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Abstract
The blockade of immune checkpoint receptors has made 
great strides in the treatment of major cancers, including 
melanoma, Hodgkin’s lymphoma, renal, and lung cancer. 
However, the success rate of immune checkpoint blockade 
is still low and some cancers, such as microsatellite‐stable 
colorectal cancer, remain refractory to these treatments. 
This has prompted investigation into additional checkpoint 
receptors. T-cell immunoglobulin and mucin domain 3 
(Tim-3) is a checkpoint receptor expressed by a wide 
variety of immune cells as well as leukemic stem cells. 
Coblockade of Tim-3 and PD-1 can result in reduced 
tumor progression in preclinical models and can improve 
antitumor T-cell responses in cancer patients. In this 
review, we will discuss the basic biology of Tim-3, its role 
in the tumor microenvironment, and the emerging clinical 
trial data that point to its future application in the field of 
immune-oncology.

Introduction
T-cell immunoglobulin and mucin domain 3 
(Tim-3) (encoded by Havcr2) is an immuno-
globulin (Ig) and mucin domain-containing 
cell surface molecule that was originally 
discovered as a cell surface marker specific 
to interferon (IFN-γ) producing CD4+ T 
helper 1 (Th1) and CD8+ T cytotoxic 1 (Tc1) 
cells.1 Tim-3 is a member of the TIM family 
of genes which is located in syntenic chromo-
somal regions in human (5q33.2) and mouse 
(11B1.1) that have been linked to both allergy 
and autoimmune disease.2 3 That Tim-3 may 
function as a T-cell inhibitory receptor was 
initially demonstrated by Monney et al who 
showed that in vivo administration of Tim-3 
monoclonal antibodies (mAbs) exacerbated 
disease in the experimental autoimmune 
encephalomyelitis model of central nervous 
system autoimmunity.1 Later, two studies 
showed that disruption of Tim-3–Tim-3-
ligand interactions either by administration 
of Tim-3–Ig or Tim-3 mAb resulted in exac-
erbated Th1 responses and promotion of 
autoimmune diabetes in nonobese diabetic 
mice.4 5 However, despite these studies, 
the lack of a canonical inhibitory signaling 
motif in the cytoplasmic tail of Tim-3 called 
into question the inhibitory role of Tim-3. 
Two recent studies that demonstrate an 

association of germline loss-of-function 
mutations in HAVCR2 with two diseases that 
result from hyperactivated T and myeloid 
cells, hemophagocytic lymphohistiocytosis 
(HLH) and subcutaneous panniculitis-
like T-cell lymphoma (SPTCL), solidify 
the role of Tim-3 as a negative regulator or 
“immune checkpoint”.6 7 Indeed, Tim-3 is 
coregulated and coexpressed along with 
other immune checkpoint receptors (PD-1, 
Lag-3, and TIGIT) on CD4+ and CD8+ T 
cells8,9 . In cancer, Tim-3 expression specifi-
cally marks the most dysfunctional or termi-
nally exhausted subset of CD8+ T cells1011 In 
preclinical cancer models, coblockade of the 
Tim-3 and PD-1 pathways has shown remark-
able efficacy in both solid11 12 and hemato-
logic tumors.13 This led to the investigation of 
Tim-3 blockade in the clinic. Ongoing clinical 
trials are largely investigating anti-Tim-3 in 
combination with anti-PD-1 in solid tumors. 
However, striking early trial data show effi-
cacy of TIM-3 in combination with chemo-
therapy in myelodysplastic syndrome (MDS) 
and acute myelogenous leukemia (AML)14 
indicating its potential value in the treatment 
of hematologic malignancy and disorders.

Tim-3 Structure and Signaling
The TIM family of proteins are type I 
membrane proteins that share a similar struc-
ture: a variable Ig domain (IgV), a glyco-
sylated mucin domain of varying length, 
and a single transmembrane domain. All 
TIM molecules, except for Tim-4, contain a 
C-terminal cytoplasmic tail with a conserved 
tyrosine-based signaling motif. Interestingly, 
in contrast to other checkpoint receptors 
like PD-1 and TIGIT, Tim-3 lacks classical 
inhibitory immunoreceptor tyrosine-based 
inhibition or immunoreceptor tyrosine-based 
switch signaling motifs in its cytoplasmic tail.

