
1. Introduction
Reducing the climate impacts on diarrheal diseases is important, as the burden of diarrheal diseases is high: in 
2019, 1.5 million people died from diarrheal disease, with the greatest burden of deaths occurring among children 
under 5 years of age (Vos et al., 2020). Investments in water, sanitation and hygiene (WASH) have been promoted 
as a way to build resilience to climate variability and change, based on the idea that provision of reliable and safe 
drinking water sources will reduce vulnerability to enteric diseases in a future with more extremes of rainfall, 
high temperature, and drought (IPCC, 2018). This is grounded in two evidence streams. First, there is strong 
evidence that high temperature, rainfall, and drought increase the risk of diarrheal diseases (Carlton et al., 2016; 
Levy et al., 2016; Mertens et al., 2019). Growing evidence suggests that rainfall, in particular, may impact diar-
rheal illness via exposures to pathogens in drinking water (Jagai et al., 2015; Kraay et al., 2020). Second, it is 
well established that access to safe drinking water can reduce diarrheal diseases: a recent analysis identified 
unsafe drinking water as the leading environmental risk factor for diarrheal diseases, with approximately 75% 

Abstract Climate change may alter access to safe drinking water, with important implications for 
health. We assessed the relationship between temperature and rainfall and utilization of basic drinking water 
(BDW) in The Gambia, Mozambique, Pakistan, and Kenya. The outcomes of interest were (a) whether the 
reported drinking water source used in the past 2 weeks met the World Health Organization definition of 
BDW and (b) use of a BDW source that was always available. Temperature and precipitation data were 
compiled from weather stations and satellite data and summarized to account for long- and short-term weather 
patterns and lags. We utilized random forests and logistic regression to identify key weather variables that 
predicted outcomes by site and the association between important weather variables and BDW use. Higher 
temperatures were associated with decreased BDW use at three of four sites and decreased use of BDW that 
is always available at all four sites. Increasing rainfall, both in the long- and short-term, was associated with 
increased BDW use in three sites. We found evidence for interactions between household wealth and weather 
variables at two sites, suggesting lower wealth populations may be more sensitive to weather-driven changes 
in water access. Changes in temperature and precipitation can alter safe water use in low-resource settings—
investigating drivers for these relationships can inform efforts to build climate resilience.

Plain Language Summary This manuscript examines the association between temperature, 
precipitation and the use of safe drinking water sources in four low and middle-income countries. Climate is 
known to impact the risk of diarrheal disease, but the potential mechanisms driving this relationship are poorly 
described. We hypothesized that both short and long-term trends in temperature and precipitation may affect 
both improved water source availability and usage in low-resource settings. We utilized data from a case-control 
study on diarrheal disease with data on household water source use and availability. Machine learning was used 
to identify the most important weather predictors of households using “basic drinking water” (BDW) as defined 
by the World Health Organization. We found higher temperatures and decreasing rainfall were associated with 
decreased BDW use overall at three of the four sites. Notably, we also found evidence of resilience to climate 
impacts linked to safe drinking water availability and household wealth. Our findings have broad-reaching 
implications for climate resilient infrastructure development and provide critical evidence that increasing 
prevalence of drought and rising temperatures can lead to use of less-safe water sources.

BUCHWALD ET AL.

© 2022 The Authors. GeoHealth 
published by Wiley Periodicals LLC on 
behalf of American Geophysical Union.
This is an open access article under 
the terms of the Creative Commons 
Attribution-NonCommercial License, 
which permits use, distribution and 
reproduction in any medium, provided the 
original work is properly cited and is not 
used for commercial purposes.

The Association Between Rainfall, Temperature, and Reported 
Drinking Water Source: A Multi-Country Analysis
Andrea G. Buchwald1  , Evan Thomas2  , Kristopher B. Karnauskas1,3  , Elise Grover1  , 
Karen Kotloff4, and Elizabeth J. Carlton1 

1Department of Environmental and Occupational Health, Colorado School of Public Health, Aurora, CO, USA, 2Mortenson 
Center in Global Engineering, University of Colorado Boulder, Boulder, CO, USA, 3Department of Atmospheric and Oceanic 
Sciences, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA, 
4Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA

Key Points:
•  Access to and reported use of basic 

drinking water (BDW) is dependent 
on rainfall and temperature in The 
Gambia, Mozambique, Pakistan, and 
Kenya

•  Higher temperatures are associated with 
decreased access to and use of BDW

•  Climate change threatens access to 
safe drinking water in settings where 
infrastructure is vulnerable to rainfall 
and temperature

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
A. G. Buchwald,
andreabuchwald@umaryland.edu

Citation:
Buchwald, A. G., Thomas, E., 
Karnauskas, K. B., Grover, E., Kotloff, 
K., & Carlton, E. J. (2022). The 
association between rainfall, temperature, 
and reported drinking water source: 
A multi-country analysis. GeoHealth, 
6, e2022GH000605. https://doi.
org/10.1029/2022GH000605

Received 10 FEB 2022
Accepted 18 SEP 2022

Author Contributions:
Conceptualization: Evan Thomas, Karen 
Kotloff, Elizabeth J. Carlton
Data curation: Andrea G. Buchwald, 
Kristopher B. Karnauskas, Elise Grover
Formal analysis: Andrea G. Buchwald
Investigation: Karen Kotloff
Methodology: Andrea G. Buchwald, 
Kristopher B. Karnauskas, Karen Kotloff, 
Elizabeth J. Carlton
Resources: Kristopher B. Karnauskas, 
Karen Kotloff, Elizabeth J. Carlton
Supervision: Elizabeth J. Carlton

10.1029/2022GH000605
RESEARCH ARTICLE

1 of 16

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0001-6503-6459
https://orcid.org/0000-0002-8196-0032
https://orcid.org/0000-0001-8121-7321
https://orcid.org/0000-0001-8845-1591
https://orcid.org/0000-0002-8664-9606
https://doi.org/10.1029/2022GH000605
https://doi.org/10.1029/2022GH000605
https://doi.org/10.1029/2022GH000605
https://doi.org/10.1029/2022GH000605
https://doi.org/10.1029/2022GH000605


GeoHealth

BUCHWALD ET AL.

