply use summary statistics such as
the arithmetic mean, median, geometric mean and L2-norm of
base rankers to aggregate rank data, denoted as MEAN, MED,
GEO and L2, respectively. More recently proposed non-
optimization methods include Stability Selection [20] and
Round Robin methods [21]. The idea of Stability Selection is to
rank an item higher if it is ranked high in many base rankers ac-
cording to a chosen threshold. Round Robin assigns ranks
through a simple and random manner: first randomly order
base rankers and then assign the highest rank to the item that
is ranked at the top from the first ranker, assign the second
highest rank to the item that is ranked at the top from the se-
cond ranker and proceed in this way to the second top ranked
items from every base ranker and so on until every item re-
ceives a rank. Although intuitive and easy to compute, these
two ad hoc methods will not be considered for performance
evaluation because they are much less known compared with
Borda’s methods.

Optimization-based methods
Optimization-based methods have a long history dating back to
1950s [22–24]. They are designed to minimize some distance
measure, so that the aggregated ranker is as close as possible to
all base rankers. Two commonly used measures are Kendall’s
tau and Spearman’s footrule distances, of which the first counts
the number of pairwise disagreements between two rank lists,
and the second sums up the absolute value of the element-wise
differences in ranks between the two lists. The main distinction
between the distance measures is that Kendall’s tau only ac-
counts for discordant pairs, while Spearman’s footrule accounts
for the magnitude of the rank differences. Lin and Ding [2] adopt
the cross-entropy Monte Carlo (CEMC) approach to RA from the
context of rare event simulation and combinatorial optimiza-
tion [25] by proposing the Order Explicit Algorithm. The opti-
mization criteria they use with CEMC are based on the
generalized Kemeny guideline [1, 3], which uses either the
weighed Kendall’s tau or Spearman’s footrule distance. The cor-
responding CEMC methods for RA, denoted by CEMC.k and
CEMC.s, use importance sampling to iteratively search for the
list that minimizes the overall distance.

When initially proposed, optimization-based methods were
computationally formidable even with moderate-size data.
With the availability of modern computational power, they
have become more feasible. However, they typically need a
much longer time to run than other methods, especially for
relatively long lists that occur in genomic settings.

Distribution-based methods
A method is categorized as distribution-based if it assumes a
probabilistic latent model or uses distributional information of
any statistic calculated from the rank data. Thurstone’s model/
Thurstone’s scaling is one of the earliest distribution-based RA

methods and was proposed in a series of papers by Thurstone
dating back to the 1920s [26–29]. It was originally proposed for
applications in psychology and sociology, but many efforts were
made to extend it to other applications. Thurstone’s model
often requires many base rankers to estimate parameters. This
is generally not the case for genomic studies; therefore, it will
not be included in our performance evaluation.

Stuart [30] proposes an RA method to identify pairs of genes
that are co-expressed from experiments in multiple organisms.
Pairs of genes whose expression is significantly correlated in
multiple organisms are identified and then ranked according to
Pearson correlation. P-values are calculated based on distribu-
tions of order statistics. An improved version of Stuart’s method
is later given by Aerts et al. [31].

Robust rank aggregation (RRA) by Kolde et al. [10] is another
example of distribution-based methods. The position of an item
in each ranked list is compared with a null model, where all the
lists are non-informative, i.e. random shuffles of the items. A
numerical score is assigned to each item based on the reference
distributions of order statistics, i.e. beta distributions. P-values
are computed based on the Bonferroni correction of the numer-
ical scores to avoid intensive computation required to obtain
exact P-values. The final aggregated rank is obtained by sorting
P-values.

Markov chain-based methods
These methods are developed under a Markov chain modeling
framework, where the union of items from all base rankers
forms the state space. A transition matrix is then constructed in
a way such that its stationary distribution will have larger prob-
abilities for states that are ranked higher. Therefore, the aggre-
gate ranker is determined by the stationary probability of each
state. A few ways of constructing the transition matrix have
been proposed [15, 16]. MC1–MC3, as denoted in Lin [3], are
three examples, which will be included in our performance
evaluation.

MC1: The next state is generated uniformly from the set of
all states that are ranked at least as high as the current state by
at least one base ranker.

MC2: The next state is generated uniformly from the set of
all states that are ranked at least as high as the current state by
at least half of base rankers.

MC3: The probability of moving to a certain state is propor-
tional to the number of base rankers that rank this state higher
than the current state.

Practical considerations

We cover several key issues about RA, including various types
of ranked lists that practitioners may encounter frequently (es-
pecially in genomic studies), their connections with the know-
ledge status of the space of a base ranker, preferred data
structures of different methods, software availability, data input
formats and measures used for evaluating the performance of
RA methods.