Although much remains to be learned 
about Tim-3 signaling, it is known that HLA-
B-associated transcript 3 (Bat3)15 and SH2 
(Src homology 2) domain-containing protein 
Fyn16 interact with the conserved tyrosines 
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Figure 1  Model of Tim-3 signaling in T cells. In the absence of Tim-3 ligand, Bat-3 is bound to the cytoplasmic tail of Tim-
3 and to the catalytically active form of Lck. Lck then phosphorylates the CD3ζ subunit of the T Cell receptor (TCR) complex 
which is then followed by subsequent recruitment of Zeta-chain-associated protein kinase (ZAP70) to the TCR complex. This 
recruitment results in the activation of ZAP70/Linker for Activation of T cells (LAT)/Phospholipase C gamma 1 (PLCγ1)/Ca2+ 
to promote T-cell proliferation and survival. However, Tim-3 ligation by ligand displaces Bat-3 from the Tim-3 tail, resulting 
in the recruitment of tyrosine phosphatases (CD45 and CD148) which lead to dephosphorylation (inactivation) of Lck, and 
downregulation of ZAP70/LAT/PLCγ1/Ca2+ TCR signaling and suppression of T-cell proliferation and survival. Bat-3, HLA-B-
associated transcript 3; Ceacam1, carcinoembyronic antigen-related cell adhesion molecule-1; Gal-9, galectin-9; Hmgb1, high-
mobility group protein B1; PtdSer, phosphatidylserine; Tim-3, T-cell immunoglobulin and mucin domain 3.

Y256 and Y263 in its cytoplasmic tail. The current model 
of Tim-3 signaling is that on T-cell activation, Tim-3 is 
recruited to the immunological synapse17 where Bat3 
binds to the cytoplasmic tail of Tim-3 and recruits the 
active, catalytic form of Lymphocyte-specific protein tyro-
sine kinase (Lck)15 (figure  1). However, when Tim-3 is 
engaged by ligand, the conserved tyrosine residues in the 
cytoplasmic tail become phosphorylated, leading to the 
release of Bat3, thereby allowing Tim-3 to exert its inhib-
itory function. Both galectin-9 and carcinoembyronic 
antigen-related cell adhesion molecule-1 (CEACAM1), 
two ligands described for Tim-3 (discussed below), have 
been shown to trigger phosphorylation of Y256 and 
Y263 by the tyrosine kinase Interleukin-2-inducible T-cell 
Kinase (ITK),18 19 leading to the release of Bat3. Further, 
one study has reported that the expression of a long-non-
coding RNA that binds Tim-3 (Lnc-Tim-3) was upregu-
lated in dysfunctional CD8+ T cells from patients with 

hepatocellular carcinoma (HCC) and that binding of 
Lnc-Tim-3 to Tim-3 leads to the release of Bat3, which 
then diminishes T-cell activation and antitumor immu-
nity.20 Of note, increased Bat3 expression blocks Tim-3-
mediated inhibitory signaling and enhances effector T-cell 
function.15 By contrast, reduced Bat3 expression leads to 
stronger Tim-3-mediated inhibitory signaling. Accord-
ingly, analysis of Bat3 mRNA in CD8+ tumor-infiltrating 
lymphocytes (TILs) isolated from CT26 colorectal carci-
nomas revealed that terminally dysfunctional Tim-3+PD-1+ 
CD8+ TILs displayed a greater than 50% reduction in 
Bat3 mRNA levels relative to Tim-3−PD-1+ CD8+ TILs that 
still retain effector function.15 However, it is important to 
note that Bat3-mediated regulation of Tim-3 signaling is 
described only for T cells. It remains to be determined 
if Tim-3 employs the same downstream signaling mole-
cules in other cells such as dendritic cells (DCs). Indeed, 
one study has demonstrated that ligation of Tim-3 on DCs 
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Figure 2  Model of Tim-3 signaling in DCs HMGB1 can interact with several receptors either alone or in a complex with DNA 
or Lipopolysaccharide (LPS). HMGB1 receptors include Receptor for Activated Glycation End products (RAGE), TLR4, TLR2, 
and IL-1R. HMGB1–DNA complexes bind to RAGE, leading to internalization and activation of TLR9 and TLR7 in the endosome. 
This leads to the activation of several downstream transcription factors, such as NF-κB, and activation of tumor-associated 
dendritic cells (TADCs). Tim-3 can sequester HMGB1, resulting in suppression of NF-kB-mediated activation of DCs. Ligation 
of Tim-3 on DCs also activates Btk and c-Src, which also inhibit the activation of NF-kB. Tim-3-mediated suppression of DCs 
dampens the production of CXCL9 thereby reducing CD8+ T-cell recruitment to the TME. Bat-3, HLA-B-associated transcript 3; 
Btk, Bruton’s tyrosine kinase; DCs, dendritic cells; HMGB1, high-mobility group protein B1; Tim-3, T-cell immunoglobulin and 
mucin domain 3; TME, tumor microenvironment.

activates the SH2 domain-containing signal transducers 
Bruton’s tyrosine kinase and c-Src which results in inac-
tivation of Nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-kB) and subsequently leads to inhi-
bition of DC activation21 (figure 2).

That Tim-3 may function as an activating receptor 
comes primarily from in vitro studies showing that ectopic 
expression of Tim-3 on Jurkat T cells led to T-cell acti-
vation resulting from increased NFAT/AP-1 activation.16 
These activities of Tim-3 occurred without the addition 
of exogenous ligand, and structure/function studies 
suggested that cell surface expression of Tim-3 may be 
sufficient for its ability to augment T-cell activation. The 
requirements for Src kinases and for ZAP-70 and SLP-76 
in Tim-3-mediated activation suggested that Tim-3 inter-
sects closely with TCR signaling pathways. However, as 
discussed further below, the association of naturally occur-
ring loss-of-function mutations in Tim-3 with pathologic 

inflammation now solidify the function of Tim-3 as an 
inhibitory receptor.

