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Acute myeloid leukemia (AML) is a clonal malignant proliferative blood disorder with a poor
prognosis. Ferroptosis, a novel form of programmed cell death, holds great promise for
oncology treatment, and has been demonstrated to interfere with the development of
various diseases. A range of genes are involved in regulating ferroptosis and can serve as
markers of it. Nevertheless, the prognostic significance of these genes in AML remains
poorly understood. Transcriptomic and clinical data for AML patients were acquired from
The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Univariate
Cox analysis was performed to identify ferroptosis-related genes with prognostic value,
and the least absolute shrinkage and selection operator (LASSO) algorithm and stepwise
multivariate Cox regression analysis were utilized to optimize gene selection from the
TCGA cohort (132 samples) for model construction. Tumor samples from the GEO
database (136 samples and 104 samples) were used as validation groups to estimate
the predictive performance of the risk model. Finally, an eight-gene prognostic signature
(including CHAC1, CISD1, DPP4, GPX4, AIFM2, SQLE, PGD, and ACSF2) was identified
for the prediction of survival probability and was used to stratify AML patients into high- and
low-risk groups. Survival analysis illustrated significantly prolonged overall survival and
lower mortality in the low-risk group. The area under the receiver operating characteristic
curve demonstrated good results for the training set (1-year: 0.846, 2-years: 0.826, and 3-
years: 0.837), which verified the accuracy of the model for predicting patient survival.
Independent prognostic analysis indicated that the model could be used as a prognostic
factor (p ≤ 0.001). Functional enrichment analyses revealed underlying mechanisms and
notable differences in the immune status of the two risk groups. In brief, we conducted and
validated a novel ferroptosis-related prognostic model for outcome prediction and risk
stratification in AML, with great potential to guide individualized treatment strategies in the
future.
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INTRODUCTION

Acute myeloid leukemia (AML) originates from the malignant
clonal proliferation of myeloid progenitor cells in bone marrow,
peripheral blood, and other tissues and is a highly
heterogeneous clinical syndrome. It is the most common type
of leukemia in adults, accounting for 2.5% of new cancer cases
and 3.1% of new deaths worldwide in 2020, ranking among the
top 10 causes of cancer-related deaths (Sung et al., 2021).
Currently, chemotherapy and stem-cell transplants remain
the primary therapeutic approaches to treat AML patients.
Over the past decades, advances in our understanding of
AML pathogenesis, combined with the development of
intensive consolidation chemotherapy regimens, improved
stem-cell transplantation procedures, and enhanced
supportive care (Coombs et al., 2016), have contributed to
increased overall survival (OS) among AML patients;
however, overall outcomes remain unsatisfactory.
Accordingly, it is still urgent to explore effective treatment
strategies to improve the prognosis of AML patients.

Ferroptosis, first named in 2012, is an iron-dependent regulated
cell death characterized by an imbalance in redox homeostasis
caused by lipid peroxidation or decreased antioxidant capacity. It
can be distinguished from other cell death pathways, including
apoptosis, necrosis, and autophagy, through distinct morphologic,
biochemical, and genetic characteristics. Glutathione peroxidases
(GPXs) are induced through ferroptosis pathways, either directly
or indirectly, leading to an overall reduction in the cellular
antioxidant capacity, and the formation of excess reactive
oxygen species (ROS) (Hirschhorn and Stockwell, 2019).
Ferroptosis is primarily regulated by iron metabolism, lipid
metabolism, the glutathione (GSH)/glutathione peroxidase 4
(GPX4) pathway [such as system Xc- (cysteine-glutamate
transporter receptor), the sulfur transfer pathway, the
mevalonate (MVA) pathway, the glutamine pathway, and the
p53 regulatory axis], and other pathways, mediated by the
regulation of multiple genes (Li J. et al., 2020). Recent
accumulating evidence has indicated that ferroptosis participates
in the development and progression of various diseases, including
cancers, tissue reperfusion injuries, neurodegenerative diseases and
so on. And its potent ability to suppress tumor growth and enhance
chemotherapeutic sensitivity makes ferroptosis a promising
strategy for cancer therapy (Lu et al., 2017).

