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ABSTRACT

Xylanase has been applied in various sectors, such as biomass conversion, paper, pulp, tex-
tiles, and pharmaceutical industries. This study aimed to isolate and screen potential xyla-
nase-producing fungi from the soil of Suphan Buri Province, Thailand. Fifteen fungi were
isolated, and their xylanase activities were tested by the qualitative method. The result
showed that isolate SP3, SP10 and SP15 gave high xylanase activity with potency index (PI)
of 2.32, 2.01 and 1.82, respectively. These fungi were selected for the xylanase quantitative
test, isolate SP10 performed the highest xylanase activity with 0.535 U/mL. Through molecu-
lar methods using the fS-tubulin gene, isolate SP10 was identified as Penicillium menonorum.
The xylanase characteristics from P. menonorum SP10 were determined, including the xyla-
nase isoforms and the optimum pH and temperature. The xylanase isoforms on SDS-PAGE
indicated that P. menonorum SP10 produced two xylanases (45 and 54 kDa). Moreover, its
xylanase worked optimally at pH 6 and 55°C while reaching 61% activity at 65°C. These
results proposed P. menonorum SP10 as a good candidate for industrial uses, especially in
poultry feed and pulp industries, to improve yield and economic efficiency under slightly
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acidic and high-temperature conditions.

1. Introduction

Hemicellulase is an enzyme group in the glycoside
hydrolases (GHs) family that degrades the hemicel-
lulose in the lignocellulose structure. Xylanase is the
main enzyme in the hemicellulase group because it
can degrade 70% of hemicellulose [1]. The xylanase
application has been attractive since the circular bio-
economy (CBE) was processed [2]. In this trend,
xylanase, cellulase and other GHs are required to
break down biomass and release monosaccharides
for bio-products, biochemicals, and bioenergy pro-
duction. This provides the economic approach for
environmental treatment [3]. Moreover, xylanase
also has been used in other sectors, such as paper,
pulp, textiles and pharmaceutical industries [4,5].
Xylanase can produce from various sources, such
as microorganisms (e.g., fungi, bacteria, yeast),
protozoa and crustaceans [6,7]. Among these, fungi
were dominant because they can produce extracellu-
larly xylanase in large amounts [8]. Trichoderma,
Aspergillus and Penicillium genera have been well-
known as good xylanase producers. The xylanase
from Trichoderma reesei has been produced at the
industrial level, while Aspergillus spp. and
Penicillium spp. could produce multiple xylanase

isoforms, some were characterized as thermophilic
xylanases [2,7].

However, the industrial application of xylanase
has not been extended because of its low activity in
harsh environments (e.g., extremely acidic/alkalic or
high-temperature conditions) [6]. Most fungal xyla-
nases worked at pH 4 to 6 and about 50°C [8], and
they mainly became denatured at above 60°C [9].
This resulted in a high cost due to adding xylanase
to maintain the yield during the enzymatic process [8].
In this circumstance, the finding of potential xyla-
nase producers for industrial uses has still drawn
much interest. Along this stream, the present study
aimed to isolate and screen xylanase-producing
fungi from soil and determine xylanase character-
ization to propose good candidates for xylanase
production.

2. Materials and methods
2.1. Isolation and screening of xylanase-
producing fungi

2.1.1. Fungal isolation
The soil samples were collected in Suphan Buri
Province, Thailand. One gram of the sample was
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added into a flask containing 24mL of distilled
water. Then, the mixture was diluted as the standard
dilution technique. After that, spread 100 pL of each
dilution level onto xylan agar medium (g/L: NaNO;
2.0, KH,PO, 1.0, MgSO,.7H,0 0.5, KCl 0.5, peptone
0.2, xylan 2.0, agar 1.8). The fungi were purified by
the hyphae tip technique and maintained on potato
dextrose agar (PDA) for further experiments.

2.1.2. The xylanase qualitative test

The qualitative test was carried out on the xylan
medium as Neethu described [10]. A plug of 7-day-
old fungal mycelium (5mm in diameter) was inocu-
lated on a plate containing xylan medium and then
incubated for 4days. After incubation, the inocu-
lated plate was stained with 5mL of Gram’s iodine
solution for 5min to show the clear zone. The xyla-
nase activity in the qualitative test was evaluated by
the potency index (PI).

Pl — The diameter of clear zone (mm)

The diameter of colony (mm)

2.1.3. The xylanase quantitative test

In the quantitative test, the selected fungi with high
xylanase activity were cultured in potato dextrose
broth (PDB) to produce xylanase. One plug of 7-
day-old mycelium (5mm in diameter) was trans-
ferred into a bottle containing 5mL of PDB. Every
seven days, the culture broth was centrifuged at
13,000 rpm, 4°C, for 10min. The supernatant was
obtained and used as the crude enzyme. The xyla-
nase activity was determined by the xylanase assay
method.

