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Abstract: This paper presents the results of research on the influence of the components of salt flame
retardants on the compressive strength of wood depending on the time of accelerated aging. The
effect of the agent was assessed on the basis of the change in the strength of treated wood compared
to that of untreated wood. In addition, a statistical analysis of the obtained results was used to
determine which of the components most significantly affect the changes in the compressive strength
of wood along the fibers, and to what extent. It was found that extending the aging process time in the
case of control and boric acid-protected samples did not significantly change the strength properties.
It has also been found that some compounds contained in fire retardant have an antagonistic effect
related to the compressive strength of wood.

Keywords: wood; fire retardants; artificial ageing; compression strength

1. Introduction

Fire is the fastest destructive factor for wood, but it is impossible to eliminate it in
everyday life. Various measures to reduce the flammability of wood material have been
used for centuries, but they are still incapable of completely preventing the burning of this
material. They allow for a significant reduction of parameters, such as the spread of flames
over the surface, weight loss, or the rate of heat release. Among the fire retardants, salt
compounds and mixtures thereof are most commonly used. They include: phosphates,
ammonium sulphates and their derivatives, boric acid, borax, urea, and potassium carbon-
ate [1,2]. Undoubted advantages of fire-retardant treatment, after years of use, may have
negative consequences for the structural strength of the protected wood. The strength prop-
erties are influenced, among others, by the type of flame retardant, its pH, impregnation
technology and wood humidity, and the conditions in which the wooden elements are used.
Publications presenting research on the fire retardants effectiveness of preparations clearly
confirm the deterioration of wood strength on the basis of parameters such as: modulus of
elasticity (E) and compressive strength (Rm) [1,3,4]. In the research by Grześkowiak et al. [5]
on the fire-retardant use of potassium carbonate, it was found that the strength of pine
wood, treated with a 20% solution, was decreased by 20% compared to unprotected wood.
Moreover, aspen wood impregnated with the same solution showed a decrease in com-
pressive strength by about 15% when impregnated with the vacuum-pressure method
using. The research by Surmiński and Lutomski [6] on the effect of treatment of pine wood
with fire retardant preparations also showed that wood treated with the vacuum-pressure
method with 25% K2CO3 showed a decrease in compressive strength by 11.78%. When
impregnating the wood with 25% NH4H2PO4, (NH4)2SO4 mixture using the vacuum
method, an improvement in wood strength of 2% was found compared to unprotected
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wood. The same authors using 30% vacuum treatment with the NH4H2PO4, (NH4)2SO4,
H3BO3, Na2B4O mixture achieved an improvement in compressive strength of 13.19%.
The product [7], using a 10% mixture of phosphates, sulphates, boron compounds, and
salts of benzoic acid, achieved a strength improvement of 7.1% compared to unprotected
wood. The conducted research on long-term heating of wood protected with, among others:
phosphoric acid (PA), ammonium dihydrogen phosphate (MAP) or a mixture of borax and
boric acid (BBA) showed that phosphoric acid had the greatest impact on the decrease in
strength. The mixture of borax and boric acid deteriorated the strength of the wood the
least [8,9]. In tests made by Sweet et al. [9], three variants of temperature and humidity were
used, imitating: the temperature in a dry room (27 ◦C), the temperature to which the roof
sheathing may be exposed (54 ◦C), and finally 80 ◦C. Both during and after the exposure,
measurements were made of the modulus of elasticity, moisture, modulus of breaking, and
maximum load. It was found that the factor determining the strength drop was the nature
of the chemical compound used, followed by the exposure conditions and the method
of saturation. In research on the influence of the conditions of use on the properties of
protected wood, simulations of these conditions are used, known as accelerated aging.
Changes in wood resulting from accelerated, artificial aging should correspond to the
changes that would be caused by exposure to weather conditions, with particular emphasis
on the effects of humidity and temperature. Wood heated in the atmosphere of water vapor
requires lower decomposition activation energy than raw material at elevated temperature,
but in a dry environment [10–13]. There are many methods based on the simulation of
natural conditions in the laboratory, differing in cycle duration, annealing and freezing
temperatures. For example, the ASTM D 1037 method [14] provides a 60-h cycle consisting
in soaking the wood, steam, freezing, steam and heating in dry air. Kajita et al. [15] give
an accelerated aging method based on BS 5669-1:1989 [16] and consisting in immersion in
water at 20 ◦C for 36 h, freezing at −12 ◦C for 24 h, and heating in dry air at 70 ◦C for 36 h.
On the other hand, Riwier [17] provides two methods of accelerated aging of the wood
used: Cyclic-boil dry method, which consists in repeatedly submerging the material in hot
water and heating with dry air, and the vacuum-pressure-dry cycle method, which consists
in immersing the wood in water under negative pressure, reducing vacuum, pressure and
heating with dry air. As can be seen from the above description, the applied conditions of
artificial aging differ in terms of values and duration of action, etc. Accelerated aging is
purely theoretical, because it is impossible to transfer this long-term process to laboratory
conditions, so as to accurately reproduce the changes taking place in the structure of the
tested materials.