10.1029/2022GH000605

2 of 16

of diarrhea-related deaths attributed to use of unsafe drinking water (Murray et al., 2020). WASH interventions, 
including providing improved drinking water systems, are associated with significant improvements in early 
childhood health, including decreases in diarrheal diseases (Fewtrell et al., 2005).

However, the ways in which temperature and rainfall impact the use and availability of safe drinking water are 
poorly characterized. We hypothesize that meteorological conditions, such as periods of low rainfall or high 
temperatures, may lead to decreases in the availability and use of basic drinking water (BDW) sources. Under-
standing this relationship is important because while there is considerable evidence that rainfall can compromise 
water quality through fecal contamination (Kostyla et al., 2015; Poulin et al., 2020), less is known about how 
different weather conditions alter the use of different types of drinking water sources. If people are using more 
or less safe water sources under different weather conditions, this can alter the impacts of WASH investments on 
health and climate vulnerability.

Prior work has found evidence of seasonal patterns in drinking water use, but the results are inconsistent. Qual-
itative research into WASH uptake has frequently identified seasonal factors including temperature, rain, flood-
ing, water scarcity, and seasonal field-work as influencing WASH uptake, desirability and feasibility (Anthonj 
et al., 2018; Banda et al., 2007; Francis et al., 2015; Gomes et al., 2015; Halvorson et al., 2011; Hoat et al., 2012; 
Hoque et al., 2004; Simms et al., 2005; Wood et al., 2012). A number of these studies have found evidence that 
seasonality directly influences water-source choice. For example, in India, treated water is preferred in the rainy 
season due to perception of decreased water quality following rain (Poulin et al., 2020).

There is also evidence that seasonality influences water availability. In some sites in Ghana, Kenya, and Zambia, 
less safe water sources were used in the rainy season due to failure of solar-powered pumps (Kelly et al., 2018). 
Quantitative studies are limited. Several studies indicate preference for surface water sources during the rainy 
season or after heavy rainfalls, even when groundwater sources were available (Kelly et  al.,  2018; Thomas 
et al., 2019; Thomson et al., 2019). Surface water sources are often more convenient and available free of cost but 
are vulnerable to fecal contamination (Kelly et al., 2018). Rainy season was associated with increased rainwater 
use in the Pacific (Elliott et al., 2017) and increased surface water usage in East Africa (Pearson et al., 2016; 
Tucker et al., 2014). Drought, which is happening with greater frequency and severity, can lead to limited water 
availability (Howard et al., 2016; Watts et al., 2021), and increased contamination (Lal & Konings, 2018). Addi-
tionally, season is known to impact the ability of communities to maintain water sources and latrines, with stress-
ors in both rainy and dry seasons (Foster, 2013; Kelly et al., 2018; Whaley & Webster, 2011). Despite substantial 
qualitative evidence supporting seasonal changes in water source selection, there is limited quantitative research 
on how changing meteorological conditions affect water source use and access.

In this study, we aim to evaluate how meteorological conditions including high temperature and drought are 
associated with the use and availability of drinking water sources across four diverse locations in Asia and Africa. 
Because research on this topic has been limited and the evidence to date is inconsistent, we adopted an analytical 
framework that allowed us to consider a large set of candidate predictors, describing long- and short-term rainfall 
and precipitation patterns. This approach is designed to be hypothesis generating, facilitating identification of key 
predictors for investigation in future studies, while avoiding the perils of multiple hypothesis testing. We used a 
standard World Health Organization definition of BDW and water that is always available to ensure the general-
izability of our findings to global safe water standards. Given the well-recognized role of socio-economic status 
in access to safe drinking water we included this as a predictor and tested for evidence that socio-economic status 
modifies the relationship between climate variables and basic water use.

2. Methods
This analysis utilizes data from the Global Enteric Multicenter Study (GEMS) of moderate-to-severe diarrheal 
disease (MSD) in infants and young children in developing countries (Kotloff et al., 2013) as well as in situ and 
modeled meteorological data to assess the relationship between weather and the utilization of and access to 
improved water sources.
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2.1. Study Population

Household drinking water use behaviors were drawn from GEMS. GEMS was conducted in seven countries 
(Kenya, Mali, Mozambique, The Gambia, Bangladesh, India, and Pakistan) with moderate-to-high under-five 
child mortality to study enteric disease epidemiology and has been described at length (Kotloff et al., 2013).

In brief, GEMS was a 3 year (December 2007 to March 2011), prospective, age-stratified, matched case-control 
study of MSD among children 0–59 months of age belonging to a geographically defined censused population 
that varied in size from 10 to 1,084 km 2 (Table 1). Cases were systematically enrolled from those seeking care 
at hospitals and health centers. For each case, one to three controls were randomly selected from a demographic 
surveillance system to serve as controls. Controls were enrolled within 14 days of the index case and matched 
to cases by age, gender, and location. Upon enrollment, parents or primary caretakers of cases and controls 
were administered a detailed survey to assess demographics, household wealth indicators, and water usage. At 
a follow-up visit 50–90 days after enrollment, water usage questions were asked again but water collection time 
was collected only at enrollment.

Because cases and controls were enrolled year-round over a 36-month period and asked about water sources, 
availability and fetching times over the past 2 weeks, this presents a unique opportunity to assess temporal vari-
ation in drinking water source use. This analysis includes enrollment data on water source usage, demograph-
ics,  and wealth indicators from all participating households (both cases and controls). While GEMS participants 
may not represent a true random sample of the population, both cases and controls were evenly sampled through-
out the year and selected based on the date of case-illness and thus any selection bias related to weather variables 
is assumed to be uniform between cases and controls.