Xylanase assay (U/mL) was conducted based on
the dinitrosalicylic acid (DNS) method to determine
the reducing-sugar concentration release [11]. Fifty
microliters of the crude enzyme and 50 pL of sub-
strate solution (1% beechwood xylan) were mixed
on a thermomixer. The reaction was done at 50°C
for 30 min. Then, stop the reaction with 300 pL of
DNS reagent. Followed by boiling for 5min at
100°C and cooling. The mixture was diluted 5-fold
with H,O before measuring the absorbance at
540 nm. The standard curve of xylose concentration
was built to determine the reducing sugar concen-
tration released from the reaction. One xylanase
activity (U/mL) was the enzyme required to catalyze
the substrate and release 1 pmol of xylose for 1 min
at the reaction conditions.

2.2. Morphological and molecular identification

The morphological and molecular methods were
used to identify the fungus that gave the highest
xylanase activity in the quantitative test.

2.2.1. Morphological identification

The fungus was cultured on a PDA medium. After
seven days, the colony characters were recorded,
including color, texture, and margin. Moreover, the
microcharacters (e.g., the hyphae and conidiospore)
were also examined under a light microscope.

2.2.2. Molecular identification

The total DNA genome was extracted using the
thermolysis method described by Tangthirasunun &
Poeaim [12]. The f-tubulin genes were amplified
with primer pair T1/T22 [13]. The polymerase chain
reactions (PCR) were done with the protocol
described by Tangthirasunun [14]. The PCR prod-
ucts were checked the quality and size by electro-
phoresis technique using 1% agarose gel. Then, PCR
products were sequenced following the Barcode Taq
sequencing (BTSeq) technique based on Next-
Generation sequencing (NGS), Illumina Hiseq by
Celemics, Inc. Korea. Comparing the DNA sequen-
ces in this work with other sequences on the
GenBank database by BLAST analysis on NCBI
(http://www.ncbi.nlm.nih.gov). Analyzing the phylo-
genetic relationship was also regarded. The neigh-
bor-joining method in the Kimura 2-parameter
model on MEGALI1 software built the phylogenetic
tree. The bootstrap analysis was done with 1,000
replications.

2.3. Xylanase characterization

2.3.1. Xylanase isoforms

The xylanase isoforms were conducted on SDS-
PAGE following the method of Cano-Ramirez [15].
The resolving gel was prepared with 10% acrylamide
gel adding 0.1% beechwood xylan. The stacking gel
was prepared with 4% acrylamide gel. The crude
enzyme was mixed with SDS sample buffer (the
ratio of 2: 1), and the sample was treated neither
with boiling nor adding B-mercaptoethanol. The
supply power was conducted at 100V under
20+£2°C. After running, the gel would be rinsed
with 0.05M sodium citrate buffer pH 4.8 for 60 min
at 20°C and then incubated at 50°C for 2h. The
gel was stained with two sequential steps: (1) stain-
ing with Coomassie blue G-250 [16]; and then (2)
staining with 0.1% Congo red solution. The “Perfect
Protein Markers” (Merck), ranging from 10 to
225kDa, estimate the molecular weight of xylanase
isoforms.

2.3.2. Optimum pH and temperature

The optimum pH was investigated, ranging from
pH 4 to 10, following the method Prajapati [17].
The buffers were used in this experiment, including
sodium citrate buffer (pH 4-5.5), sodium phosphate
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Figure 1. Xylanase activity of 15 fungal isolates in the qualitative test; a, b, ¢, d and e: homogeneous groups by statistics

analysis.

(pH 6-6.5), Tris-HCl buffer (pH 7-9), and glycine-
NaOH buffer (pH 9.5-10). The 1% beechwood xylan
solutions were prepared in the corresponding buffer.
The xylanase assay was conducted at 50°C with
various pH values.

The optimum temperature was investigated from
40 to 80°C (5°C distance). The xylanase assay was
done with optimum pH under various temperatures.

2.4. Statistical analysis

All the experiments were conducted with three inde-
pendent replicates. The data in the chart was the
average of three replicates. SPSS statistics software
(IBM, version 26.0) was used for ANOVA analysis.

3. Results

3.1. Isolation and screening of xylanase-
producing fungi

Fifteen isolates were picked up from soil samples,
and all were tested for their xylanase activities by
the qualitative method. The PI of 15 isolates ranged
from 1.00 to 2.32 (Figure 1). Among these, isolates
SP3, SP10 and SP15 gave high xylanase activity with
PI of 2.32, 2.01 and 1.82, respectively. These three
isolates visualized a large clear zone on the xylan
medium (Figure 2), and they were selected for the
xylanase quantitative test.