In this study, it was decided to focus on determining the effect of fire-retardant
treatment of wood and accelerated aging time on the strength parameters of the protected
wood. It was decided to protect the wood with chemical compounds included in the
fire-retardant preparation, as well as with the fire-retardant preparation itself, in order
to determine which of the compounds most significantly influences the changes in the
compressive strength of the wood along the fibers, and to what extent. Flammability
properties of the tested commercial fire retardant were included in publications [18,19],
where the effectiveness of fire retardants was between 75% and 88% measured with the MFT
method [20]. Moreover, the effectiveness of chemical compounds is known and described
in literature [21].

2. Materials and Methods

Samples with dimensions of 2 cm × 2 cm × 3 ± 0.2 cm were cut from Scots pine (Pinus
sylvestris L.) sapwood boards. A total of 10 samples for each test variant were selected
for the tests. The samples were selected according to sequence of occurrence in a given
lath, without defects and visible changes caused by blue stain fungi [22,23]. The research
variant consisted of a given chemical compound and the number of accelerated aging
cycles. Each of the variants was tested separately. The test specimens were treated in
vacuum dryers by the full-cell vacuum method using a vacuum of 0.1 MPa maintained
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for 20 min, and then the vacuum was gently reduced to atmospheric pressure and kept
in solutions for another 2 h. After impregnation, the samples were air-conditioned for
14 days at the temperature of 23 ± 2 ◦C and humidity of 65 ± 5%, in a heated room with
forced air circulation, until the wood moisture content was 10 ± 2%. The control samples
had the same humidity throughout the test. The humidity of the samples was determined
by the dryer-weight method [20]. The wood was treated with 6 solutions of chemical
compounds with wood impregnation average gain (dry mass of chemical compound)
(kg/m3): monoammonium phosphate (MAP) 62.85 kg/m3, boric acid (BA) 17.25 kg/m3,
sodium tetraborate (borax) (Bx) 18.6 kg/m3, urea (U) 64.48 kg/m3, monoammonium
sulphate (MAS) 66.51 kg/m3 and diammonium phosphate (DAP) 61.57 kg/m3, and a
commercial preparation (FR) 59.98 kg/m3 at a concentration of 10%, except for borax
and boric acid where the concentration was 4%. Tests were also carried out on wood
not subjected to impregnation, i.e., control (C). Based on the literature, it was decided to
develop a proprietary accelerated aging cycle simulating conditions in a temperate climate.
An accelerated aging process was performed to determine progressive changes in the wood.
The complete course of the aging process was 0, 8, and 16 cycles. Each cycle consisted of
the following phases:

1. Heating (130 ◦C for 24 h)
2. Freezing (−15 ◦C for 24 h)
3. Heating (130 ◦C for 24 h)
4. Maintaining over a supersaturated solution of KNO3 giving approx. 90% (temp.

40–45 ◦C for 24 h)
5. Freezing (−15 ◦C for 24 h)

After the accelerated aging process, the samples were tested for physical changes and
strength decline. Before the compression tests, samples were conditioned (until equilibrium
moisture content (constant mass) was achieved) in the same conditions and mass as before
the aging process, and their dimensions were measured using an analytical balance accurate
to 0.001 g (Sartorius GmbH, Göttingen, Germany) and a digital caliper with accuracy to
0.01 mm [23]. Then, the beams were subjected on compressive strength test according to
the ISO 13061-1:2014 [24], ISO 13061-5:2020 [25] and ISO 13061-17:2017 [26] standard on the
Zwick Z100 testing machine (Zwick GmbH, Ulm, Germany) [23,27]. During the tests, the
value of the compressive strength and Young’s modulus were recorded [28].