2.2. Basic Water Use

The primary outcome of interest was whether a household's reported main source of drinking water used in the 
past 2 weeks meets the WHO definition of “BDW” (World Health Organization, 2017). BDW is defined as drink-
ing water from an improved source, provided collection time is not more than 30 min, with improved sources 
including piped water, boreholes, tubewells, protected dug wells, protected springs, rainwater, and packaged 
water.

Gambia Mali Mozambique Kenya India Bangladesh Pakistan

Number of participants 2,598 4,097 1,976 3,359 3,582 3,859 3,096

Study site characteristics

 Rural/urban Rural Urban Rural Rural Urban Rural Urban

 Population at risk 29,076 31,768 15,380 21,603 13,416 25,560 25,659

 Area (km 2) 1,084 16 500 500 10.5 374 10

Outcomes

 Main source of water is an improved water source a 85.0 99.9 82.6 62.6 98.6 99.8 95.2

 More than 30 min wait time for main source of water 8.6 2.6 15.9 19.7 8.4 0.1 19.3

 Main source of water is always available 54.2 94.3 59.7 90.3 1.0 99.9 62.4

 Main source of water is basic drinking water b (Outcome 1) 77.4 97.2 68.9 55.0 90.5 99.6 76.4

 Main source of water is basic drinking water that is always available (Outcome 2) 35.0 92.3 41.5 46.9 1.0 99.6 45.7

 Included in analysis Yes No Yes Yes No No Yes

Note. Countries with sufficient variability (≥10% and ≤90% of observations with Outcome 1 or Outcome 2) in the primary and secondary outcome to be included in 
analysis, are indicated in bold.
 aImproved water sources include: Piped water, boreholes or tubewells, protected dug wells, protected springs, rainwater, and packaged or delivered water.  bBasic 
drinking water is defined as drinking water from an improved source, where collection time is not more than 30 min.

Table 1 
Description of Drinking Water Use and General Characteristics of the Global Enteric Multicenter Study Sites
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Water source type was assessed with the question “During the last 2 weeks, what was the main source of drinking 
water for the members of your household?” at enrollment. Only one answer was allowed. Water collection time 
was collected with the question, “How long does it take to go there [main source of drinking water], get water, 
and come back?”.

As a secondary outcome, we examined the availability of BDW. Water availability was determined from the 
question, “In the last 2 weeks, how often has this water been available from this main source?” For this outcome, 
a household was classified as using BDW that is always available if their main water source met the above criteria 
for BDW and they reported the source was always available. Notably, this definition does not include any measure 
of drinking water quality. BDW sources have been known to be contaminated at the point of collection and/or 
point of use with fecal bacteria: a recent meta-analysis indicated that 10% of improved sources may contain over 
100 Escherichia coli or TTC per 100 ml, well above safe drinking water standards (Bain et al., 2014). Therefore, 
this data set cannot identify water that is free of unsafe contamination.

We first examined the distribution of each outcome at each site. We restricted our analysis to sites with sufficient 
variability in both of the outcomes of interest (defined as having between 10% and 90% using BDW and between 
10% and 90% using BDW i.e., always available), to improve the validity of random forests (RFs) modeling and 
improve power in statistical models. Only four sites (The Gambia, Mozambique, Kenya, and Pakistan) met this 
criterion and were included in this paper (Table 1).

2.3. Meteorological Data

To evaluate the associations between drinking water use and high temperatures, rainfall and drought, we calcu-
lated precipitation and temperature for each site. Other environmental conditions such as surface water and soil 
moisture may impact water use and availability (Fankhauser et  al., 2022), however were not included in this 
analysis as we were interested in the direct associations between drinking water and meteorological variables. 
Precipitation and temperature variables were generated at the site level, as household location data was not avail-
able. Precipitation data come from a gridded product that combines satellite measurements and rain gauges: the 
Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) (Dinku et al., 2018). Daily precipita-
tion (mm) at a resolution of 0.05° (∼5 km) was acquired for the years 2007 through 2011. A daily precipitation 
record for each study site was calculated by taking the spatial mean across a rectangular area encompassing the 
northmost, southmost, eastmost, and westmost points of the study site. CHIRPS data have been compared favora-
bly to station data and other gridded satellite-based products in the past (Bai et al., 2018; Luo et al., 2019; Zhang 
et al., 2022). We compared data for the study period to data from the Tropical Rainfall Measuring Mission and 
found high correlation (p < 0.0001) between the data sources for each site, with correlation for biweekly precip-
itation ranging from 82% to 93% (Figure S1 in Supporting Information S1).

Temperature data were compiled from weather stations nearest to each study site. NOAA had available weather 
station data for three of the four study sites (Menne et al., 2018). For the fourth site, Kenya, the nearest weather 
station with NOAA data available was ∼100 Km from the study, so the Kenya Medical Research Institute daily 
temperature records were used. To account for missing data in the weather station temperature records, data were 
infilled with temperature data from the 0.25° forcing data set for version 1 of the Global Land Data Assimilation 
System (GLDAS; Beaudoing & Kato, 2019). The Mozambique site was missing 34% of observations for temper-
ature from the weather stations. GLDAS data was highly correlated with observed temperatures from NOAA 
(R 2 = 0.86) and linear regression was used to obtain a linear transformation equation (temp = 1.03 × (GLDAS-
value C°) + 1.45) to fill in missing observed temperatures. Only 4% of the temperature observations from Kenya 
were missing, and GLDAS data was linearly transformed with the following equation: temp = 0.48 × (GLDAS-
value mm) + 13.3 to infill the missing data points. Pakistan and Gambia had excellent observational coverage 
(<1% of days missing), and so were not infilled.