Only a few studies have explored the relationship between
ferroptosis and AML. An in vitro experiment demonstrated the
ferroptosis inducer erastin induces cell growth inhibition and
alters the resistance of AML cells against chemotherapeutic
agents (cytarabine and doxorubicin) through ferroptosis and
necroptosis (Yu et al., 2015). As an anti-malaria drug,
dihydroartemisinin (DHA) has been shown to specifically
inhibit the growth of AML cells but shared no toxicity to
normal hematopoietic progenitor cells, which is mediated by
the autophagy-dependent degradation of ferritin (Du et al., 2019).
Glutathione peroxidase-1 (GPX1), closely bound up with the
process of ferroptosis, TP53 regulation, ROS metabolism, and
GSH metabolism, was confirmed to be highly expressed in AML
and associated with poor prognosis of AML (Wei R. et al., 2020).

Nevertheless, there is not yet a comprehensive description of how
ferroptosis functions in AML. Consequently, we aimed to explore
the prognostic value of ferroptosis-associated genes, reveal the
underlying mechanisms, and construct a novel prognosis
prediction signature for AML according to the expression
levels of ferroptosis-related genes.

In the current research, RNA expression profiles and complete
clinical information for AML patients were obtained from The
Cancer Genome Atlas (TCGA) and the Gene Expression
Omnibus (GEO). Then we conducted an eight-gene prognostic
prediction model based on identified ferroptosis-related genes
with prognostic value, which was validated in two GEO cohorts
through survival analysis, independent prognostic analysis, and
receiver operating characteristic (ROC) curve analysis. Finally,
Gene Ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses and single-sample gene set
enrichment analysis (ssGSEA) were performed to seek for
several underlying mechanisms.

MATERIALS AND METHODS

Data Collection and Processing
The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) is
a comprehensive database sponsored by the government of the
United States, collecting more than 11,000 cases across 33 tumor
types (Hutter and Zenklusen, 2018). The Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/) is the largest public
resource for gene expression data, storing chips, second-
generation sequencing, and other high-throughput sequencing
data (Barrett et al., 2013). The mRNA expression profiles and
clinical information of AML bone marrow samples were
downloaded from TCGA (Weinstein et al., 2013). Two gene
expression matrices (GSE37642_series_matrix, GSE71014_series_
matrix) regarding AML studies and the corresponding probe
annotation platform files (GPL570, GPL96) were acquired from
the GEO database (Li et al., 2013; Chuang et al., 2015). The standard
for screening samples was as follows: 1) the samples were derived
from the bone marrow of patients who were diagnosed with AML,
based on relevant diagnostic standards; 2) the samples included
integrated survival data; 3) the survival time of the patients was
longer than 0 day. Because all data used in this study were gathered
from public databases, no ethics committee approvals were required.
A total of 60 ferroptosis-related genes were obtained by searching the
previous literature (Stockwell et al., 2017; Doll et al., 2019a; Bersuker
et al., 2019; Hassannia et al., 2019) (Supplementary Table S1).

The Ensembl identifies in the genematrix downloaded from the
TCGA database were converted into gene symbols by referring to
the information fromGENCODE (version 32, www.gencodegenes.
org/). Probe set identifiers were converted into gene symbols
according to the corresponding annotation documents from the
GEOwebsite. Formultiple probe sets associated with a unique gene
symbol, the average value of gene expression was used. To
minimize the impacts on subsequent analyses as to the greatest
extent possible, all genes with no expression detected in any AML
samples were removed. We then extracted and intersected the
ferroptosis-related genes from the three cohorts and corrected for
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batch effects using the sva R package (Leek et al., 2012) for the
convenience of comparisons.

Prognostic Signature Construction and
Validation
After combining the expression levels of ferroptosis-related genes
with survival time and survival state, univariate Cox regression
analysis was conducted in 132 AML samples from the TCGA
database to screen survival-associated genes, and finally 20 genes
were obtained with p < 0.05 as the cutoff value. Thereafter, a least
absolute shrinkage and selector operation (LASSO) algorithm
(Tibshirani, 1997) was performed to fit the model 1,000 times
while adjusting the gene screening and complexity to obtain
better performance parameters and to avoid the appearance of
overfitting using the glmnet R package. A novel eight-gene
prognostic signature for AML emerged following stepwise
multivariate Cox regression analysis. The expression levels of
these eight genes between AML patients and corresponding
normal samples were compared by GEPIA (Gene Expression
Profiling Interactive Analysis, http://gepia.cancer-pku.cn/), an
online tumor data mining server based on the TCGA and GTEx
projects (Tang et al., 2017). The threshold values for |log2FC|
and p-value were 1 and 0.01, respectively.