A statistical analysis of the obtained results was performed, starting with the de-
termination of appropriate measures of central tendency (mean) and standard deviation
(SD) [28]. The Kolmogorov–Smirnov test was used to verify the compliance with the
theoretical normal distribution, and the homogeneity of variance was tested based on the
Bartlett test. In order to determine the significance of the analyzed impregnation types
and the number of aging cycles, a two-factor analysis of variance was used. Tukey’s HSD
test was used to determine statistically homogeneous groups. The statistically significant
results were those with p < 0.05. All calculations were performed in Statistica 13.3 software
(StatSoft Polska Sp. z oo, Kraków, Poland).

3. Results

The research results presented below reflect the average values of the analyzed features
obtained for individual research variants. Analyzing the basic strength parameters, Rm
(compressive strength) and E (Young’s modulus), it can be concluded that the highest value
of compressive strength was obtained for samples protected with urea and subjected to the
aging process for 16 cycles. In this case, Rm was 62 MPa. Samples protected with FR and
aged for eight cycles were characterized by a slightly lower value (61 MPa). The lowest Rm
values were observed for samples not aged, but protected with MAP, where the value was
38.7 MPa. Slightly higher values were obtained for samples protected with Bx and U, not
subjected to aging. These values were 39.3 and 39.8 MPa, respectively. All the non-aged
samples had lower Rm values compared to the samples protected with the same aged
compounds (Figures 1 and 2).
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The absorption of the preparation and individual components was similar for the
concentrations used. The obtained data show that the degree of absorption did not affect
the strength properties of the protected wood.
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Analyzing changes in wood saturated with individual compounds, an increase in
strength with aging time was found in the case of U, Bx, MAP, DAP, and MAS. For the
above compounds, the increase in Rm over time from 0 to 16 cycles (assuming the values
for the 0 aging cycle as reference) was, respectively, for the samples protected: with urea
after eight cycles by 42.96% and after 16 cycles by 55.78%, with borax 25.7 and 36.39%, MAP
31.52 and 35.14%, DAP 18.39 and 36.08%, and MAS by 13.95 and 14.58%. For the remaining
test variants, the increase in the strength value took place until the 8th aging cycle, while in
the 16th cycle it was lower, however, the values did not reach the level for the 0 cycle. These
values were respectively 15.95% and 14.52% for the control samples, 48.0% and 47.5% for
the samples protected with boric acid, and 18.67% and 3.11% for the FR protected samples.
Analyzing the above changes, it can be concluded that extending the aging process in the
case of control samples and samples protected with boric acid does not significantly affect
the changes in strength between the 8th and 16th cycle. The observed decrease in strength
took place in the case of wood protected with FR, where the change amounted to 15.5%.
This means that the compounds included in the composition of the preparation may act
in an antagonistic manner, considering the influence on the compressive strength. The
modulus of elasticity E showed similar dependencies in most of the analyzed research
variants. A deviation from this relationship were the samples protected with urea, where
the lowest mean value was obtained for samples aged for 8 cycles (Table 1). Significant
increases in the value of E were observed after the 16th cycle of aging compared to the 0 and
8 cycles for compounds such as: Bx, MAS, and DAP. For wood treated with Bx, the increase
in the value of E after the 8th cycle was 22.98% and after 16th cycle, 50.81% in relation to the
0th cycle as the reference aging. Similar values were obtained for MAS and DAP protected
wood, respectively: 34.18% and 60.77% as well as 25.43% and 60.89%. In the case of control
samples, the differences between the E values for the unaged and aged samples for 8 and
16 cycles were not that significant and amounted to 9.51% after the eighth cycle and 3.89%
after the 16th cycle, respectively. For samples protected with BA and MAP, the drops in
E values after the 16th cycle as compared to the 8 aging cycles were not that significant
and amounted to 11.33% and 5.66%, respectively. The greatest changes in the values of
Young’s modulus were observed for wood protected with FR, where after the 8th cycle of
aging there was an increase by 45.96%, while after 16 cycles of aging only by 9.04% (the
difference between the 8th and 16th cycles were 36.92%. Considering the composition of the
FR preparation, it can be concluded that it does not adversely affect the strength properties
of wood. Considering the obtained results concerning the basic strength parameters of the
tested variants, it can be concluded that urea does not affect the values of the elasticity
modulus E, regardless of the aging variant, as compared to the control samples. The highest
positive effect on E values was demonstrated by MAS, which obtained higher E coefficient
values with increasing time and number of aging phases. Moreover, samples protected
with FR showed an increase in the E coefficient value during aging up to eight cycles.
After 16 process cycles, the E value for FR dropped to a value similar to that of the unaged
samples. In the case of the other variants, the E coefficient was lower than E for the control
samples. In the case of DAP and Bx, the values of this coefficient after 16 aging cycles
are higher than after eight and 0 cycles, while for samples protected with MAP and BA,
after 16 aging cycles, the value of the E coefficient is lower than after eight. Such changes
in the values of compressive strength and Young’s modulus compared to control wood,
especially along with the elongation of the aging time, are caused by the chemical nature
of individual components. The pH of the solutions of individual components was of the
greatest importance with regard to the decrease in strength. The greatest changes were
observed for the components whose pH was acidic (pH near 4–5): U, MAP, MAS, BA. The
remaining compounds and the FRs had a pH close to neutral. Control samples without the
aging process had a 5.3 pH value, measured using indirect cold water extraction method.
Compounds with acidic pH cause, along with the prolongation of the action time, the
hydrolysis of cellulose and hemicelluloses, thus lowering the strength properties of wood.
Acidic fire retardants have the ability to catalyze the glucose dehydration process, resulting
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in cellulose depolymerization. This degrades the fibers, reducing their strength [29]. During
the tests, no visual changes of the samples (cracks, twists, etc.) were found after the aging
process. It was found that after the aging process, with the increase in the number of aging
cycles, the weight loss of the protected samples increased. The highest weight loss was
recorded for FR after 16 aging cycles and it amounted to 5.41% and 4.45% after eight cycles,
and for MAS (4.18% and 2.95%, respectively). The lowest weight loss after aging was
recorded for samples protected with Bx (2.1% and 1.28%, respectively) and BA (2.93% and
1.9%, respectively). The other variants showed weight loss in the range of 3.05–3.75% after
16 cycles and 1.7–2.21% after eight aging cycles. The control variants showed a weight loss
after aging, regardless of the number of cycles, at the level of 0.75%. These results may
indicate the hydrolytic activity of individual components of the preparation.