Tim-3 ligands
Thus far, four distinct ligands for Tim-3 have been iden-
tified: galectin-9, phosphatidylserine (PtdSer), high-
mobility group protein B1 (HMGB1), and CEACAM-1. 
All of these have been described in the context of cancer 
and have relevance in disease progression as discussed 
below.

Galectin-9
Galectin-9, a 36 kDa β-d-galactoside mammalian C-type 
lectin, was the first ligand identified for Tim-3.22 23 
Galectin-9 is a secreted protein that binds to a carbohy-
drate structure on the IgV domain of mouse Tim-3, which 
has two N-linked glycosylation sites.24 While the exact 
structure of the target carbohydrates recognized by 
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galectin-9 is unclear, galectin-9 has an enhanced affinity 
for larger poly-N-acetylactosamine-containing struc-
tures.25 Galectin-9 is produced broadly by immune cells 
including mast cells, T cells, B cells, macrophages, and 
also by non-immune cells, including the epithelium of 
the gastrointestinal tract, endothelial cells, and fibro-
blasts. Galectin-9 production is upregulated by IFN-γ,26 27 
and thus may be part of a negative feedback loop similar 
to PD-L1, which is also upregulated by IFN-γ.28 Given that 
galectin-9 binds carbohydrate structures, it has multiple 
target molecules. In fact, Tim-3 deficiency only reduces 
galectin-9-mediated Th1 cell death by about 40%,24 
suggesting that some of the effects of in vivo administra-
tion of galectin-9 may be mediated by galectin-9 binding 
to receptors other than Tim-3. Indeed, galectin-9 has also 
been reported to exert various biological functions via 
interaction with CD4429 and IgE.30

As discussed above, galectin-9 binding results in the 
oligomerization of Tim-3 on the cell surface, resulting 
in the release of Bat3 from the intracellular tail of Tim-3 
(figure 1). This, in turn, leads to T-cell inhibition,15 and 
may be one of the mechanisms by which T cells enter the 
state of dysfunction or exhaustion. Many lines of evidence 
indicate a critical role for the Tim-3–galectin-9 interaction 
in the context of cancer. A study in patients with hepatitis 
B virus (HBV)-associated HCC showed that galectin-9 
was highly expressed by antigen-presenting cell subsets 
including Kupffer cells, myeloid DCs, and plasmacytoid 
DCs and that the Tim-3–galectin-9 interaction contrib-
uted to immune dysfunction and poor prognosis.27 In 
human AML, an autocrine TIM-3–galectin-9 loop drives 
the self-renewal of AML stem cells by activating the NF-kB 
and β-catenin pathways31 and the secretion of both TIM-3 
and galectin-9 allows cancer cells to evade immune surveil-
lance.32 Further, transgenic overexpression of Tim-3 was 
shown to lead to increased frequency of CD11b+Ly-6G+ 
myeloid suppressor cells, which was lost on deletion of 
galectin-9.33 Finally, administration of anti-Tim-3 and 
anti-galectin-9 antibodies was shown to be equivalent in 
their ability to improve the response to paclitaxel (PTX) 
chemotherapy in models of breast cancer.34 Collectively, 
these data show that the Tim-3–galectin-9 interaction can 
suppress immune responses and facilitate tumor growth.

However, in vitro studies have suggested that in breast 
cancer cells, galectin-9 suppresses metastatic potential 
by promoting cancer cell aggregation, thereby limiting 
invasion, detachment from the tumor, and attachment 
to the vascular endothelium.35 36 Galectin-9 has also 
been shown to induce apoptosis and inhibit the growth 
of HCC cells.37 The opposing effects of galectin-9 in 
tumor immunity make the prognostic value of galectin-9 
in cancer patients unclear. Indeed, positive galectin-9 
expression predicted a worse clinical outcome in patients 
with urinary tumors38 and non-small cell lung cancer 
(NSCLC).39 However, several other studies have indicated 
that high expression of galectin-9 contributes to a better 
outcome for various solid tumors such as breast cancer,36 
melanoma,40 HCC,41–43 colon cancer,44 and bladder 

urothelial carcinoma.44 Whether these various effects 
involve galectin-9 binding to Tim-3 or carbohydrate struc-
tures on other proteins is not known.