Characterization of various types of lists

Suppose, there are J ranked lists (or base rankers) to be aggre-
gated. For each list j, let T j denote the set of the top kj items,
where the rank of each item is reported, and let Bj denote the
set of items that are known to be ranked lower than any item in
T j, but the specific rank of each item is unknown, and these
items can be thought of as those ranked at the bottom as ties.
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Further, let I j denote the set of items input by list j, satisfying
I j ¼ T j [ Bj. It would be reasonable to assume that I j is the set
of all items known to be investigated by (base) ranker j, so that
list j contains the maximum amount of information that is
available from ranker j. Here, saying an item is investigated
means that it is considered in the ranking process of a base
ranker.

Now, let I ¼ [ J
j¼1I j be the complete set of items of interest in

the RA problem, that is any item that does not have any avail-
able ranking information from all the J input lists is automatic-
ally not considered. Every item i 2 I can be categorized into four
disjoint groups with respect to ranker j: the first two are T j (top
ranked items) and Bj (bottom ties); the third is N j, the set of
items known to be not investigated by ranker j because of rea-
sons like missing laboratory measurements or removals in
steps of preprocessing raw data, and their ranking information
is represented by ‘NA’, and the last is Qj, the set of items that
have either state: (i) not investigated in ranker j; or (ii) ranked at
the bottom as ties, but which of the two states the items belong
to is unknown; therefore, their ranking information is repre-
sented by ‘?’. We further define Sj to be the set of items in I that
are originally investigated by ranker j. We refer to Sj as the
space of ranker j relevant to I , the space of the RA problem. A
visualization of these sets is provided in Figure 2.

Note that I j is always known from the ranked list j, but
Sj can be unknown. Clearly, I ¼ T j [ Bj [ N j [ Qj, I j � Sj and
N j \ Sj ¼1 for all j ¼ 1; . . . ; J.

Below, we define various types of lists that often occur in
practice:

• A locally full list (say j) satisfies T j ¼ I j ¼ Sj, that is every item

investigated by ranker j is explicitly ranked (exact ranking is

known) in list j, so that Bj ¼ Qj ¼1.
• A globally full list j satisfies T j ¼ I , meaning that every item in I

is explicitly ranked by ranker j, so that Bj ¼ N j ¼ Qj ¼1. Clearly,

a globally full list is a special case of a locally full list. For RA

problems, ideally, all of the base rankers give globally full lists.

However, that is often not the case in genomic studies.
• A top-k list j is the opposite of a locally full list, satisfying

Bj [ Qj 6¼1, meaning that some items in this list are bottom ties

or have unknown states. Obviously, kj < jSjj.
• A special case of a top-k list is a top-k only list, which has only

the top kj items ranked explicitly and the ranking information

about any other item in I is ‘?’. Here, Bj ¼1 and Qj ¼ I � T j 6¼1.
• A partial/incomplete list j satisfies I j � I , that is N j [ Qj 6¼1,

meaning that some items in the list of all items of interest are ei-

ther ‘NA’ or ‘?’.

Depending on whether the underlying space Sj is known,
there exist two scenarios, A and B, for a base ranker. In Scenario
A, Sj is known, so that Sj ¼ I j and Qj ¼1, and in Scenario B, Sj

is unknown, so that Qj 6¼1. Obviously, a locally full list belongs
to Scenario A, and a top-k only list belongs to Scenario B. Also,
any list under Scenario B must be a partial and top-k list.
Further, under Scenario A, we have the following results: (i) for
a partial/incomplete list, N j 6¼1; (ii) for a top-k list, Bj 6¼1; (iii)
for a top-k and partial list, N j 6¼1 and Bj 6¼1; and (iv) for a lo-
cally full but partial list, i.e. not globally full, N j 6¼1 and Bj ¼1.
In genomic applications, an example of a top-k list that falls
into Scenario A is when the top-k genes associated with a cer-
tain disease are published in a paper but the data analyzed can
be found in some public database; therefore, Sj can be recovered
and there are bottom ties ðBj 6¼1); an example of a top-k list
that falls into Scenario B is when a paper reports a top-k only
list as well as a subset of the items originally studied without

their individual rankings, such as the set of deferentially ex-
pressed genes; therefore, there are items known to be in the
space of this base ranker and not ranked in the top k (Bj 6¼1) as
well as items that appeared in other ranked lists whose status
with respect to ranker j is unknown (Qj 6¼1).

Most of the existing methods are not clear about which of
the above situations they can handle. To the authors’ know-
ledge, methods in [2, 10, 15, 16, 30, 32] are the only ones that ex-
plicitly state that they are able to deal with lists that are not
globally full. The most common way that these methods deal
with such lists is to simply replace all of the missing ranks with
the maximum rank in each list plus one (kjþ 1) without distin-
guishing the status of the corresponding items as elements of
either Bj; N j, or Qj. This modification can also be applied to
other RA methods that are designed for globally full lists, so
that they can handle non-globally full lists as well. However,
this modification may not be the best strategy in some situ-
ations, as it ignores the exact status of these items as men-
tioned above. For Scenario A, a better modification could be to
use kjþ 1 as the rank for items in Bj, and NA for items in N j, so
that the method can handle the two types of items differently.
For Scenario B, kjþ 1 could still be used as the rank for items in
Bj, but either kjþ 1 or NA could be preferred for Qj depending on
the situation.