In the light of the established risk scoring formula, the risk
scores of each patient in the TCGA and GEO databases were
calculated and grouped into high- or low-risk groups by the
median value of the risk score in the training set. Survival curves,
risk curves, and ROC curves for the three cohorts were visualized
separately with the survival R package, survminer R package,
heatmap R package, and timeROC R package. Independent
prognostic analyses were conducted and presented as forest
maps for the TCGA-LAML and GSEE37642-GPL570 cohorts
to determine whether the model was worthy of being a prognostic
factor independent of other clinical traits.

Functional Enrichment Analysis
We carried out functional enrichment analyses to identify
relevant signaling pathways and reveal the underlying
molecular mechanisms associated with the biological processes.
First, risk difference analysis was operated by using the limma
package and Wilcox test to screen the differentially expressed
genes (DEGs) between the high-risk and low-risk groups, using
false-discovery rate (FDR) < 0.05 and | log fold change (FC) | > 1
as the significance level. Afterwards, GO and KEGG analyses were
performed with the clusterProfiler R package (Yu et al., 2012),
based on the DEGs, filtered by p < 0.05. The top 10 GO analysis
results for biological processes (BP), cellular components (CC),
and molecular function (MF) terms and the top 30 results from
the KEGG analysis are displayed as bar plots and bubble plots,
respectively. According to the annotated gene set
(Supplementary Table S2), ssGSEA analysis was performed to
get scores for immune cells and immune-related functions for
each sample in the TCGA-LAML cohort with the GSVA R
package (Hänzelmann et al., 2013). Differences between the
two risk groups were analyzed and visualized as box plots
using the limma R package, ggpubr R package, and

reshape2 R package. The threshold value for significance was
p < 0.05.

Statistical Analysis
Statistical analyses were performed using R software (version
3.6.1, https://www.r-project.org/) and Perl software (https://
www.perl.org/). The mean value, range, and proportions of
clinical information in the three sequences were analyzed by
SPSS version 24. The Wilcox test was used to identify the DEGs
between the two risk groups. Generally, p < 0.05 was considered
significant unless otherwise specified.

RESULTS

Patient Characteristics
As noted above, gene expression data and clinical information for
AML patients were acquired from the public databases TCGA
and GEO. After filtering, as described in the Methods, 132 AML
samples from the TCGA-LAML project were regarded as the
training group, whereas 136 samples from the GSE37642-
GPL570 matrix, and 104 samples from the GSE71014 matrix
were treated as the validation group. The clinical information of
TCGA was relatively abundant, including age, gender, race,
ethnicity, cytogenetics risk category, platelet count,
French–American–British (FAB) category, hemoglobin value,
white blood cell (WBC) value, blast cell percentages in
peripheral blood and bone marrow, and cytogenetic
abnormality. The clinical data included in GSE37642-GPL570
were limited to age, FAB category, runx1-runx1t1 fusion status,
and runx1mutation status. No clinical information was provided
in GSE71014; therefore, the independent prognostic analysis was
based on the TCGA-LAML and GSE37642-GPL570 projects. The
average ages of the TCGA-LAML and GSE37642-GPL570 cohort
were 53 years (range: 21–88 years) and 56 years (range:
18–85 years), respectively. M1 and M2 were the most common
AML types in the two cohorts. Detailed clinical characteristics for
the three cohorts are listed in Table 1.

Construction and Validation of the
Prognostic Model
After the previous data processing, 56 intersecting genes were
used for univariate Cox analysis in the training group, obtaining
20 ferroptosis-related genes with survival significance by p < 0.05
(Table 2). The LASSO algorithm and stepwise multivariate Cox
regression analysis were applied, which resulted in the generation
of an eight-gene prognostic model (Figure 1). The patient’s risk
score � 0.476551252 × CHAC1 + 0.291108125 × CISD1 +
0.242536399 × DPP4 + 0.02380646 × GPX4 + 0.581670513 ×
AIFM2 + 0.080298868 × SQLE + 0.01518642 × PGD +
0.413485022 × ACSF2 (Table 3). Among them, the expression
of CHAC1, CISD1, GPX4, AIFM2, SQLE, and PGD were lower in
AML than in normal tissues, whileDPP4 and ACSF2 had a higher
expression (Supplementary Figure S1). Since the calculated
hazard ratio (HR) for each of these eight genes was greater
than 1, they were judged as being high-risk genes that may be
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negatively associated with the survival of AML patients, and six of
them (CHAC1, DPP4, GPX4, AIFM2, PGD, and ACSF2) were
identified as independent prognostic genes with p < 0.05.