In the quantitative test, isolate SP3, SP10 and
SP15 were cultured in PDB to produce the enzyme,
and the xylanase activity was determined by xyla-
nase assay (U/mL). The result shows that all three
isolates could produce xylanase in PDB (Figure 3).
The xylanase production of isolate SP3 and SP10
reached a peak on the 14™ day of incubation, while
isolate SP15 was on the 21% day. Over the investi-
gated period, isolate SP10 produced the highest
xylanase compared with isolate SP3 and SP15. It
reached maximum activity with 0.535 U/mL.

SP3 SP10

Figure 2. The clear zone of isolate SP3, SP10 and SP15
visualized on xylan medium on the 4" incubation after
staining with gram'’s iodine solution.

SP15

Isolate SP10 performed as a good xylanase produ-
cer in qualitative and quantitative tests. Thus, it was
selected for the identification and determination of
xylanase characterization.

3.2. Morphological and molecular identification
of isolate SP10

3.2.1. Morphological identification

The morphology of isolate SP10 was observed on
the PDA medium after seven days of culture. Its
central colony was dark grey, while the around area
was white (Figure 4). Moreover, the rosy exudate
appeared around the central colony on the 7 day.
Conidiophores arise from aerial hyphae, and the
spore bear with the phialides. The above morpho-
logical characters indicated that SP10 belonged to
the Penicillium genus.

3.2.2. Molecular identification

The molecular identification of isolate SP10 was
conducted using the f-tubulin gene (TUB) as a
barcode locus. The result showed that the TUB
sequence of SP10 was 98.15% identical to the
sequence of P. menonorum NRRL 50410
(HQ646573) and P. menonorum NK 65
(OL652650). Moreover, phylogenetic analysis of
isolate SP10 was done by distance tree
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construction. The result indicated that SP10 was
nested in the same clade with two reference isolates
of P. menonorum, while distanced from other

—-SP3 —--SP10 —--SP15
0.9 0.533 0.535
E} 0.5 - 0436 0.454
204
2
=
E 0.3
(]
§ 0.2 -
5 0.069 0.078
0.1 1 0.024 0.060  0.051 0.051
0.000 - ) 4
0.0
7 days 14 days 21 days 28 days

Figure 3. Xylanase activity of isolate SP3, SP10 and SP15 by
quantitative test.

Penicillium species (Figure 5). Therefore, isolate
SP10 was identified as P. menonorum.

3.3. Xylanase characterization

The crude enzyme of P. menonorum SP10 on the
14™ day of cultivation was used to determine the
xylanase characterization, including xylanase iso-
forms and optimum pH and temperature.

3.3.1. Xylanase isoforms
The xylanase isoforms were done on SDS-PAGE

containing 0.1% beechwood xylan. The result

showed that P. menonorum SP10 produced two
xylanase isoforms: approximately 45kDa and 54 kDa
(Figure 6).

Figure 4. The morphology of isolate SP10 on PDA at 7days of cultivation. A and B: the colony in front and reverse side;
C: the rosy exudate around the central colony; D: the conidiophore under the microscope (40X magnification).

Penicillium menonorum NRRL 50410 (HQ646573)
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Penicillium aurantiogriseum BT 11325 (JN112033)

Talaromyces flavus CBS 437-62 (KM066156)

Figure 5. Phylogenetic tree of f-tubulin gene of a fungal isolate SP10. The number of branches is the bootstrap value.



3.3.2. Optimum pH and temperature

The effect of pH on the xylanase activity of P.
menonorum SP10 was investigated in pH 4 to pH
10. The xylanase worked optimally at pH 6 (100%
activity). However, it also reached a second peak at
pH 5 (93% activity) (Figure 7A).

Besides, the effect of temperature on activity was
conducted from 40°C to 80°C (Figure 7B). The
xylanase P. menonorum SP10 reached a maximum
activity at 55°C (100% activity). Moreover, it could
reach 61% activity at 65°C.