Preferred data structures

As mentioned in the introduction, RA has been applied widely
in various fields. Fields such as genomic studies and meta-
search tend to generate ‘a few long ranked lists’, while fields
such as marketing and sociology tend to generate ‘many short
ranked lists’. Such inherent characteristics of the data available
from specific fields make certain methods become more appro-
priate than others. Methods such as Markov chain methods,
CEMC methods, RRA, Stuart, BARD and BIRRA are developed
specifically under the settings of genomic experiments or meta-
search engine building; therefore, they are expected to perform
better for ‘a few long lists’. Methods like Thurstone’s models,
paired comparison models and multistage models require
‘many short lists’ to work well [3, 16]. Also, methods like Borda’s
have been shown to work reasonably well for both data
structures.

Implementation

Software availability
Whether there is any software package or program readily
available for implementing a RA method is an important
consideration for practitioners. R packages ‘TopKLists’ and
‘RobustRankAggreg’, cover many methods mentioned in
‘Categorization of RA methods’ section, as summarized in
Table 1. These two packages will be used in our performance
evaluation. Note that they implement Borda’s methods in dif-
ferent ways, as will be discussed in ‘Performance evaluation’
section. In addition, BARD and BIRRA have accessible programs
for implementation in Cþþ and R, respectively, and more infor-
mation about the source code can be found in [1] and [11].

Figure 2. Four different states that an item can belong to in list j.
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Input data format
There are two ways of arranging rank data. The first is item-
based, where each row represents an item (say i), each column
represents a study (say j) and the (i, j)th cell displays the rank of
item i in study j. The second is rank-based, where each row is a
particular rank (say i), each column represents a study (say j)
and the (i, j)th cell displays the item that receives rank i in study
j. An example is given to illustrate each format in Table 2.

The item-based format can better accommodate different
real situations presented in ‘Characterization of various types of
lists’ section than the rank-based format. For example, suppose
that in Study 1, B and D are tied with the lowest rank. With the
item-based format, an equal rank (3 or 3.5) can be assigned to
both; however, with the rank-based format, one has to ran-
domly break the tie to enforce the exact ranks. Also, unlike the
item-based format, the ranked-based format cannot handle
items that have the ‘?’ status.

Some RA implementations (e.g. algorithms in
‘RobustRankAggreg’ and BARD’s Cþþprogram) work with both
types of input format, while other implementations (e.g. algo-
rithms in ‘TopKLists’) only work with one format or the other.
In fact, if rank-based format input is supplied to algorithms in
‘RobustRankAggreg’, the data are converted into the item-based
format before applying the RA methods.

Performance evaluation measures

One main task in many genomic studies is to identify genes
that are associated with some complex human disease. With
that in mind, a good measure to evaluate the performance of RA
methods should assess each method’s ability to rank relevant
genes accurately. Suppose only a limited amount of resources
are available to further investigate the genes originally studied,
then the ordering of genes ranked at the top of the list is crucial,
whereas the ordering of genes that are ranked close to the bot-
tom is almost irrelevant. In other words, rather than consider-
ing measures that can only evaluate the entire aggregated list
like AUC (area under the receiver operating characteristic
curve), we are more interested in measures that are feasible in
evaluating the top-ranked portion of the aggregated list. Such
measures include Spearman’s correlation (Pearson correlation
applied to the rankings instead of the actual values of two lists),
Kendall’s correlation (the ratio of number of concordant pairs
minus discordant pairs to total number of pairs), Spearman’s
footrule distance, Kendall’s tau distance and coverage rate (per-
centage of relevant genes covered by the subset of top-ranked
genes in the aggregated list). One advantage of the correlation
measures and coverage rate over the distance measures is that
they fall into fixed ranges: Spearman’s and Kendall’s correl-
ations both take on values in ½�1; 1�, and the coverage rate takes
on values in ½0; 1�. Note that Spearman’s footrule and Kendall’s
tau distances, as defined in ‘Frequentist methods’ section, are
designed for full lists. In Lin [33], these distance measures are
modified to be applicable to top-k lists.

The correlation and modified distance measures may be
misleading in some situations. To illustrate this, we present a
hypothetical example. Suppose 1000 genes are considered by

three studies and three genes labeled as Gene 1 to Gene 3 repre-
sent the ‘signal’. In other words, it is only of interest to correctly
identify these three genes by having them ranked highly in an
aggregated rank list. The true rank and three aggregated ranks
(A1–A3) of Gene 1 to Gene 3 are listed in Table 3. If either
Spearman or Kendall correlation is used to compare the aggre-
gated ranks, one would conclude A2 performs better than A3
which performs better than A1, which is clearly not the case. If
Spearman’s footrule distance is used, then one would conclude
that A1 performs better than A2, which is correct; however, A2
would be deemed better than A3, which is not necessarily desir-
able. Similarly, if Kendall’s tau distance is used, one would ar-
rive at the wrong conclusion that A2 performs better than A3,
which performs better than A1. However, if one uses coverage
rates with two specific cutoffs (3 and 10), the conclusions are
more reasonable. Clearly, A1 has the best performance, and the
coverage rates using either cutoff correctly identify this.
Comparing A2 and A3 is more difficult as the better performing
one varies with the choice of the cutoff, which usually depends
on the resources available. Therefore, in our performance evalu-
ation, coverage rates with different cutoffs will be used.