The risk scores of the AML patients in the training and
validation groups were calculated based on the above formula
and differentiated into high- and low-risk groups for subsequent
analyses (Supplementary Table S3). The survival analyses
(Figures 2A–C) between the two groups in each dataset
demonstrated significant differences (training group TCGA-
LAML: p � 2.365e−07; validation group GSE37642-GPL570:
p � 3.376e−02; validation group GSE71014: p � 2.013e−02),
especially in the training set. Over time, there was an intuitive
advantage in the low-risk group of higher OS and lower mortality
compared with the high-risk group. The risk score curves
(Figures 2G–I) successfully separated the high-risk group
from the low-risk group, and the patients’ risk scores were
linked from left to right. The survival state diagrams (Figures
2G–I) clearly show the survival state of each patient, and the
number of deaths increased with the risk score. The heat maps
(Figures 2G–I) revealed the gene expression values of the model
genes in each sample by color distribution. Generally speaking,

the expression level of each gene increased with the risk score,
which further indicated that the model genes were all high-risk
genes. To our great satisfaction, the area under the ROC curve
(AUC) values (Figures 2D–F) for the training set were relatively
high (1-year: 0.846; 2-years: 0.826; 3-years: 0.837), verifying the
great predictive performance of the signature. By contrast, the
results were barely acceptable in the validation groups, which
might be due to differences in the feature distribution among the
datasets. Furthermore, another ROC curve (Figure 2J–K), which
combined the risk score and the detailed clinical information, was
visualized for the TCGA-LAML and GSE37642-GPL570 datasets,
indicating the advantage of the established model for prognosis
prediction compared with single clinical information. Finally,
univariate and multivariate analyses conducted for the TCGA-
LAML and GSE37642-GPL570 cohorts declared the independent
prognostic ability of the risk score (Figure 3).

GO, KEGG, and ssGSEA Analysis
GO and KEGG enrichment analyses were performed on the
DEGs identified between the two risk groups in the TCGA-
LAML cohort (Supplementary Table S4, S5). Figure 4 shows

TABLE 1 | Clinical characteristics of AML patients in the three cohorts.

Variable TCGA-LAML
cohort (n = 132)

GSE37642-GPL570
cohort (n = 136)

GSE71014
cohort (n = 104)

Average age (year) 53.27 (21–88) 55.51 (18–85)
Gender
Female 61 (46.2%)
Male 71 (53.8%)

Lab data
Platelet (109/L) 65.12 (9–351)
Hemoglobin (g/dl) 9.53 (6–13)
WBC (109/L) 34.38 (1–224)
Peripheral blasts (%) 65.67 (0–100)
Bone marrow blasts (%) 38.11 (0–97)

Cytogenetics risk
Favorable 30 (22.7%)
Intermediate/Normal 73 (55.3%)
Poor 27 (20.5%)
Unknown 2 (1.5%)

Vital status
Alive 52 (39.4%) 38 (27.9%) 68 (65.4%)
Dead 80 (60.6%) 98 (72.1%) 36 (34.6%)

FAB
M0 12 (9.1%) 8 (6.0%)
M1 32 (24.2%) 29 (21.3%)
M2 32 (24.2%) 47 (34.6%)
M3 14 (10.6%) 7 (5.1%)
M4 27 (20.5%) 17 (12.5%)
M5 12 (9.1%) 19 (14.0%)
M6 2 (1.5%) 7 (5.1%)
M7 1 (0.8%) 1 (0.7%)
Unknown 0 (0.0%) 1 (0.7%)

Runx1-runx1t1 fusion
Yes 7 (5.1%)
No 129 (94.9%)

Runx1 mutation
Yes 16 (11.8%)
No 108 (79.4%)
Unknown 12 (8.8%)

TCGA, The Cancer Genome Atlas; AML, acute myeloid leukemia; Lab, laboratory; WBC, white blood cell; FAB, French-American-British.
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the top 10 GO terms and top 30 KEGG pathways with the most
significance. Most enriched pathways were related to immunity,
metabolism, and cancer, indicating the accuracy of our model.