Phosphatidylserine
PtdSer, a phospholipid that is exposed on the surface 
of apoptotic cells, serves as a ligand for all Tim family 
members.45 46 Despite the fact that Tim-3 binds PtdSer 
with at least five times lower affinity compared with 
other TIM family members,47 it has been demonstrated 
that the Tim-3–PtdSer interaction is important for clear-
ance of apoptotic cells in vivo and that mice treated with 
anti-Tim-3 mAb have increased numbers of apoptotic 
cells in splenic follicles and increased serum levels of anti-
dsDNA antibodies.47 How the Tim-3–PtdSer interaction 
operates in the context of cancer is unclear especially 
given increased exposure of PtdSer in the tumor micro-
environment (TME) on cancer cells due to multiple 
factors, including oxidative stress48 and the effects of 
chemotherapy and radiotherapy.49 It is possible that the 
Tim-3–PtdSer interaction could be important for medi-
ating phagocytosis of apoptotic cells by Tim-3-expressing 
CD8+ DCs and subsequent cross-presentation of the apop-
totic cell-associated antigens to CD8+ T cells. However, it 
is important to note that PtdSer also binds to other recep-
tors, including Mertk and Axl, which are expressed on 
infiltrating macrophages and DCs and also frequently 
expressed on tumor cells themselves.50 Further, it has 
been shown that B16 melanoma tumor cells produce 
microvesicles that express PtdSer on the outer surface 
and can promote metastasis.51 Whether Tim-3 has a role 
in this mechanism remains unknown.

High-mobility group protein B1
HMGB1, an alarmin, was also reported to serve as a ligand 
for Tim-3.52 HMGB1, which can be secreted by tumor 
cells among other cell types,53 can interact with several 
receptors either alone or in a complex with DNA or LPS 
. HMGB1 receptors include RAGE, TLR4, TLR2, and 
IL-1R.54 HMGB1–DNA complexes bind to RAGE, leading 
to internalization and activation of TLR9 and TLR7 local-
ized in the endosome. Such interactions can stimulate 
proinflammatory and immunostimulatory pathways and, 
hence, HMGB1 constitutes a major cellular danger signal. 
However, complex formation of HMGB1 with nucleic 
acids and with other molecules can be inhibited by direct 
interaction with Tim-3 (figure  2). In murine cancer 
models, Chiba et al showed that Tim-3 on DCs serves as a 
molecular trap for HMGB1 and thus inhibits the recruit-
ment of nucleic acids into endosomes, subsequently 
preventing activation of DCs in the TME.52 Accordingly, 
they showed that Tim-3 blockade could improve the 
efficiency of responsiveness to cisplatin chemotherapy, 
which is known to increase HMGB1 expression in human 
cervical carcinoma HeLa cells55 and in MC38 colon carci-
noma cells.56 Importantly, this effect was found to be inde-
pendent of galectin-9. This finding is of interest in light 
of the demonstration that in murine breast cancer both 
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anti-galectin-9 and anti-Tim-3 improve the response to 
PTX,34 which is also known to induce HMGB1 release.57 
The relative roles of Tim-3–PtdSer and Tim-3–HMGB1 
interactions in the regulation of the response to different 
chemotherapeutic agents remain to be determined.

Carcinoembyronic antigen-related cell adhesion molecule-1
CEACAM1, which is expressed at high levels on activated 
but not naïve T cells, is also a ligand for Tim-3.19 58 59 In addi-
tion to its expression by T cells, CEACAM1 is expressed 
by DCs,60 monocytes,61 macrophages62 and tumor cells, 
such as melanoma. CEACAM1 can bind Tim-3 both intra-
cellularly and extracellularly. The intracellular binding 
is important for maturation of Tim-3 protein. Accord-
ingly, in a mouse model of colitis, CEACAM1−/− T cells 
expressed reduced surface levels of Tim-3, concomi-
tant with a higher production of the effector cytokines 
IFN-γ, TNFα, and IL-17A.19 The extracellular binding 
can trigger the release of Bat3 from Tim-3, thus allowing 
Tim-3-mediated inhibition of TCR signaling.19 CEACAM1 
and Tim-3 are highly expressed on dysfunctional CD8+ T 
cells in the TME. Thus, the Tim-3–CEACAM1 interaction 
can potentially inhibit immune responses either in cis or 
trans in these cells (figure 1). It is important to note that 
CEACAM1 has been shown to bind itself63 and crystallog-
raphy data show that the CEACAM1 homotypic interac-
tion is stronger than the CEACAM1–TIM-3 interaction.19 
Although, further studies are required to delineate the 
physiological contexts where CEACAM1–CEACAM1 and 
CEACAM–Tim-3 interactions operate, anti-Tim-3 anti-
bodies that have demonstrated functional efficacy in 
vivo have been shown to interfere with Tim-3 binding to 
CEACAM1 and PtdSer.64

It is possible that Tim-3 can bind to several ligands at 
the same time. Binding of Tim-3 to PtdSer or CEACAM-1 
does not exclude binding to Galectin-9 as the binding 
sites are on opposite faces of the Tim-3 IgV domain. A 
recently published crystal structure of human TIM-3 
determined distinct potential glycosylation sites between 
murine (Thr44, Asn74, and Asn100) and human (Asn33, 
Asn100, and Asn124) TIM-3.65 The authors propose that 
carbohydrate side-chain modifications at Asn124 might 
alter the human TIM-3 interaction with ligands that bind 
the GFCC’ face, such as PtdSer, and by extension, anti-
bodies that block human TIM-3 interactions with ligands 
at the GFCC’ face may also block the TIM-3–galectin-9 
interaction. Further, given that galectin-9 has two identical 
carbohydrate recognition domains, it has been proposed 
that galectin-9 may serve to aggregate Tim-3–PtdSer or 
Tim-3–CEACAM1 complexes, thus promoting Tim-3 
signaling. Whether CEACAM-1, PtdSer, or galectin-9 
expression predominates may be the key determinant of 
Tim-3 signaling in a given tissue.