4. Discussion

This study regarded the isolation and screening of
the potential xylanase-producing fungi from soil.
During the qualitative and quantitative tests, we
proposed P. menonorum SP10 as a good candidate
for xylanase production. Along with Trichoderma

12 1 2
225 P
150 1531
100 100
75 75 .
5 «— 54kDa - 54kDa
«— 45kDa SV - 45kDa
25 25
10 10 .
A B

Figure 6. The xylanase isoforms of Penicillium menonorum
SP10 on SDS-PAGE containing 0.1% beechwood xylan. A: the
gel was stained with Coomassie blue G-250; B: the gel was
stained with Congo red solution. Lane 1: protein marker
(10-225kDa); lane 2: the crude enzyme of P. menonorum
SP10.
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and  Aspergillus species, the xylanase from
Penicillium species has drawn much attention. The
xylanase from Penicillium genus was preferred over
Trichoderma and Aspergillus genera because it could
work in acidic and high-temperature conditions [2].
Thus, many Penicillium species were published for
their xylanase activity, such as P. crustosum [18], P.
janczewskii [19], P. ramulosum [20], P. rolfsii [21],
P. funiculosum [22], P. sclerotiorum [23], P. citrinum
[24,25] and P. chrysogenum [26]. To our knowledge,
the xylanase-producing ability of P. menonorum has
not been explored since it was reported for tax-
onomy in 2015 [27].

P. menonorum SP10 produced two xylanase iso-
forms with 45kDa and 54kDa. The multiple xyla-
nases were also found in other Penicillium species,
such as P. oxalicum GZ-2 [28], P. ramulosum N1
[20], P. janczewskii [19] and P. crustosum FP 11
[18]. This may be due to Penicillium species con-
taining many xylanase genes. For example, P. oxali-
cum GZ-2 had at least six xylanase genes [28].
Similarities were also found in T. reesei with 16
hemicellulase genes and Aspergillus sp. with more
than 200 polysaccharide-degrading genes [29]. The
multiple xylanase isoforms help these fungi to deal
with the hemicellulose complex and degrade it more
efficiently [28]. The molecular weight of P. menono-
rum SP10’s xylanase differed from most Penicillium
species which were reported under 35kDa [18].
Only some produced xylanase of more than 40kDa,
such as P. verruculosum (65kDa) [21], P. funiculo-
sum (46kDa) [30] and P. oxalicum GZ-2
(43kDa) [28].

The xylanase of P. menonorum SP10 worked
optimally at a slightly acidic condition (pH 6). This
property was similar to other Penicillium’s xylanases,
which were active at pH 6.0, including P. rolfsii c3-
2(1) IBRL [21], P. chrysogenum [26] and P. janczew-
skii [19]. On mycoCLAP website (https://mycoclap.

fungalgenomics.ca/mycoCLAP/), most fungal
A) B)
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Figure 7. The effect of pH (A) and temperature (B) on the activity of Penicillium menonorum SP10 xylanase.
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xylanases were also reported with optimum pH at
3.5 to 6.0, including Aspergillus and Trichoderma
genera. Besides, P. menonorum SP10’s xylanase had
a second peak at pH 5. This indicated that two xyla-
nase isoforms worked at different pH conditions.
The similarities were found in previous studies, such
as P. sclerotiorum produced two xylanase isoforms
that work optimally at pH 2.5 and 4.5 [31]; the
crude xylanase of T. harzianum containing two iso-
forms also worked at different pH conditions (pH 5
and pH 8) [8]. Besides, P. menonorum SP10’s xyla-
nase reached the maximum activity at 55°C. Other
fungi, including Aspergillus niger, Trichoderma sp.
and Fusarium sp., also acted at 40°C to 60°C
(https://mycoclap.fungalgenomics.ca/mycoCLAP/).
Interestingly, the xylanase from P. menonorum SP10
could reach 61% activity at 65 °C, while most fungal
xylanases became inactive at above 60°C [9]. For
example, xylanase of P. rolfsii ¢3-2(1) IBRL reached
only 18% activity at 65°C [21].

The properties of P. menonorum SP10 xylanase,
including working at slightly acidic and high-tem-
perature conditions, are beneficial for industrial
applications. Normally, xylanase is expected to work
or retain its function in harsh environments. In the
poultry feed industry, for example, xylanase is
required to work at the acid and neutral pH to
boost the digestibility of broiler chickens [6,21]. In
the pulp industry, xylanase is desired to deal with
elevated temperatures to reduce the cost of the cool-
ing process [6,8]. The xylanase from P. menonorum
SP10 may be applicable to improve the yield and
economic efficiency in both poultry feed and pulp
industries.

5. Conclusion

Fifteen fungi were isolated from soil located in
Suphan Buri, Thailand. Through qualitative and
quantitative tests, we proposed P. menonorum SP10
as a good candidate for xylanase production. It pro-
duced xylanase with 0.535U/mL. The xylanase iso-
forms on SDS-PAGE indicated that P. menonorum
SP10 produced two xylanases (45kDa and 54 kDa).
Besides, its xylanase worked optimally at pH 6 and
55°C while reaching 61% activity at 65 °C. The xyla-
nase from P. menonorum SP10 can be used in
poultry feed and pulp industries where slight acidic
and thermos- treatment is required.
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