We posited that BDW use may be associated both with seasonal rainfall and temperature patterns as well as with 
short-term meteorological events. For example, months-long dry periods may reduce surface water availability 
and prolonged heat may favor evaporative processes over groundwater recharge. Recent rainfall may favor use of 
surface water and replenished shallow ground water sources. We also posited that there are likely lags between 
rainfall, temperature and water use, given the time required for recharge of improved water sources. For this 
reason, we defined a set of meteorological variables that capture potential long-term and short-term conditions 
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defining temperature and rainfall conditions over two, four and 8-week periods, and also considered lags of zero, 
one and 2 weeks (Table 2). We selected a broad range of variables to begin, under the assumption that machine 
learning would aid us in selecting a smaller “best” set of variables.

2.4. Demographic Data

Household socioeconomic status (SES) and maternal education were included as potential predictors of BDW use 
and access as SES has previously been found to be an important predictor of water access (Gomez et al., 2019; 
Raihan et al., 2017). An asset-based SES index was calculated for each site using PCA incorporating standard 
economic indicator variables (Vyas & Kumaranayake, 2006) including household assets, and household popula-
tion. Distribution of indicators varied substantially between sites, thus some indicators were excluded for some 
sites due to a lack of variability (either no ownership, or complete saturation of the indicator) at the given site 
(Table S1 in Supporting Information S1). For each site, we utilized the first principal component which explained 
the greatest percentage of variance across the population as the wealth index. Each household's wealth index 
value was derived as a linear transformation using the factor scores from the first principal component as weights 
as has been described previously (Vyas & Kumaranayake,  2006). Maternal education level was collected in 
the survey as a 7-level categorical variable with categories: No formal schooling, less than primary, completed 
primary, completed secondary, post-secondary, religious education only, or unknown. Maternal education level 

Variables Variable name in RF plot Variable format Lag

Rainfall variables

 Mean 2-week precipitation biweekly_p Continuous 0

 Mean 4-week precipitation fourweekly_p Continuous 0

 Mean 8-week precipitation eightweekly_p Continuous 0

 Mean 2-week precipitation, lagged 1 week biweekp_lag1 Continuous 1 week

 Mean 2-week precipitation, lagged 2 weeks biweekp_lag2 Continuous 2 weeks

 Mean 4-week precipitation, lagged 1 week fourweekp_lag1 Continuous 1 week

 Mean 4-week precipitation, lagged 2 weeks fourweekp_lag2 Continuous 2 weeks

 Days since previous rainfall preraindays Continuous 0

 Maximum 1-day rainfall in previous 2 weeks max_2 Continuous 0

 Maximum 1-day rainfall in previous 4 weeks max_4 Continuous 0

 Number of high precipitation days (over 95th percentile) in previous 2 weeks sum_high_p Continuous 0

Temperature variables

 Mean 2-week temperature biweekly_t Continuous 0

 Mean 4-week temperature fourweekly_t Continuous 0

 Mean 2-week temperature, lagged 1 week biweekt_lag1 Continuous 1 week

 Mean 2-week temperature, lagged 2 weeks biweekt_lag2 Continuous 2 weeks

 Mean 4-week temperature, lagged 1 week fourweekt_lag1 Continuous 1 week

 Mean 4-week temperature, lagged 2 weeks fourweekt_lag2 Continuous 2 weeks

 Number of high temperature days (over 95th percentile) in previous 2 weeks sum_high Continuous 0

 Number of low temperature days (below 5th percentile) in previous 2 weeks sum_low Continuous 0

Other variables

 Case/control status Type Dichotomous N/A

 Maternal education level educat Categorical N/A

 Socio-economic index wealth Continuous N/A

 Month and year of observation monthyear Continuous N/A

Table 2 
Variables Included in Random Forests Models
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was categorized based on the education distribution by site, these categories were not the same between sites due 
to differences in the distribution of education level between sites.

Date of survey was included in models to account for other time-dependent changes in water use not captured by 
weather variables (i.e., political or infrastructural changes that may take place over time). SES, maternal educa-
tion, and case-status were all examined as potential predictors.

2.5. Analysis

Given the large number of potential predictor variables, and the limited research to date on this topic, we opted to 
employ an analytical approach to identify key predictors and assess the magnitude and direction of the association 
between key predictors and the outcome of interest. This has the advantage of allowing us to consider a wide 
array of candidate predictors, avoids the perils of multiple hypothesis testing, and is intended to narrow the list 
of key meteorological conditions that could be pursued with more focused causal models in subsequent studies. 
To this end, we conducted RF machine learning to identify the most important rainfall and temperature variables 
for predicting the use of (a) BDW or (b) BDW always available by site. A separate RF analysis was run for each 
outcome and site using the same set of predictor variables. RF models included all rainfall and temperature vari-
ables, as well as SES, maternal education level, date, and case/control status. RF requires data to be balanced in 
respect to the outcome (i.e., approximately equal proportions using BDW as not), and as only a fraction of the 
population at each site reported using BDW, data was weighted and resampled for each site to achieve balanced 
data sets for RF. Data was split 70%/30% into training and validation sets: models were constructed using the 
training data sets and tuned by varying the number of trees created and the number of variables randomly sampled 
at each stage. Final RF models were selected based on out of bag error rate using the validation data set, and 
models with the lowest error rate were used to identify most important variables. We used the final RF models to 
identify the 10 variables with the highest mean decrease in accuracy values for each site and outcome.

We then evaluated the direction and magnitude of association between BDW use and these 10 most impor-
tant variables for each outcome and site using in logistic regression. We first generated unadjusted estimates of 
associations between BDW use and each important independent variable using logistic regression. To avoid the 
assumption of linearity and identify more complex relationships between variables (e.g., thresholds), we catego-
rized all continuous independent variables into quartiles, based on the spread of the data, and ran the unadjusted 
models using these quartiles as the independent variables. We subsequently modeled the independent variable as 
continuous when linear relationships were evident. Additionally, when no difference was seen between adjacent 
categories, we collapsed quartiles into fewer categories. SES was categorized into high (top 25% of popula-
tion), middle (middle 50% of population), low (lower 25% of population) and modeled as linear when justified. 
Education level was categorized into three or four groups based on the differences in the types of schooling 
between sites. Because household wealth was the most important predictor of BDW use at all sites, we adjusted 
all estimates for household wealth. Estimates were generated separately for each of the top 10 variables at each 
site. Detailed descriptions of variable specification are provided in Tables S2–S9 in Supporting Information S1.