Role of Tim-3 in the TME
The TME is heterogenous and comprises different cell 
types. What is known about the expression and function of 

Tim-3 in various tumor-infiltrating cells types is discussed 
below.

Tim-3 on T cells
CD8+ T cells are key mediators of tumor clearance. 
However, chronic activation in the presence of suppres-
sive signals in the TME pushes CD8+ T cells into a cellular 
state commonly described as dysfunction or exhaustion. 
Dysfunctional T cells are characterized by deficits in cyto-
toxicity, the production of pro-inflammatory cytokines, 
and high expression of several checkpoint receptors. 
Notably, Tim-3 marks the most terminally dysfunctional 
subset of CD8+ TILs.11 66 Although the exact mechanism 
by which Tim-3 contributes to terminal dysfunction in 
CD8+ T cells is unclear, it is tempting to speculate that 
Tim-3 reduces the stemness of CD8+ T cells by antago-
nizing TCF-1, which is known to maintain stemness and 
restrain effector differentiation.67 Unlike PD-1, which is 
expressed together with TCF-1 on stem-like CD8+ T cells 
in the TME, Tim-3 expression is strongly anticorrelated 
with TCF-1 expression.68 The potential regulatory rela-
tionship between Tim-3 and TCF-1 is clinically relevant 
given the positive correlation of TCF-1+ CD8+ T cells with 
response to checkpoint blockade immunotherapy in 
melanoma patients,69 that loss of TCF-1+ in CD8+ T cells 
limits the response to checkpoint blockade in preclinical 
cancer models,70 71 and that Tim-3 expression is a negative 
prognostic marker in several cancers (discussed below).

In addition to CD8+ TILs, Tim-3 is also expressed at 
higher levels by CD4+ regulatory T cells (Treg) in both 
human and murine tumors compared with Treg present 
in the tumor draining lymph node, spleen, or blood.72–74 
Importantly, Tim-3+ Treg exhibit a more suppressive 
phenotype.74 Gao et al demonstrated that approximately 
70% of Tim-3+CD4+ TILs expressed Foxp3 and about 
60% of Foxp3+ TILs were TIM-3+ and that the presence 
of Tim-3+ Treg correlated with advanced tumor stage 
and the presence of nodal metastasis in patients with 
NSCLC.73 How Tim-3 signaling impacts on the functional 
phenotype of CD8+ T cells and Treg in the TME is not 
fully known, and investigation will require the use of 
lineage-specific mutant mice.

Tim-3 in non-T cells
Dendritic cells
Tim-3 is constitutively expressed on DCs. In particular, 
Tim-3 expression is highest in cDC1 cells34 (CD103+ in 
mouse, CD141+ in human) that cross-present antigen 
and license CD8+ T cells.75 76 Although the role of Tim-3 
in DCs is still unclear, studies in preclinical models have 
shown that Tim-3 can suppress intracellular TLR-induced 
activation as described above52 and that the effect of 
Tim-3 blockade in improving the response to chemo-
therapy requires DCs.34 52 In a murine model of breast 
cancer, anti-Tim-3 treatment is associated with the promo-
tion of CXCL9 production by tumor cDC1, which in turn 
increases lymphocyte infiltration and activation.34 Inter-
estingly, antibodies directed against galectin-9, but not 
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HMGB1 or CEACAM-1, promoted CXCL9 secretion by 
tumor cDC1s.34 In this regard, ligation of Tim-3 was shown 
to dampen activation of NF-kB and thus inhibit the matu-
ration of murine DCs21 (figure 2). How Tim-3 affects the 
functional phenotype of DCs and the role of interactions 
with galectin-9, CEACAM-1, and HMGB1 in this process 
will require careful dissection and the use lineage-specific 
conditional knockout mice as well as reagents that block 
specific ligand interactions.

Macrophages
One study has demonstrated that increased Tim-3 expres-
sion favors M2 macrophage polarization in a mouse model 
of colitis associated cancer. Using RAW264.7 cells, the 
authors demonstrated that STAT1 is a signaling adaptor 
of Tim-3 in macrophages and that Tim-3 controls macro-
phage polarization by inhibiting the STAT1-miR-155 
signaling axis.77 Thus, Tim-3 may additionally promote 
tumor progression by promoting suppressive macro-
phage phenotype.