We note that there exist applications where the complete
ranking of items is of interest, e.g. combining people’s rankings
on general knowledge such as ranking the 44 US presidents in a
chronological order [34] and people’s preference on 10 types of
sushi [35]. In such situations, global measures such as correl-
ations and distances are useful.

Performance evaluation

We conduct several sets of simulation studies to evaluate the
performance of RA methods commonly used in genomic appli-
cations. Each method is tested under various settings. Methods
compared include: four non-optimization-based methods,
MEAN, MED, GEO and L2, all from Borda’s collection; two
optimization-based methods, CEMC.s and CEMC.k; two
distribution-based methods, RRA and Stuart; three Markov
chain-based methods, MC1–MC3; and two Bayesian methods,
BARD and BIRRA. As mentioned in ‘Implementation’ section, R
packages ‘TopKLists’ and ‘RobustRankAggreg’ have different
implementations for MEAN, MED and GEO, and so we add a
lower case letter in front of these methods to indicate which
package is used for implementation: ‘r’ for ‘RobustRankAggreg’
and ‘t’ for ‘TopKLists’. Specifically, ‘RobustRankAggreg’ uses the
normalized rank for all the methods implemented. For MEAN, it
assigns P-values for each mean rank whose distribution is
asymptotically normal. ‘TopKLists’ preprocesses the input data
set, primarily incorporating information about the space of a

Table 1. RA methods implemented in R packages

R package RA methods implemented

TopKLists MEAN, MED, GEO, L2, MC1-MC3, CEMC.k, CEMC.s
RobustRankAggreg MEAN, MED, GEO, RRA, Stuart

Table 2. Two data formats; capital letters denote items and numbers
denote their ranks

Study 1 Study 2 Study 3 Study 4

Item-based format
A 1 2 4 2
B 3 3 2 3
C 2 1 1 4
D 4 4 3 1
Rank-based format
1 A C C D
2 C A B A
3 B B D B
4 D D A C
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base ranker (if available) and replacing missing ranks with the
maximum rank plus one.

For each of these methods, the default setting is used in our
evaluation. For example, for MC and CEMC methods, we use the
default stopping criteria, and for BARD, we use the default num-
ber of Gibbs steps, etc. Two models based on different data-
generating mechanisms are used to evaluate the methods.
Model I is based on a popular setup used in previous papers [10,
11], where the underlying truth of a gene is dichotomous, i.e. ei-
ther relevant or not. Model II is based on a latent variable setup
that allows for varying quality of base rankers, where the latent
variables are continuous, measuring the global importance of
genes involved. For each mechanism, different types of ranked
lists under Scenarios A and B, as outlined in ‘Characterization of
various types of lists’ section, are examined. All simulation re-
sults are based on 1000 replications.

Besides having high coverage rates, a desirable RA method
should be able to work with long input lists (a few thousands or
more) within a reasonable amount of time. Therefore, another
simulation is conducted to evaluate the computing time of dif-
ferent methods, as we increase the length of input lists.

Simulation under model I

Let I ¼ f1; . . . Ig (I¼ 1000) denote the set of genes of interest, and
J ¼ J1 þ J2 (J1 ¼ 5; J2 ¼ 0; 5) denote the number of base rankers to
be aggregated, where J1 represents the number of reliable
rankers, which contain signals, and J2 represents the number of
unreliable rankers, which do not contain any signal, i.e. pure
noise. Signal rates c (i.e. the proportion of signal genes in I ) of
0.01 and 0.05 are examined. For signal genes, we draw values
from either N(1, 1) or Exponential(1) for reliable studies, and
from N(0, 1) for unreliable studies. For non-signal genes, we
draw values from N(0, 1). Observed gene ranking in each study
is determined by sorting these generated values. Note that
under Model I, a true ranking is not available because the under-
lying status of each gene is either signal or non-signal. As men-
tioned in ‘Characterization of various types of lists’ section, it is
common for studies to provide only exact ranks for the top-
ranked genes, and the parameter pT (pT ¼ 0:01; 0:05; 0:1; 0:2; 1) is
used to control the proportion of top ranked genes. When pT ¼ 1
; the base ranker gives a locally full list, otherwise a top-k list.
Finally, an inclusion rate k (k ¼ 0:6; 0:8; 1) is used to control the
chance that each gene is investigated by each base ranker.
When k 6¼ 1; the base ranker gives a partial list. When pT ¼ k ¼ 1;
the base ranker gives a globally full list. Note in practice pT and k