The ssGSEA analysis compared immune activity between the
high-risk group and the low-risk group in the TCGA-LAML
cohort, based on scores for 16 types of immune cells and 13 types
of immune functions. The results (Figure 5) indicated significant
differences in immune activity between the two groups, especially
for aspects of antigen-presenting cell (APC) co-stimulation,
human leukocyte antigen (HLA), major histocompatibility
complex (MHC) class I, parainflammation, type I interferon
(IFN) response, type II IFN response, T helper cells, and T
regulatory cells (Tregs), with p values <0.001. Immune
function essentially differed between the two risk groups,
except for cytolytic activity, suggesting these ferroptosis-related
genes may have a certain impact on the survival and prognosis of
tumor patients through relevant immune pathways, although the
exact mechanism requires further exploration.

DISCUSSION

AML is a clinically and genetically heterogeneous disorder of
hematopoietic stem cells, with an annual incidence that is
consistently higher than 4.2 per 100,000 population in the
United States and a mortality rate of 2.8 per 100,000
population, based on SEER (Surveillance, Epidemiology, and
End Results) data (Shallis et al., 2019). With the rapid
development of high-throughput sequencing technology, the
available treatment options for AML patients are becoming
increasingly diverse. In addition to conventional chemotherapy
and stem-cell transplantation, a large number of targeted small-
molecule drugs have been approved for AML, and which provide

certain patients with beneficial outcomes. However, the poor
prognosis and high mortality of AML is still a great challenge and
undisputed fact.

Cell death, mainly composed of uncontrolled cell death and
programmed cell death, represents an irreversible and
fundamental biological process that is necessary to maintain
the normal functions and morphologies of tissues (D’Arcy,
2019). It is the basis of embryonic development, tissue
homeostasis, and immune mechanisms. As a double-edged
sword affecting the development and progression of cancers,
inhibiting cell death can promote oncogenesis and increase
chemotherapeutic resistance. By contrast, the promotion of
cell death has been utilized as a direct therapeutic approach to
cancers (Strasser and Vaux, 2020). Ferroptosis is a newly
characterized form of programmed cell death induced by iron-
dependent lipid peroxidation and has been strongly linked to the
pathophysiology of various diseases, including cancers,
inflammatory diseases, neurological diseases, acute kidney
injury, age-related macular degeneration, psoriasis, and
hemolytic disorders (Li J. et al., 2020). It has been a hot topic
and attracted the most attention of researchers on how to
intervene in the occurrence, development and treatment of
tumors through regulating pathways activating or inhibiting
ferroptosis.

Recently, a large number of studies have highlighted the place
of targeted ferroptosis in the treatment of AML. Current
approaches to treat AML by modulating iron metabolism can
be broadly classified into four categories: iron chelators,
modulation of proteins involved in iron metabolism, induction
of ferroptosis, and delivery of anti-leukemic drugs by ferritin
(Weber et al., 2020). Iron chelators prevent the induction of
ferroptosis, and deferoxamine (DFO) exerts anti-leukemic effects
by blocking ROS elaboration and iron-dependent enzymes.
Targeted peptides and antibodies against transferrin are also
used to treat AML, and transferrin has been used to deliver
anti-leukemic drugs (Grignano et al., 2020). While APR-246 and
ATPR (a novel all-trans retinoic acid derivative) can both induce
ferroptosis of AML cells and become targets for AML therapy
(Du et al., 2020; Birsen et al., 2021). High mobility group box 1
(HMGB1) is a key regulator of erastin-induced ferroptosis via the
RAS-JNK/p38 pathway and is also expected to be a potential drug
target in leukemia (Ye et al., 2019). Furthermore, since
mitochondria are closely associated with iron metabolism and
ROS production, several studies have recently elucidated
mitochondria metabolism as a therapeutic strategy for AML,
and multiple drugs are undergoing clinical trials (Panina et al.,
2021).

At the present research, we extracted the expression levels of
ferroptosis-related genes from gene expression sequences and
identified genes with prognostic significance by univariate Cox
regression analysis. A clinical prognostic model was conducted to
predict the survival risk of AML patients by the LASSO algorithm,
and the accuracy was validated in two additional independent
cohorts. There was an evident prolonged OS time and lower
mortality rate of the low-risk group. In addition, the model was
determined to be an independent prognostic factor, with high
AUC values indicating the accuracy of the risk assessment model.