Table 1. Summary of statistically homogeneous groups determined on the basis of the HSD Tukey
test for E and Rm. The symbol * meaning that results are not statistically different.

Solution E-Mean 1 2 3 4 Rm [MPa]
Mean 1 2

MAP 3953.00 * 47.30 *

Bx 4298.67 * * 47.45 *

U 4361.33 * * 50.09 * *

C 4406.33 * * 52.54 * *

BA 4733.33 * * 52.84 * *

DAP 5185.67 * * 52.89 * *

FR 6019.67 * * 53.86 *

MAS 6228.33 * 55.28 *

In the case of the feature of the Young’s coefficient (E), both the relationship (p = 0.000)
and the number of aging cycles (p = 0.000), as well as their interaction (p = 0.000), show a
statistically significant influence on the difference in its mean values for individual research
variants [30]. Based on the results of Tukey’s post-hoc test, it can be concluded that the
eight and 16 cycle variants show statistically similar results, while the 0 cycle aging variant
differs from the other variants. In the case of chemical compounds, due to the values of the
E factor, four homogeneous groups can be distinguished (Table 1).

For all non-aging variants except FR, the Rm values are lower than for the control
variant. Moreover, the variants aged for eight cycles show Rm values lower than those of
the control variant. The exceptions are variants protected with boric acid, FR and urea. For
the variants aged for 16 cycles, the Rm values for the samples protected with boric acid
and urea were also higher than for the control variant.