NK cells
Natural Killer (NK) cells constitutively express Tim-3. 
Blockade of TIM-3 in NK cells derived from patients with 
metastatic melanoma led to reduction in cytotoxicity and 
IFN-γ production in vitro.78 In patients with lung adeno-
carcinoma, high expression of TIM-3 on both CD3−CD56+ 
NK cells and CD56(dim) NK-cells were independently 
correlated with shorter overall survival (OS) of patients 
with lung adenocarcinoma, indicating that TIM-3 expres-
sion in Nk cells can function as a prognostic biomarker 
in this Disease.79 Again, blockade of Tim-3 signaling with 
anti-TIM-3 Mab resulted in increased cytotoxicity and 
IFN-γ production of peripheral NK cells in these patients. 
Although TIM-3 blockade appears to augment the cyto-
lytic function of circulating NK cells, the role of TIM-3 in 
reinvigorating tumor-infiltrating NK cells remains to be 
demonstrated. Collectively, these studies show that TIM-3 
may also function as a checkpoint receptor on NK cells.

Regulation of Tim-3 Expression
Several transcription factors have been implicated in 
promoting the expression of Tim-3 on T cells. The first 
one identified was T-bet; indeed, it was demonstrated that 
T-bet binds to the promoter of Tim-3.80 Subsequently, it 
was demonstrated that Nfil3 (Nuclear Factor, Interleukin 
3 Regulated) can further augment the effect of t-bet on 
Tim-3 expression by remodeling the Tim-3 locus and 
making it more permissive to T-bet.81 Interestingly, Nfil3 
is induced by IL-27,81 which also induces c-maf and prdm1 
to drive the expression of a module of checkpoint recep-
tors including Tim-3.8 Further, other signals in the TME 
can cooperate with IL-27 to drive Tim-3 expression. Our 
unpublished data indicate that glucocorticoid signaling 
can cooperate with IL-27 to promote Tim-3 expression 
on CD8+ T cells. Finally, one study has shown that IL-35, 
which shares the Ebi3 subunit with IL-27, can also induce 

expression of Tim-3 along with other checkpoint recep-
tors.82 Notably, all of these studies examined T cells. 
Whether Tim-3 expression is similarly regulated in other 
cell types is not known.

Genetic Tim-3 Alterations
Human TIM-3 is localized at chromosome 5q33.3, which 
contains a large number of single nucleotide polymor-
phisms.3 TIM-3 polymorphisms (−1516 G/T (rs10053538) 
and −574 G/T (rs10515746) in the promoter region and 
+4259 T/G (rs1036199) in the coding region) have been 
associated with increased cancer risk. TIM-3 promoter 
region polymorphisms (−1516 G/T, −882 C/T, and 
−574 G/T) have shown association with increased suscep-
tibility to gastric cancer.83 TIM-3–574 G/T polymorphism 
has shown association with the risk of developing myas-
thenia gravis-associated thymoma84 and TIM-3–1516 G/T 
has shown association with increased breast cancer 
susceptibility and breast cancer progression.85

Further, two recent studies demonstrate that germline 
loss-of-function mutations in HAVCR2 lead to a hyperac-
tivation of T and myeloid cells resulting in two inflam-
matory diseases, HLH and SPTCL.6 7 The mutations are 
located in the Tim-3 IgV domain and result in misfolding 
of Tim-3 protein. Misfolded protein aggregates intra-
cellularly resulting in loss of Tim-3 expression on the 
cell surface of both T cells and myeloid cells. Patients 
harboring these mutations exhibit a severe autoimmune 
phenotype characterized by excessive production of the 
proinflammatory molecules CXCL10, IL-1β, IL-18, and 
soluble CD25. That Tim-3 loss-of-function mutations 
result in disease promoting inflammation confirms the 
inhibitory function of Tim-3.

Tim-3 as a Prognostic Marker in Cancer
Given its inhibitory effects on multiple cell types, it is 
not surprizing that several studies have shown that Tim-3 
expression is a negative prognostic biomarker in several 
tumor types. As discussed above, the presence of TIM-3+ 
Treg has been correlated with poor clinical parameters 
in NSCLC.73 Similarly, Komohara et al demonstrated that 
TIM-3 was highly expressed on CD204+ tumor-associated 
macrophages and tumor cells in patients with clear cell 
renal cell carcinoma and that a higher expression level of 
TIM-3 was positively correlated with shorter progression-
free survival in these patients.86 Li et al reported that 
TIM-3 expression was increased on both CD4+ and CD8+ 
T cells in HBV-associated HCC as compared with the 
adjacent tissues and that the numbers of TIM-3+ tumor-
infiltrating cells were negatively associated with patient 
survival. Additionally, TIM-3 expression has been associ-
ated with advanced tumor node metastasis (TNM) stage 
in several different types of cancers including gastric 
cancer,87 colon cancer,88 and cervical cancer.89 Of note, 
a meta-analysis of the OS of patients with solid tumors 



7Acharya N, et al. J Immunother Cancer 2020;8:e000911. doi:10.1136/jitc-2020-000911