could be different across base rankers.
When pT 6¼1, base rankers are generated under Scenarios A

and B, respectively. For Scenario A, top-k lists are generated,

where bottom ranked genes are set as ties; for Scenario B, top-k
only lists are generated by omitting bottom-ranked genes. To
better separate the effect of these parameters, the same values
of (k, pT) are used across all base rankers first, referred to as the
fixed settings. Additionally, to assess the effect of each design
parameter individually, all other parameters are held constant.
The setting where pT¼ 0.2, k ¼ 0:8; J2 ¼ 0; c ¼ 0:05 and signal
genes are generated from N(1, 1) is selected as the controlled
setting, denoted as CA=B for Scenarios A/B. When assessing the
effect of the proportion of top ranked genes pT, pT varies, while
other parameters are fixed as in the controlled setting, and
these settings are denoted using the notation of the form PA=B

pT ;

for example PA
0:1 represents the setting where pT¼ 0.1 under

Scenario A. Similarly, when assessing the effect of the inclusion
rate k, all other parameters are fixed as in the controlled setting,
and the notation of the form LA=B

k is used for these settings.
Here, CA=B; LA=B

0:8 and PA=B
0:2 all represent the controlled setting, and

we consistently use CA=B for this setting. There are four add-
itional settings included to assess the performance when J2¼ 5,
when c¼ 0.01, when signals are generated from Exponential(1)
and when globally full lists are used, denoted as JA=B

2 ; GA=B; EA=B

and F, respectively. Finally, a mixed setting, denoted by MA=B, is
examined as well, where for each base ranker, we randomly se-
lect pT from f0:01; 0:05; 0:1; 0:2; 1g, k from f0:6; 0:8; 1g and the
others remain the same as in CA=B. Three coverage rates are re-
corded based on top 10, 50 and 100 genes of each aggregated list
for all settings except for cases where there are <50 or 100 genes
in the aggregated lists.

The CEMC methods are much more computationally expen-
sive than the other methods, as will be discussed in
‘Computation time’ section. Therefore, they are excluded for
most of the parameter configurations except for low pT values
(0.01 and 0.05) that produce much smaller input data sets. It
turns out that neither CEMC.k nor CEMC.s is among the best-
performing methods, and so their performance is not reported
hereafter.

Figure 3 presents a heat map for standardized coverage rates
based on top 50 genes in each aggregated list. Under a given set-
ting, the standardized coverage rate of each method is calculated
by subtracting the mean coverage rate over all methods in this
setting and then being divided by the corresponding SD. Results
for coverage rates based on top 10 and 100 genes are provided in
Supplementary Figures S1–S2. Overall, the patterns of relative
performance of the methods are similar, while the differences be-
tween methods are smaller as the cutoff for the top genes moves
up. Under Scenario A, Stuart seems to be the best method, fol-
lowed closely by rGEO and MC3. The performance of MC2 is simi-
lar to Stuart in most settings, but it performs poorly under the
mixed setting MA. Among all, BIRRA is clearly the worst except
for the settings LA

1 and F, where all the methods perform simi-
larly. All the other methods fall somewhere between the top four
(i.e. Stuart, rGEO, MC3, MC2) and BIRRA, and their performance is
typically closer to the top group than to BIRRA. Under Scenario B,
the top group includes five methods, tMean, tGEO, tL2, MC1 and
MC3; the bottom group includes rMEAN, rMED, rGEO, RRA and
BIRRA, among which BIRRA is much worse than the other four in
most settings, and the other methods including Stuart and BARD
form the middle group. In addition, we find that BARD is the best
when there are unreliable base rankers included (i.e. JA=B

2 ). This is
not surprising as BARD takes into account the varying quality of
base rankers, as mentioned in ‘Bayesian methods’ section. For
MEAN, MED and GEO, the performance of the two implementa-
tions is not particularly different under Scenario A, but
‘TopKLists’ does uniformly better than ‘RobustRankAggreg’ under

Table 3. Examples where correlation and distance measures are
misleading

True rank A1 A2 A3

Gene 1 1 3 8 2
Gene 2 2 2 9 21
Gene 3 3 1 10 1
Spearman correlation – �1 1 �0.5
Kendall correlation – �1 1 �0.33
Spearman distance – 4 21 22
Kendall distance – 999 0 666
Coverage rate with top 3 – 1 0 0.67
Coverage rate with top10 – 1 1 0.67
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Scenario B. As mentioned previously, these implementations
mostly differ in whether missing ranks are replaced with the
maximum ranks plus one under Scenario B. There seems to be
evidence in favor of the replacement.

To understand the overall performance of each method
under the different scenarios, we further plot the mean

coverage rates (based on top 10, 50 and 100 genes) over all the
settings under each scenario in Figure 4. As we expect, every
method has better overall performance as the percentage of
genes used to capture the signal increases, regardless of the
scenario. The mean performance of most methods drops in
Scenario B compared with that in Scenario A in most cases as

Figure 3. Heat map of standardized coverage rates based on the top 50 genes in the aggregated list using data generated from Model I. The actual coverage rates of

different methods in various settings are superimposed to the colored map.