We constructed multivariate logistic regression models, to identify relationships between exposure variables 
and BDW use, independent of other important variables. Our primary models estimated the odds ratio for each 
important variable, adjusted only for wealth. As a sensitivity analysis to adjust for potential confounding due 
to other meteorological variables, we then constructed a multivariate model including multiple predictors. For 
these models, variables that were statistically significant at p ≤0.1 in the SES-adjusted models were tested for 
inclusion. Variables were excluded from the model in order of least significance/effect on other variables, and 
then retested for inclusion in the final model. If two variables were collinear (variance inflation factor >5), the 
variable with the greater statistical significance was included, and the other was excluded. As a final sensitivity 
analysis, we used the multivariate models to test for evidence of effect modification by SES, case status, and 
education level. Effect modification was tested by including interaction terms in models. We repeated this process 
for Outcome 2, BDW that is always available. Lastly, we ran a sensitivity analysis to test for any confounding due 
to other seasonal factors, defining season for each site by calendar month, as describe in Table S10 in Supporting 
Information S1.
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3. Results
3.1. BDW Use

Participants reported high use of improved drinking water sources at all sites, ranging from 63% in Kenya to 95% 
in Pakistan (Figure 1, Table 1). Main sources of drinking water varied by site (Figure 1); participants in Pakistan 
primarily used improved water sources that were piped (water was piped in from Karachi). In The Gambia, over 
half of households reported using a public tap for drinking water. Kenya and Mozambique had a wide range of 
reported water sources, including various wells and taps. Kenya was the only site with significant surface water 
and rainwater use. The percent of households using BDW (Outcome 1) ranged from 55% in Kenya to 77% in 
Gambia. Having a main source of water that was always available (Outcome 2) was lowest in The Gambia, with 
only 35% of participants reporting water was always available, and highest in Kenya (47%).

3.2. Distribution of Rainfall and Temperature Variables

Daily precipitation and temperature over the study period by site are shown in Figure 2. Temperature variability 
was lowest in Kenya (Figure 2b), with highest temperature variability seen in Pakistan (Figure 2a). Pakistan had 
very little rainfall compared to the other sites.

3.3. Outcome 1: BDW Use

The best fitting RF model for rainfall and temperature-predictors of BDW use varied widely between sites 
(Table 3). Models were least predictive of water use outcomes in Kenya, with error rates as high as 19.2% in 
Kenya. Model fit was best for Outcome 1 in Gambia with 95% of observations in the validation data set predicted 
correctly.

Figure 1. Main sources of water use by site. Sources in blue indicate those categorized as an “improved water source” by the WHO.
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Most important variables from all RF models are summarized in Table 3. Household wealth was the top predic-
tor of BDW use for all four sites, followed by maternal education. Both temperature and precipitation variables 
ranked in the top 10 predictors for all four sites. Mean 2-week temperature over the previous 2 weeks with no, 
1- or 2-week lags was important in all RF models, as was mean 4-week temperature with a 1- and 2-week lag. The 
most frequently selected precipitation measure was the number of days since the last rainfall and mean 2-week 
rainfall lagged by 2 weeks (both selected in models for three of the four sites). Variables describing maximum 
temperature or high precipitation events including the number of high precipitation days, high temperature days, 
low temperature days, and the maximum 2- and 4-week precipitation were not in the top 10 most important vari-
ables for any site. The variable for date was also not in the top 10 most important variables for any site.

Estimates of the strength and direction of the association between important variables and BDW use, based on 
logistic regression analysis, are shown in Table 4. Increasing household wealth was associated with increased 
use of BDW at all sites. Even after adjusting for household wealth, increasing maternal education was associated 
with increased BDW use in Mozambique, Kenya, and Pakistan. In a sensitivity analysis adjusting for seasonal 
trends, the direction of associations remained the same across all sites, with a minor decrease in the magnitude 
of effect in Kenya, and a widening of confidence intervals in Pakistan (Table S10 in Supporting Information S1).

Increasing rainfall, both in the long- and short-term, was associated with increased use of BDW in Mozam-
bique and Kenya and longer dry periods were associated with decreased use of BDW in Pakistan. Increasing 
temperatures were associated with decreased use of BDW in Mozambique, Kenya, and Pakistan. However, in 
The Gambia, BDW use increased when mean 2-week temperature with a 2-week lag was above 26.6°C (the 25th 
percentile value) and no precipitation measure was associated with BDW use, adjusting for household wealth. 

Figure 2. Weekly temperature (red) and precipitation (blue) over the study period, by site. Precipitation data obtained from Climate Hazards Group InfraRed 
Precipitation with Station data. Temperature data obtained from NOAA weather stations and missing temperature data was infilled from Global Land Data Assimilation 
System for Kenya and Mozambique.
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Estimates generated using linear exposure variables (when appropriate) were generally consistent with these 
findings (Tables S2–S5 in Supporting Information S1).

Adjustment for other statistically significant weather and demographic variables had minimal effect on estimates 
of association in Mozambique or Pakistan (Tables S3 and S5 in Supporting Information S1). In Kenya, after 
adjustment, education was included in the final model predicting BDW use, and household wealth was not. In 
Kenya, adjustment did lead to a change in the estimate of association for biweekly temperature with a 2-week 
lag, but this is assumed to be a result of collinearity between that variable and biweekly temperature with no lag 
(Table S4 in Supporting Information S1). In Gambia, biweekly temperature with a 2-week lag was the only vari-
able with a strong association with BDW use, so an adjusted model was not constructed (Table S2 in Supporting 
Information S1). There was no evidence of effect modification by maternal education, household wealth or case 
status on the relationship between weather variables and BDW use at any of the four sites.