Open access

Figure 3  Model for Tim-3 mAb mechanism of action in AML/MDS. The Tim-3–galectin-9 interaction promotes autocrine 
leukemic stem cell (LSC) self-renewal. Blockade of the Tim-3–galectin-9 interaction may directly inhibit downstream 
signaling pathways that foster stem cell self-renewal, including the NF-kB and β-catenin pathways. Alternatively and/or 
additionally, binding of an anti-TIM-3 antibody to TIM-3 on the surface of LSCs/blasts may facilitate antibody-dependent 
cellular phagocytosis (ADCP) by myeloid cells/macrophages expressing FcγRs and promotion of M1 phenotype. Tim-3, T-cell 
immunoglobulin and mucin domain 3.

demonstrated that higher expression of TIM-3 was signifi-
cantly correlated with shorter OS.90

TIM-3 in AML and MDS
Two independent groups identified that TIM-3 is 
expressed on the majority of CD34+CD38− leukemic stem 
cells (LSCs) and CD34+CD38+ leukemic progenitors in 
human AML, but not in CD34+CD38− normal hemato-
poietic stem cells (HSCs).91 92 TIM-3 expression has also 
been described on blasts in MDS and found to correlate 
with disease progression.93 Upregulation of TIM-3 is 
also associated with leukemic transformation of preleu-
kemic disease, including MDSs and myeloproliferative 
neoplasms, such as chronic myelogenous leukemia.31

Functional evidence for a key role for TIM-3 in AML 
was established by the use of an-ADCC (antibody-
dependent cellular cytotoxicity) and CDC (complement-
dependent cellular cytotoxicity)-competent anti-TIM-3 
antibody which inhibited engraftment and development 
of human AML in immune-deficient murine hosts.31 In 
line with observations in preclinical solid tumor models, 
dual blockade of TIM-3 and PD-1 has been shown to 
significantly reduce tumor burden and prolong survival 
in a mouse syngeneic model of AML.13 TIM-3 is reported 

to promote an autocrine stimulatory loop via the TIM-3–
galectin-9 interaction which supports LSC self-renewal31 
(figure 3). TIM-3+ LSCs and blasts were shown to actively 
secrete galectin-9. Galectin-9 ligation of primary patient 
TIM-3+ AML cells was shown to stimulate the NF-κB 
pathway by inducing phosphorylation of extracel-
lular signal-regulated kinases (ERK) and AKT, and also 
increase nuclear translocation of β-catenin.31 This TIM-3–
galectin-9 autocrine feedback loop may support clonal 
selection of preleukemic HSCs which outgrow normal 
HSCs and may promote transformation to myeloid LSCs/
promote their self-renewal.

Clinical development of TIM-3 antibodies
Extensive data in preclinical cancer models11–13 and in 
vitro cultures with patient samples10 showing the advan-
tage of blocking Tim-3, particularly in conjunction 
with PD-1 blockade, in improving antitumor immunity 
supported the development of Tim-3 as an immunother-
apeutic target. Further, upregulation of TIM-3 has been 
associated with the development of resistance to PD-1 
blockade in both lung cancer patient samples and in lung 
cancer models as well as in samples from head and neck 
cancer patients.94 95 First-in-human phase 1/2 clinical 
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Table 1  Anti-Tim-3 clinical trials

Reagent name 
(manufacturer) Isotype

ClinicalTrials.gov 
identifier Phase Coblockade Cancer type

Further 
reading

MGB453 (Novartis 
Pharmaceuticals)

IgG4 (S228P) NCT02608268 I/IIb Anti-PD-1 Advanced 
malignancies

99 100

MGB453 (Novartis 
Pharmaceuticals)

IgG4 (S228P) NCT03066648 I Monotherapy 
or anti-PD-1 or 
Hypomethylating 
Agent (HMA)
(decitabine or 
azacitidine)

AML, MDS 14 99 100

MGB453 (Novartis 
Pharmaceuticals)

IgG4 (S228P) NCT03946670 II Randomized; HMA 
(decitabine or 
azacitidine)

MDS 14 99 100

TSR-022 (Tesaro) IgG4 NCT02817633 I Anti-PD-1 Advanced solid 
tumors

101–104

TSR-022 (Tesaro) IgG4 NCT030680508 II Anti-PD-1 Liver cancer 101–103

Sym023 (Symphogen 
A/S)

? NCT03489343 I Monotherapy Solid tumors and 
lymphomas

105

Sym023 (Symphogen 
A/S)

? NCT03311412 I Anti-PD-1 Solid tumors and 
lymphomas

105

BGBA425 (BeiGene) IgG1 (variant, 
engineered to 
remove FcγR 
binding)

NCT03744468 I Anti-PD-1 Solid tumors 106

R07121661 
(Hoffmann-La Roche)

Bispecific 
antibody

NCT03708328 
(development 
halted)

I Targets both TIM-3 
and PD-1

Solid tumors 
metastatic melanoma, 
NSCLC

107

LY3321367 (Eli Lilly 
and Company)

? NCT03099109 
(development 
halted)

Ia/Ib Anti-PD-L1 Advanced relapsed/
refractory solid 
tumors

108

ICAGN02390 (Incyte 
Corporation)

IgG1k, N297A 
(Fc-engineered 
silent)

NCT03652077 I Monotherapy Solid tumors 109

BMS-986258 (Bristol-
Myers Squibb)