Figure 4. Average coverage rates of different methods (based on top 10, 50 and 100 genes) across all settings of each scenario using data generated from Model I. For

each method, the left bar is for Scenario A and the right bar for Scenario B.
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less information is known in Scenario B. Also, the relative per-
formance of the methods can change depending on the cutoff
used to calculate the coverage rate. For example, MC2 has better
coverage than MC3 with cutoff 10, but MC3 has better coverage
than MC2 with cutoff 50 and 100.

Figure 5 shows how the performance changes as the gene in-
clusion rate k changes, while other parameters are held con-
stant. Under Scenario A, the coverage rate of each method
decreases as k decreases from 1. This can be easily seen from
the three left panels, in each of which the line for k¼ 1 is com-
pletely above that for k¼ 0.8, which is completely above that for
k¼ 0.6. Note that BIRRA performs comparably with the other
methods when k¼ 1, but its performance deteriorates substan-
tially as k moves away from 1. Under Scenario B, some of the
methods, including rMEAN, rMED, rGEO, RRA and BIRRA, seem

to be robust to the decrease of k, while the others have a similar
pattern as in Scenario A.

Figure 6 displays how the performance changes as the pro-
portion of top ranked genes pT changes, while other param-
eters are held constant. With an increasing pT, more and more
ranking information becomes available, and there is a gener-
ally nondecreasing trend for all the methods except for BARD
under Scenario A. However, under Scenario B, there are meth-
ods that (sometimes) show the opposite pattern, such as
rMED, rGEO, RRA and BIRRA. Under either scenario, when
the number of top ranked items (pT� I) becomes much
greater than the cutoff for the coverage rate, the gain in
performance, if any, tends to be smaller and smaller, which
is reflected by the observation that the lines tend to be closer
as pT goes up.

Figure 5. Coverage rates of different methods using data generated from Model I with varying gene inclusion rate k, while other parameters are held constant.

Figure 6. Coverage rates of different methods using data generated from Model I with varying proportion of top ranked genes pT, while other parameters are held con-

stant. For the cutoff 50, coverage rates are not reported for pT¼0.01. This is because all five base rankers only provide rankings for their own top 10 items, and their

union is likely to contain <50 items because items from different base rankers tend to overlap. The same reasoning applies to the cutoff 100 for pT ¼ 0:01;0:05, and so

the coverage rates in these settings are not reported.
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Supplementary Figure S3 displays results under settings JA=B
2 ,

GA=B; EA=B; MA=B and F, with the controlled setting CA=B as a refer-
ence. For a detailed discussion about comparison between the
different settings and CA=B, see Section S2.1 in Supplementary
Material.

Simulation under Model II

Many genomic studies involve large-scale multiple testing, and
gene rankings are then produced based on statistics from Z, T
or nonparametric tests. This motivates us to consider Model II,
a latent-variable model, for generating rank data: zij ¼ hi þ �ij,
where the observed rank of gene i in study j (say yij), is deter-
mined by zij, that is if zij > zi0 j, then yij < yi0 j (larger values are
ranked higher). The zij can be thought of as some function of the
test statistic used, whose value is typically not available when
performing RA. Further, the true rank of gene i is determined by
hi, which measures the global importance of gene i. We assume
that all his are independent and identically distributed, and they
are mutually independent from the error terms �ijs. We further
assume �ij �iid Nð0; sjÞ, where sj is the study-specific precision.
Note that sj ¼ 1=ðq�2

j � 1Þ, where qj is the Pearson correlation be-
tween zijs and his for all genes in study j, measuring the quality
of study j. Our simulation setup under Model II is presented in
Section S3.1 of the Supplementary Material.

Figure 7 presents a heat map for standardized coverage rates
based on top 50 genes under Model II. Results for coverage rates
based on top 10 and 100 genes are provided in Supplementary
Figures S4 and S5. Under Scenario A, we find that rGEO and MC2

are the best two, which perform consistently well in all settings.
Other methods including tMEAN, tGEO and MC3 perform well
and can offer performance comparable or close with the best in
most settings. On the other hand, BIRRA and BARD are the
worst two. But BARD improves substantially as the cutoff for
the top genes moves up. Under Scenario B, the performance of
the different methods shows greater heterogeneity, compared
with Scenario A. Overall, tGEO, MC2 and BARD are the best three
in Scenario B, where tGEO tends to be a bit better than the other
two. Stuart appears to perform well, but with a bit less consist-
ency. BIRRA is still the worst among all. In addition, rMEAN,
rMED, rGEO and RRA tend to perform poorly, especially for the
cutoffs 50 and 100, which is consistent with what we observe in
Scenario B under Model I.

As to how design parameters (e.g. q, k, pT) affect the perform-
ance of the methods; see results presented in Section S3.2 in
Supplementary Material.