3.4. Outcome 2: Use of BDW That Is Always Available

As with Outcome 1, wealth was the top predictor of using BDW that is always available, however maternal 
education was no longer the second most important in Gambia and Mozambique. The same temperature and 
precipitation variables that were important for Outcome 1 were usually important for predicting Outcome 2, but 

Variable The Gambia The Gambia Mozambique Mozambique Kenya Kenya Pakistan Pakistan

Outcome Modeled 1 2 1 2 1 2 1 2

Demographic variables

 Household wealth 1 1 1 1 1 1 1 1

 Maternal education 2 7 2 2 2 2 2

 Case/Control 2 4 3 9 8

Temperature variables

 Two-week temp 5 2 8 8 6 7 4 3

 Two-week temp, lag1 3 3 9 3 8 9 5 4

 Two-week temp, lag2 4 4 4 7 10 6 6

 Four-week temp 9 8 7

 Four-week temp, lag1 6 10 10 9 10 10

 Four-week temp, lag2 7 5 7 5 10 6 7 9

Precipitation variables

 Days since rainfall 8 8 4 3 5

 Two-week precip 5

 Two-week precip, lag1 9 6 3 6

 Two-week precip, lag2 10 5 5 4

 Four-week precipitation 10

 Four-week precip, lag1 6 7

 Four-week precip, lag2 9 8

 Eight-week precip 3

Model Parameters

 Number of trees 250 250 500 250 500 500 250 250

 Number of variables tried 15 15 14 11 14 12 15 17

 OOB error (%) 4.55 11.86 8.68 10.21 16.93 19.18 7.29 17.82

 Validation error (%) 5.00 13.50 9.00 9.95 18.00 21.10 6.80 18.30

Table 3 
Top Ten Most Important Predictor Variables of Basic Drinking Water Use (Outcome 1) and Using Basic Drinking Water That Is Always Available (Outcome 2) 
Identified Using Random Forests Models and Model Parameters by Site and Outcome, Dark Red = 1st Most Important, Light Yellow = 10th Most Important
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Kenya and Mozambique both had long-term precipitation variables that were important for Outcome 2 which had 
not been important at any site for Outcome 1 (Table 3).

Estimates of the strength and direction of the association between weather variables and use of BDW that is 
always available are shown in Table 5. Increasing wealth was positively associated with Outcome 2 in three of the 
four sites; a negative association was seen in Gambia. Increasing education level was associated with increased 
use in Gambia, Kenya, and Pakistan. Households with moderate to severe diarrhea cases were significantly less 
likely to use BDW which was always available in three sites: Mozambique, Kenya, and Pakistan. Increasing 
temperature, on both a long and short scale, was consistently associated with decreased use of BDW that was 
always available at all study sites. The association between precipitation and Outcome 2 varied by site. Increasing 
long-term (4- and 8-week) precipitation was associated with increased use of always available BDW in Kenya, 
and longer dry periods were associated with decreased use of always available BDW in Pakistan, however, in 
contrast to Outcome 1, increasing precipitation was associated with decreased use of BDW that is always availa-
ble in Gambia and Mozambique.

Adjustment for other important variables had minimal effect on the association between weather variables and 
use of BDW that was always available in Kenya, Pakistan, and Gambia (Tables S6, S8, and S9 in Supporting 

Variable

The Gambia Mozambique Kenya Pakistan

N = 2,598 N = 1,976 N = 3,359 N = 3,096

Demographic variables

 Increasing household wealth 3.38 (2.43, 4.71) 1.61 (1.28, 2.04) 1.19 (1.01, 1.39) 2.62 (2.03, 3.38)

 Maternal education a 1.67 (1.26, 2.21) 2.90 (2.12, 3.97) 1.68 (1.27, 2.23)

 Case (vs. control) 0.74 (0.64, 0.85)

Temperature variables

 Two-week temperature 0.77 (0.62, 0.96) 0.49 (0.40, 0.59) 0.72 (0.59, 0.89)

 Two-week temperature with 1-week lag 0.65 (0.53, 0.79) 0.66 (0.53, 0.81)

 Two-week temperature with 2-week lag 1.51 (1.05, 2.19) 0.70 (0.58, 0.85) 0.67 (0.54, 0.82)

 Four-week temperature 0.68 (0.55, 0.83) 

 Four-week temperature with 1-week lag 0.66 (0.57, 0.76) 0.61 (0.49, 0.76) 

 Four-week temperature with 2-week lag 0.71 (0.61, 0.81) 0.64 (0.51, 0.79)

Precipitation variables

 Previous days since rain 0.71 (0.56, 0.90) 

 Two-week precipitation

 Two-week precipitation with 1-week lag

 Two-week precipitation with 2-week lag 1.36 (1.10, 1.68) 2.59 (2.12, 3.15)

 Four-week precipitation

  Four-week precipitation with 1-week lag 1.28 (1.03, 1.60)

 Four-week precipitation with 2-week lag,

  Eight-week precipitation 3.95 (3.21, 4.86)

Note. Associations are odds ratios and 95% confidence intervals comparing the highest quartile/category to the lowest quartile/category of each variable. When, in 
tests for linearity, no difference was seen between adjacent categories, quartiles were collapsed and we provide ORs comparing the highest to lowest category (detailed 
descriptions of variable specification are provided in Tables S2–S5 in Supporting Information S1). Models were fit separately for each variable and country, and 
adjusted for wealth. Colors indicate direction and strength of association: red = decreased basic drinking water use; blue = increased basic drinking water use. Gray 
indicates association untested because the variable was not identified as an important predictor in random forests. White cells indicate the association was tested but 
was not statistically significant.
 aMaternal education was categorized, based on relevant schooling in each region, in three categories in the Gambia, Mozambique and Kenya, and four categories in 
Pakistan. Estimates compare the highest to lowest maternal education group for each region. Details are provided in Tables S2–S5 in Supporting Information S1.