TABLE 2 | Ferroptosis-related genes with survival significance in the univariate
Cox regression analysis of the TCGA-LAML cohort.

Gene name HR HR.95L HR.95H p-value

G6PD 1.042662659 1.021730497 1.064023657 5.40E-05
GPX4 1.029261441 1.01470048 1.044031353 7.26E-05
LPCAT3 1.26784648 1.126151189 1.427370244 8.68E-05
AIFM2 2.35902572 1.522954065 3.654084172 0.000121029
ACSF2 1.416086083 1.183993793 1.693674245 0.000139401
SLC1A5 1.034660853 1.007310121 1.062754218 0.012673093
GSS 1.084599685 1.017485242 1.15614107 0.012708482
HSPB1 1.021101123 1.004464707 1.038013079 0.012721046
FTH1 1.004820236 1.001006148 1.008648857 0.013203117
FADS2 1.044215109 1.008006196 1.081724694 0.01626862
DPP4 1.315339205 1.044859818 1.655836691 0.01961824
KEAP1 1.042701327 1.006702842 1.079987074 0.019667367
PGD 1.011288392 1.001788789 1.020878077 0.019747746
CS 1.073417219 1.010825563 1.139884634 0.020820444
GOT1 1.182375661 1.02398682 1.365263865 0.022430936
SQLE 1.106383386 1.013803784 1.207417269 0.023363045
CHAC1 1.533037962 1.053292623 2.231293889 0.025674875
CISD1 1.33620604 1.026729735 1.738964521 0.031067487
RPL8 1.00324892 1.000260989 1.006245776 0.033052858
NCOA4 0.992630046 0.98539641 0.999916784 0.047449628

TCGA, The Cancer Genome Atlas; AML, acute myeloid leukemia; HR, hazard ratio.
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FIGURE 1 | An eight-gene prognostic signature was constructed based on the LASSO algorithm in the training group TCGA-LAML. (A) 1,000-fold cross-validation
was performed to choose the lambda value with the minimum cross-validation error. (B) The coefficients of model genes were calculated to remove highly correlated
genes. (C) A forest map of the eight featured genes. HR > 1 indicates the gene is a high-risk gene; otherwise, the gene is a low-risk factor. p < 0.05 illustrates the
independence of the gene for predicting the prognosis of AML patients, and vice versa. TCGA: The Cancer Genome Atlas; AML: acute myeloid leukemia; LASSO:
least absolute shrinkage and selection operator; HR: hazard ratio.

TABLE 3 | Multivariate Cox regression analysis of model genes in the TCGA-LAML cohort.

Gene name Coef HR HR.95L HR.95H p-value

CHAC1 0.476551252 1.610510569 1.063220885 2.439515936 0.024492634
CISD1 0.291108125 1.337909237 0.997173742 1.79507447 0.052247121
DPP4 0.242536399 1.274477638 1.006482968 1.613830837 0.044050084
GPX4 0.02380646 1.024092096 1.00530429 1.043231021 0.011737265
AIFM2 0.581670513 1.789024525 1.096982582 2.917647739 0.01975936
SQLE 0.080298868 1.083610876 0.982343805 1.195317287 0.108691658
PGD 0.01518642 1.015302319 1.004037904 1.026693112 0.00763266
ACSF2 0.413485022 1.51207824 1.239707104 1.844290959 4.50E−05

TCGA, The Cancer Genome Atlas; AML, acute myeloid leukemia; HR, hazard ratio; Coef, coefficient.
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FIGURE 2 | Prognostic analysis of the eight-gene signature in the training group TCGA-LAML (A, D, G, and J), validation groupGSE37642-GPL570 (B, E, H, andK)
and validation groupGSE71014 (C, F, and I). In the survival curve (A–C), the number of surviving patients decreased over time. p < 0.05 indicates significant differences in
survival between the two groups. In the risk score curve (G-I), the top shows the risk score for each patient; green dots represent low-risk patients, and red dots represent
high-risk patients. The middle shows the distribution of survival status and survival times for each patient, with red dots representing dead patients and green dots
representing living patients. The number of deaths increased with increasing risk scores. The bottom is the expression heat map of the eight model genes, with the left
showing the low-risk group and the right showing the high-risk group. The gene expression levels largely increase with the risk scores. In the ROC curves, we used the risk
score as the only feature for 1-, 2-, and 3-years OS (D–F). In addition, we compared the 1-year OS prediction accuracy of the risk score with other single clinical
characteristics (J–K). TCGA, The Cancer Genome Atlas; AML, acute myeloid leukemia; ROC, receiver operating characteristic; OS, overall survival.
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Besides, functional enrichment analyses were carried out to look
for possible pathways ferroptosis-related genes may be involved
in regulating the biological processes of AML patients.