Inference similar to the E feature was carried out for the Rm feature. Again, the aging
(p = 0.000) and the relationship (p= 0.000) as well as their interaction (p = 0.001) turned
out to be statistically significant. As for the aging effect, again, eight and 16 cycles give
similar results, and the aging variant 0 differs from them. In the case of Rm values, the
homogeneous groups are arranged differently than for E due to the compounds (Table 1).

Figure 3 shows the simultaneous levels of two features (E and Rm) depending on the
combination compound × aging. This represents an illustration of the interaction of both
factors on the two considered strength characteristics.

Analyzing the relationship between the chemical compounds, aging cycles, and their
influence on the strength parameters (E and Rm), it can be stated that the compounds in the
Section III of the graph have a positive effect on these parameters (in the studied period),
and the negative ones in the Section II. Variants close to the center can be considered the
most neutral in terms of strength changes in relation to the controls without aging process.
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Applying the analysis of variants, considering at the same time the average values of
the observed properties (E and Rm), it can be concluded that the best strength properties
were shown by such compounds with aging cycles as FR 8, MAS 8 and 16, and DAP 16.
This is confirmation supporting a positive effect on the strength properties of wood in an
aging time context. The worst effects were demonstrated for the variants not subjected to
aging, i.e., those protected with MAP, DAP, Bx, BA, and U. Moreover, these compounds,
in the variant without aging, showed the most negative impact on the strength properties
of wood.

4. Conclusions

Extending the aging process in the case of control and boric acid-protected samples
does not significantly change the strength between the eight and 16th cycles. The greatest
changes in strength were shown by FR.

Some of the compounds contained in FR have an antagonistic effect related to the
compressive strength of wood. The greatest influence on this phenomenon is probably the
content of boric acid and MAP. Due to the lack of detailed data on the chemical composition
of the preparation, it is not possible to clearly determine which of these compounds causes
the greatest changes. This is indicated by the results obtained during laboratory tests
and their statistical analysis. Changes in the compressive strength and Young’s modulus
compared to control wood, especially along with the elongation of the aging time, are
caused by the chemical nature of individual components. The pH of the solutions of
individual components was 321, which is of the greatest importance with regard to the
decrease in strength. Acidic FRs can lead to the glucose dehydration process, resulting in
cellulose depolymerization and reducing strength of wood fibers.
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8. Le Van, S.L.; Winandy, J.E. Effects of fire retardant treatments on wood strength: A review. Wood Fiber Sci. 1990, 22, 113–131.
9. Sweet, M.S.; Winandy, J.E. Influence of Degree of Polymerization of Cellulose and Hemicellulose on Strength Loss in Fire-

Retardant-Treated Southern Pine. Holzforschung 1999, 53, 311–317. [CrossRef]
10. Kloiber, M.; Frankl, J.; Drdácký, M.; Bryscejn, J.; Tippner, J.; Kucerová, I. Change of mechanical properties of norway spruce wood

due to degradation caused by fire retardants. Wood Res. 2010, 55, 23–38.
11. Kojima, Y.; Suzuki, S. Evaluating the durability of wood-based panels using internal bond strength results from accelerated aging

treatments. J. Wood Sci. 2011, 57, 7–13. [CrossRef]
12. Follrich, J.; Teischinger, A.; Müller, U. Artificial ageing of softwood joints and its effect on internal bond strength with special

consideration of flat-to-end grain joints. Eur. J. Wood Wood Prod. 2011, 69, 564–597. [CrossRef]
13. Matsuo, M.; Yokoyama, M.; Umemura, K.; Gril, J.; Yano, K.; Kawai, S. Color changes in wood during heating: Kinetic analysis by

applying a time temperature superposition method. Appl. Phys. A Mater. Sci. Processing 2010, 99, 47–52. [CrossRef]
14. ASTM D 1037; Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials. ASTM: West

Conshohocken, PA, USA, 2020.
15. Kajita, H.; Mukudai, J.; Yano, H. Durability evaluation of particleboards by accelerated aging tests. Wood Sci. Technol. 1991, 25,

239–249. [CrossRef]
16. BS 5669-1:1989; Particleboard. Methods of Sampling, Conditioning and Test. British Standards Institution: London, UK, 1989.
17. River, B.H. Outdoor aging of wood-based materials and correlation with laboratory aging. For. Prod. J. 1994, 44, 55–65.
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