Table 4 
Magnitude and Direction of Associations Between Most Important Variables From Random Forest Analysis and Basic Drinking Water Use (Outcome 1), Adjusted for 
Wealth, by Site
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Information  S1). In Mozambique, there was evidence for qualitative interaction between case-status and 
biweekly temperature with a 2-week lag (Table S7a in Supporting Information S1), such that the decreased use 
of always available BDW at higher temperatures was only seen among controls. In Pakistan, there was evidence 
of interaction between SES and case-status and moderate evidence that the association between the number of 
previous weeks since rain and use of BDW that is always available was most pronounced in the lowest SES 
group. Among those in the lowest SES category, high severity of drought (>6 weeks since rainfall) is associated 
with an OR = 0.47 (95% CI: 0.30, 0.74) for use of BDW that is always available, compared to having rainfall 
in the past week. Gambia similarly had evidence of interaction between education and SES, and the association 
between mean 2-week temperature and Outcome 2 was most pronounced in those without any formal education, 
OR = 0.40 (95%CI: 0.23, 0.70). Among those with any formal education, the OR = 1.28 (95%CI: 0.41, 3.96).

4. Discussion
By combining weather data with a large population-based study of diarrheal disease in four countries, we found 
temperature and precipitation were significantly associated with the availability and use of BDW, however with 
different directions of association depending on the context. This study capitalized on a large population-level 
longitudinal data set with thousands of observations per country, capturing a wide temporal and spatial range. 

Variable

The Gambia Mozambique Kenya Pakistan

N = 2,598 N = 1,976 N = 3,359 N = 3,096

Demographic variables

 Increasing household wealth 0.46 (0.35, 0.62) 2.24 (1.73, 2.89) 1.24 (1.02, 1.50) 1.84 (1.50, 2.26)

 Increasing education levels 1.36 (1.05, 1.77) 2.48 (1.85, 3.32) 1.38 (1.13, 1.70)

 Case (vs. control) 0.44 (0.36, 0.54) 0.76 (0.66, 0.87) 0.75 (0.65, 0.87)

Temperature variables

 Two-week temperature 0.51 (0.36, 0.71) 0.77 (0.60, 0.99) 0.51 (0.42, 0.62) 0.87 (0.73, 1.04)

 Two-week temperature with 1-week lag 0.73 (0.52, 1.03) 0.78 (0.60, 1.00) 0.67 (0.59, 0.78) 0.73 (0.63, 0.85)

 Two-week temperature with 2-week lag 0.66 (0.47, 0.92) 0.81 (0.68, 0.97) 0.73 (0.60, 0.88) 0.67 (0.54, 0.82)

 Four-week temperature 0.76 (0.62, 0.93) 0.73 (0.63, 0.85)

 Four-week temperature with 1-week lag 0.79 (0.65, 0.96) 0.69 (0.69, 0.80)

 Four-week temperature with 2-week lag 0.68 (0.60, 0.79) 0.68 (0.59, 0.79)

Precipitation variables

 Previous weeks since rain 0.72 (0.59, 0.88) a

 Two-week precipitation 2.77 (2.27, 3.37)

 Two-week precipitation with 1-week lag 0.75 (0.64, 0.88)

 Two-week precipitation with 2-week lag 2.06 (1.70, 2.51)

 Four-week precipitation 0.74 (0.60, 0.91)

Four-week precipitation with 1-week lag

 Four-week precipitation with 2-week lag 0.79 (0.64, 0.97) 2.29 (1.88, 2.79)

Eight-week precipitation

Note. Associations are odds ratios and 95% confidence intervals comparing the highest quartile/category to the lowest quartile/category of each variable. When, 
in tests for linearity, no difference was seen between adjacent categories, quartiles were collapsed and we provide ORs comparing the highest to lowest category 
(detailed descriptions of variable specification are provided in Tables S6–S9 in Supporting Information S1). Colors indicate direction and strength of association: 
red = decreased basic drinking water use; blue = increased basic drinking water use. Gray indicates association untested because the variable was not identified as an 
important predictor in random forests. White cells indicate the association was tested but was not statistically significant.
 aPrevious weeks since rain recalculated from previous days since rainfall used in RF model.

Table 5 
Magnitude and Direction of Associations Between Most Important Variables From Random Forest (RF) Analysis and Using Basic Drinking Water Which Is Always 
Available (Outcome 2), Adjusted for Wealth, by Site



GeoHealth

BUCHWALD ET AL.

10.1029/2022GH000605

12 of 16

Patterns in the availability and use of different water sources may be influenced by seasonality and short- and 
long-term rainfall variability.

In this study, we had four key findings. (a) Across all countries, household SES was by far the most important 
predictor of increased use of BDW, followed closely in importance by education status. Beyond predicting BDW 
overall, individuals with low SES were more vulnerable to prolonged dry periods (in Pakistan) or high temper-
atures (in The Gambia). In three of four locations studied, (b) as temperature increases, BDW use, and use of 
BDW that is always available decreases and (c) increasing rainfall increased BDW use but did not always increase 
availability of BDW. Lastly, (d) in The Gambia the association between weather and BDW use did not follow the 
same patterns in most analyses—suggesting some water systems may be less impacted by weather than others. 
Notably, The Gambia had the highest BDW use (77%) of sites in our study, was the only location where >50% 
of the population reported using public tap, and had the lowest spatial resolution. As a result, it is unclear if the 
unique patterns seen in The Gambia are due to imprecision of our weather estimates or increased resilience to 
extreme weather.