Computation time

To assess computational efficiency of different methods, (J¼ 5)
full lists are generated with varying number of genes (I¼ 10, 50,
100, 200, 1000, 5000, 10 000). All the methods except for CEMC,
BARD and MC1–3 are computationally efficient, all with running
time of a few seconds even when I¼ 10 000, using Scientific
Linux 6 (64 bit) operating system with IntelVR XeonVR CPU X5560
@ 2.80 GHz. The results are summarized in Table 4. We can see
that CEMC methods are substantially more computationally in-
tensive than the others and are essentially unrealistic to be

Figure 7. Heat map of standardized coverage rates based on the top 50 genes in the aggregated list using data generated from Model II. The actual coverage rates of dif-

ferent methods in various settings are superimposed to the colored map.
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used when there are more than a few hundred genes. MC meth-
ods are computationally efficient for I< 1000, but they ramp up
the running time considerably as I further increases. BARD, on
the other hand, ramps up more slowly.

Data example

We compare RA methods using rank data from four non-small
cell lung cancer (NSCLC) studies listed in Table 5. In our simula-
tion, we evaluated different methods where either the spaces of
all base rankers are known (Scenario A) or unknown (Scenario
B), mainly to separate effects of the two scenarios. However, in
some applications, the spaces of base rankers can be a mixture
of the two, and we use this example to illustrate this situation.
As seen in Table 5, there are three lists from Scenario B and one
from Scenario A. After carefully examining how the original
studies generated ranked lists (based on formal analyses), we
believe all the four lists fit in Simulation Model II better than
Model I, as they all relied on statistics that reflect statistical sig-
nificance of individual genes to rank genes. Also, as the inclu-
sion rates and proportions of top ranked genes vary among
studies, the mixed setting from the simulation is the one most
comparable with this example. The union of genes from all the
four studies consists of �14 000 distinct genes. However, re-
searchers rarely consider more than a few hundred genes
ranked at the top in the aggregated list, so we consider coverage
rates based on the top 10, 50, 100, 200, 300, 400 and 500 genes.
Also, the computing times of Markov chain methods and BARD
are sensitive to the lengths of input lists as mentioned in
‘Computation time’ section. Based on these considerations,
genes that are not ranked in the top 1000 in any of the four lists
are omitted to save computing time, as they would almost cer-
tainly not get in the top 500 anyways. After omitting these
genes, there are over 2000 genes left.

The challenge to evaluate RA methods with real data appli-
cations is that the underlying ‘truth’ about the genes is un-
known. Here, we use a list of genes that are believed to be
highly related to NSCLC in the lung cancer literature as the sur-
rogate of the ‘truth’. This list was obtained by merging the can-
cer gene lists for NSCLC from four sources: the Catalogue Of
Somatic Mutations In Cancer (COSMIC), MalaCards and The
Cancer Genome Atlas (TCGA) (these gene names are provided in
Section S4 of the Supplementary Material), plus a similar list
used in Chen et al. [36].

The left panel of Figure 8 shows coverage rates from aggre-
gating all the four lists based on different numbers of top genes

(used as the cutoff) for each of the methods. In this example,
BARD, MC2 and MC3 appear to work better than the other meth-
ods, and Borda’s methods tend to perform poorly, regardless of
the implementation. When the cutoff is low (� 100), BARD per-
forms poorly and the coverage rate is zero, but it tends to out-
perform the others for larger cutoff values. BIRRA seems to
perform better on real data than on simulated data, especially
for larger cutoffs, although it is still among the bottom group.
Further, it is not surprising to observe that MC2 is among the
top group—recall in ‘Simulation under Model II’ section, MC2 is
the only method reported to perform well for both scenarios
under Model II.

To understand the behaviors of the methods better, we also
report results from aggregating the three lists from Scenario B
in the right panel of Figure 8. Obviously, BARD is the best and
BIRRA is the worst, which is consistent with simulation results
for the mixed setting MB (where pT, k and q all vary across base
rankers) under Model II. Thus, it is not hard to understand why
BARD is one of the best when combining all the four lists, of
which only one is from Scenario A. By comparing the two panels
of Figure 8, we find that adding an extra list (from the different
scenario) would not necessarily increase the coverage rate.

Discussion

In this article, a systematic way of classifying RA methods is
provided, along with an updated review. Then important prac-
tical issues that have been largely overlooked in regard to the
RA problem are discussed in-depth. A formal framework is de-
veloped to characterize different situations of a base ranker de-
pending on the availability of ranks of items investigated and
whether the underlying space is known. Specifically, the con-
cepts of globally/locally full lists, top-k/top-k only lists and par-
tial lists are rigorously defined. Previous work on RA methods
often focuses on full lists, which may be restrictive in genomic
applications. Kolde et al. [10] discusses ad hoc solutions to ac-
commodate top-k lists and partial lists. However, these situ-
ations are not included in their simulation study. Deng et al. [1]
provides a formal way of handling these situations with their
proposed method BARD and includes the case of top-k only lists
in their simulation study but not the case of partial lists. In con-
trast, a comprehensive simulation study is carried out in this
article with four unique features: (i) we distinguish top-k lists
from top-k only lists; (ii) we introduce a parameter for the gene
inclusion rate to allow for partial lists; (iii) in addition to the
popular data-generating mechanism used in Model I, we