IgG1, silent NCT03446040 I Anti-PD-1, human 
recombinant 
hyaluronidase

Advanced cancer N/A

AML, acute myelogenous leukemia; MDS, myelodysplastic syndrome; N/A, not applicable; NSCLC, non-small cell lung cancer; TIM-3, T-cell 
immunoglobulin and mucin domain 3.

trials have been initiated with many TIM-3 antibodies 
(table 1), including TSR-022 (NCT02817633), MBG453 
(NCT02608268), and LY3321367 (NCT03099109), for 
which early clinical data have been reported. Many of 
these anti-TIM-3 antibodies are being tested in combina-
tion with anti-PD-1/L1 mAbs. Importantly, early data have 
shown that this combination is broadly safe and well toler-
ated. In line with preclinical data showing the efficacy of 
anti-Tim-3+anti-PD-1, TSR-022 in combination with anti-
PD-1 (TSR-042) has shown activity in NSCLC patients who 
had progressed on previous anti-PD-1 therapy. Further, 
LY3321367 has demonstrated single agent activity with 
a partial response in a small cell lung cancer patient at 
1200 mg Q2W.

Given the expression of TIM-3 on LSCs and blasts in 
AML and MDS, and the absence of expression on HSCs, 

anti-TIM-3 antibody MBG453 was tested in combination 
with standard of care hypomethylating agents decit-
abine or azacitidine in a multicenter, open label phase 
Ib dose-escalation study (NCT03066648) in patients with 
high-risk MDS or AML and no prior hypomethylating 
agent therapy. Preliminary data presented by Borate and 
colleagues showed that MBG453 plus decitabine demon-
strated encouraging preliminary efficacy in these patient 
populations with an overall response rate in high-risk 
MDS of 58%, including 47% CR/mCR, with responders 
continuing on study for up to 2 years.14 A phase II multi-
center, randomized study of MBG453 or placebo added 
to hypomethylating agents (azacitidine or decitabine) 
in adult subjects with intermediate, high, or very high 
risk MDS (NCT03946670) and no prior hypomethyl-
ating agent therapy is currently underway. Potential 

https://clinicaltrials.gov/ct2/show/NCT02817633
https://clinicaltrials.gov/ct2/show/NCT02608268
https://clinicaltrials.gov/ct2/show/NCT03099109
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mechanisms of action of MBG453 include disruption of 
Tim-3–galectin-9-mediated autocrine LSC self-renewal, 
promotion of antibody-dependent cellular phagocytosis 
(ADCP), and/or promotion of M1 phenotype in macro-
phages (figure 3).

Clinical anti-TIM-3 antibodies: isotype
In humans, there are four isotypes of IgG (IgG1-
4), differing in their binding profiles to various Fcγ 
receptors (FcγR) and to complement subunits, such 
as C1q. IgG1 has the highest affinity to all FcγRs and 
C1q, leading to significant effector functions, such 
as ADCC, ADCP, and CDC, whereas IgG2 and IgG4 
induce significantly weaker or no ADCC and CDC. The 
majority of anti-TIM-3 antibodies in early clinical devel-
opment are Fc-receptor silent, with the exception of 
Sym023, which is a wild-type IgG1 antibody, currently 
in testing in advanced solid tumors and lymphoma 
(NCT03489343).96 Some anti-TIM-3 mAbs (table  1) 
are hIgG4 isotype with hinge stabilization (S228P) to 
eliminate fab-arm exchange. Recent data have demon-
strated that hIgG4 antibodies with a S228P mutation 
can bind FcγRI and mediate ADCP.97 98 It remains to be 
seen whether clinical anti-TIM-3 antibodies do mediate 
ADCP and if this could have utility in the AML/MDS 
setting where TIM-3 expression on LSCs or blasts may 
lead to direct anticancer activity (figure 3). Of note, the 
surrogate anti-TIM-3 mAb which demonstrated activity 
in preventing leukemic engraftment in an immune-
deficient murine host was both ADCC-competent and 
CDC-competent,92 suggesting that optimization of FcR 
engagement may be a desirable property for anti-TIM-3 
mAbs in AML/MDS.

Conclusion and perspective
Given that Tim-3 is expressed by a wide variety of immune 
cells as well as LSCs and is activated by several different 
ligands, much remains to be learned about the molec-
ular and cellular circuitry by which Tim-3 operates to 
mediate its biological effects in the TME. Despite initial 
contradictory observations suggesting that Tim-3 may 
function as a costimulatory receptor, the recent reports 
demonstrating that germline loss-of-function mutations 
in HAVCR2 lead to diseases that result from a hyper-
activated immune system establishes Tim-3 as an inhib-
itory receptor. Currently, the therapeutic potential of 
anti-Tim-3 antibodies is being tested in different types 
of cancer, with activity in combination with hypometh-
ylating agents in AML/MDS suggesting that its role on 
LSCs may be critical, in addition to its role in immune 
regulation. Further elucidation of these key functions 
for TIM-3 will help guide clinical development.
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