There are numerous ways climate change may lead to changes in use of and access to BDW sources (Figure 3). In 
some contexts, increasing temperatures may correlate with decreased surface water retention or shallow ground-
water and motivate users toward less safe groundwater sources or less convenient water sources, alternately 
increasing temperatures may decrease motivation for seeking out safer sources and prompt fallback to more 
convenient sources of water including groundwater or open wells. Likewise, decreasing rainfall may result in 
surface water sources drying up, motivating use of other water sources that may or may not be protected. The 
evidence to date has shown that seasonal and long-term changes in temperature and rainfall can change the mix 
and convenience of available water sources for communities. A study in Ethiopia identified that water collection 
times increase during the dry season (Tucker et al., 2014), and a qualitative study of water users and managers 
in Ghana, Kenya and Zambia reported less time collecting water in the rainy seasons (Kelly et al., 2018). This 
is consistent with our findings that in three of four sites, BDW use decreased during hot periods and increased 
during wet periods. However, both our study and the work of others suggest the impact of weather on BDW use 
and access is context specific. A study in South Africa found some households switch from more contaminated 
surface water to safer municipal water sources during the dry season (Nguyen et al., 2021). In several recent stud-
ies, researchers have examined patterns in use of groundwater boreholes in arid regions of Kenya and Ethiopia 
and compared these patterns to rainfall trends in the region. In these studies, an inverse relationship between use 
of electrical borehole pumps as well as handpumps and recent rainfall was observed, as well as overall seasonal 
trends in decreased groundwater pump use during rainy seasons (Thomas et al., 2019; Thomson et al., 2019). 
These trends appear to reflect behavioral choices to use surface water sources when available, and do not, gener-
ally, reflect an intrinsic hydrologic relationship between rainfall and aquifer recharge. Notably, this behavior has 
been observed as a risk to professional drinking water services as users may be less willing to pay for improved 
water sources when unimproved surface water sources are seasonally available (Armstrong et al., 2021). In this 
study, rainfall was not predictive of BDW at the site with the greatest baseline access to BDW, underscoring the 
importance of work to understand how the mix of available water sources impacts climate vulnerability.

Figure 3. Conceptual model indicating ways in which temperature or rainfall could impact availability and use of water 
sources.
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The significance of household wealth in our analyses underscores the importance of economic development in 
the use of basic water sources and increasing resilience to climate change. Greater household wealth was associ-
ated with increased BDW use at all sites, and BDW availability at three out of four sites. We also found evidence 
that wealth modified vulnerability to drought and high temperatures, such that less wealthy families had reduced 
BDW access during these periods. This provides evidence that climate change and poverty can have compound-
ing impacts when it comes to drinking water.

4.1. Limitations

This study has several important limitations. Although we tried to standardize our definition of water sources 
using the World Health Organization categories of improved water source, the categories are not perfect and do 
not distinguish between “improved” drinking water sources and water that is free of unsafe contamination. We 
were unable to measure contamination directly and the water sources were not observed by study staff. Unfor-
tunately, given the data set available, verifying the nature of these water sources was beyond the scope of our 
analysis. Future studies examining these questions would benefit from testing and observing the water sources. 
Further, these improved BDW sources include protected surface water sources, and shallow and deep ground-
water sources, which have different hydrological and climatic response profiles as well as contamination risk.

There was substantial variation in the size and population density of the study sites we examined by design, 
including both rural and urban locations, ranging from 10 Km 2 in Pakistan to over 1,000 Km 2 in The Gambia. 
Weather data—rainfall, in particular, frequently varies over small spatial scales which are imperfectly captured 
by available meteorological data (Levy et al., 2019). By averaging weather variables over the study sites, we may 
have introduced misclassification of the weather variables, particularly in the larger sites. Similarly, acute weather 
events may play a large role in access to and decisions about water-source use. By asking about water-use over 
the last 2 weeks, we are unable to capture the day-to-day shifts that may occur as a result of acute events. Lastly, 
we were unable to capture a change in water source use within individual households as a result of weather, as 
water collection time was only measured at baseline. Comparing main water sources, 90% of households that 
reported using improved water sources at enrollment reported improved water sources as their main water source 
at follow-up, and 70% of households reporting using unimproved water sources at enrollment continued to use 
unimproved sources at follow-up. Future analysis of this data set could be used to examine within-household 
changes in drinking water source use among households with multiple observations. We did not examine desea-
sonalized data, while we do not believe the results presented here are purely a result of seasonal trends, it is 
possible that seasonal trends contributed to our findings.

We utilized a machine learning approach to identify a minimal set of important variables to include in final 
models. While generally, this approach was successful at identifying clear patterns both across sites and between 
study aims, there were some non-intuitive findings. For instance, the number of days since the previous rainfall 
was frequently identified as an important predictor of drinking water use in RF models (in all sites except Kenya), 
but was not associated with drinking water use in either Gambia or Mozambique after adjustment for confounders 
in regression models. This is a strength of the combined method we used, as RFs can be used to identify indi-
vidual important predictors, but does not provide information on the direction or magnitude of the association 
between variables. While machine learning can be a valuable tool for decreasing the dimensionality of data sets, 
it is important to recognize its limitations, which is why we used a two-step analysis process involving machine 
learning for dimension reduction followed by adjusted regression models.

4.2. Conclusions

Despite these limitations, we found strong associations between weather patterns and drinking water source use. 
These associations have plausible drivers given the intrinsic relationships between the climate variables exam-
ined and water availability as well as user preferences for more convenient and/or free water sources. Given the 
geographic and cultural disparity between the study sites, it is not surprising that there is some diversity in the 
direction of associations—the conclusion that water use and availability do depend on climate is important and 
lays the groundwork for further studies of mechanisms and implications.

Climate change is anticipated to bring about greater variability in both temperature and rainfall, and low-resource 
settings are particularly vulnerable to these changes (IPCC, 2021; Watts et al., 2020). The impact of these changes 
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on WASH uptake are expected to be diverse and vary by setting. Increasing prevalence and severity of drought 
will have obvious consequences in terms of water scarcity and availability and may lead to selection of less-safe 
water sources, as we saw in Pakistan, but may also lead to increased willingness to utilize improved water sources 
(Thomas et al., 2019; Thomson et al., 2019). Therefore, any future interventions intended to increase access to 
and use of safe drinking water should consider the potential impacts of climate on WASH use and availability, 
and develop infrastructure with these potential mechanisms in mind.
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