Table 5. Sources of ranked lists in the NSCLC example

Study (data set name) Platform Type of list Scenario k

[37] Affymetrix Microarray Top-k only B 100
[38] (Moff) Affymetrix Microarray Top-k and partial A 200
[39] Affymetrix Microarray Top-k only B 3502
[40] Illumina RNAseq Top-k only B 2273

Table 4. Computation time for BARD, MC and CEMC methods

I 10 50 100 200 1000 5000 10 000

BARD ~10 s ~1 min 2–3 min ~5 min ~10 min ~3 h ~10 h
Average of MC1–3 <1 s <1 s ~1 sec <10 s A few minutes ~5 h ~2 days
CEMC <1 min ~1 min A few hours A few days >30 days – –
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consider the latent variable model, which seems to be more nat-
ural in generating ranked data in genomic applications, as sug-
gested by our data example; and (iv) the evaluation measure
used (coverage rate) is carefully selected and evaluated for mul-
tiple cutoffs.

Based on our simulation, the performance of a RA method
may depend largely on the amount of information available
about each base ranker (whether the space is known, the pro-
portion of top ranked items available, whether every item of
interest is originally investigated, the quality of ranking, etc.) as
well as the amount of resources available that determines the
cutoff that can be afforded. As to the relative performance of
the different methods evaluated, we summarize our simulation
results from ‘Performance evaluation’ section in Table 6, to pro-
vide general guidelines in practical situations for the selection
of an appropriate method (or avoidance of any method with
poor performance). Several conclusions can be drawn from
the table: (i) BIRRA appears to perform poorly, regardless of the
model and scenario; (ii) rGEO, MC2 and MC3 (in boldface in the
table) often perform well under Scenario A, and tGEO (under-
lined) performs well under Scenario B, regardless of the under-
lying model; (iii) RRA and the ‘RobustRankAggreg’
implementation of Borda’s methods MEAN, MED and GEO tend
to perform poorly under Scenario B, regardless of the underlying
model.

We find that when comparing results from Scenario A with
those from Scenario B, RA methods tend to improve their per-
formance, as the information about those bottom ties becomes
available, and the mean differences seem to be not negligible
and even sizable sometimes. This suggests that such informa-
tion is helpful to improve the performance and if available, it
should be used. Two different implementations of several
Borda’s methods (MEAN, MED, GEO) are also evaluated in our
simulation, where the differences lie in variations in how
ranked data are processed to allow for non-full lists before
applying the methods. The simulation results suggest that dif-
ferent data preprocessing procedures could greatly affect the
performance. According to our findings, the adjustment of
replacing missing ranks with the maximum rank plus one
seems to improve the performance of Borda’s methods in most
cases with top-k only lists that belong to Scenario B, whereas
other adjustments such as normalizing ranks can have either a
positive or negative effect on a case-to-case basis. This seems to

further suggest that how to use the information available for
different types of items in the entire space I (based on the for-
mal characterization of ranked lists and items in
‘Characterization of various types of lists’ section) would be crit-
ical to further enhance the RA performance. Thus, for partial
and top ranked lists that often occur in genomic applications, a
(Bayesian) approach that can rigorously distinguish items from
T j, Bj and N j for each base ranker, in addition to distinguishing
base rankers of different quality (which BARD offers), would be
of great interest for future research.

Finally, we mention that in our data example, genes that
were never put in the top 1000 list by any base ranker are omit-
ted when defining the entire space of items I , to purposefully
filter out non-useful information. Such an idea would greatly fa-
cilitate computing for those computationally intensive meth-
ods, with little impact on their performance.

Key Points

• An updated review and a systematic way of classifying
RA methods are provided.

• A framework for different types of ranked lists that
occur frequently in genomic settings is formalized.

• Important practical issues that have been largely over-
looked in the past are discussed.

• RA performance may depend largely on amounts of

Figure 8. Coverage rates of different methods for the NSCLC example.

Table 6. The best and worst RA methods by model and scenario
based on the overall performance from simulation

Model Scenario Best Worst

I A Stuart, rGEO, MC3 BIRRA
MC2

B tMEAN, tGEO, tL2 BIRRA, rMEAN,
MC1, MC3 rMED, rGEO,RRA

II A rGEO, MC2 BIRRA, BARD
tMEAN, tGEO, MC3

B tGEO, MC2, BARD BIRRA, rMEAN,
Stuart rMED, rGEO,RRA

Note: Methods that perform well for both models under Scenario A and Scenario

B are bolded and underlined, respectively.
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information available about base rankers and resources
available for follow-up investigation.

• Information about bottom ties, if available, should be
used, and how to use such information can make a sig-
nificant difference.

Supplementary Data

Supplementary data are available at BIB online.
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