A novel and effective prognostic signature based on eight
ferroptosis-related genes (CHAC1, CISD1, DPP4, GPX4, AIFM2,
SQLE, PGD, and ACSF2) were identified in the TCGA-LAML
project and verified in two other independent cohorts from the
GEO database. These eight featured genes were all high-risk genes
and were negatively correlated with the prognosis of AML
patients. Up to now, numerous researchers have devoted
themselves to investigating the pathogenic mechanisms of
these genes in various cancers and their relationship with
prognosis. GSH is a powerful weapon for antioxidation and
free radical scavenger found in living organisms, with functions
of maintaining redox homeostasis, detoxifying, anti-aging,
enhancing immunity, and also one of the important
regulatory mechanisms of ferroptosis. Its deficiency weakens
the capacity to defend against oxidative stress and promotes
tumor progression, whereas elevated GSH levels increase the
antioxidant ability and tolerance of tumor cells (Bansal and
Simon, 2018). CHAC1 is involved in the degradation of GSH

and is indispensable for the process of ferroptosis. GSH levels
are reduced due to cystine-starvation in triple-negative breast
cancer cells, suggesting that CHAC1 acts as an oncogene in
triple-negative breast cancer, which is consistent with the
findings of our AML study (Chen et al., 2017). CISD1, also
called mitoNEET, is a low-molecular-weight protein localized
on the outer membrane of mitochondria, which inhibits
ferroptosis by protecting against mitochondrial lipid
peroxidation (Yuan et al., 2016). Sohn et al. demonstrated
the significance of mitoNEET for promoting the proliferation
and growth of breast cancer cells through the maintenance of
mitochondrial homeostasis, highlighting mitoNEET as a
promising target for anti-tumor therapy (Sohn et al., 2013).
Similarly, the anti-leukemia potential ofmitoNEET in refractory
or recurrent B-cell acute lymphoblastic leukemia has been
emphasized by Geldenhuys et al. (2019). DPP4, which
encodes the T-cell surface antigen CD26, is a serine protease
that is overexpressed in the intestine, liver, pancreas, placenta,
thymus, and circulating blood. According to the study, the
tumor suppressor gene p53 inhibits ferroptosis by directly
suppressing the activity of DPP4, suggesting the important

FIGURE 3 | Univariate (A, C) and multivariate (B, D)Cox regression analyses of clinical information and risk scores in the training group TCGA-LAML (A, B) and the
validation group GSE37642-GPL570(C, D). p < 0.05 indicates that a factor is associated with the overall survival of AML. HR > 1 indicates the factor is a high-risk factor
and is negatively correlated with the prognosis of AML patients. The risk score obtained from the model was found to be an independent prognostic factor, with p < 0.05
in both the univariate and multivariate analyses. TCGA, The Cancer Genome Atlas; AML, acute myeloid leukemia; HR, hazard ratio.
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role of DPP4 in the regulation of ferroptosis (Kang et al., 2019).
A recent study based on bioinformatics and
immunohistochemistry suggested that dysregulation of DPP4
expression in AML severely affects chemotherapy sensitivity, yet
the mechanisms involved are unclear (Wei et al., 2021). As a key
regulator of ferroptosis, the inhibition of GPX4 makes drug-
resistant tumor cells susceptible to ferroptosis, yet some tumor
cells develop resistance mechanisms independent of ferroptosis
(Shin et al., 2018). A study analyzed the role of the GPX family
in AML and found high expression of GPX4 in AML samples
was associated with poor overall survival (Wei J. et al., 2020).
AIFM2, the former name of ferroptosis suppressor protein 1
(FSP1), is a DNA-binding oxidoreductase protein derived from
the mitochondria that has been reported to cooperate with

GPX4 and GSH to suppress phospholipid peroxidation and
ferroptosis (Doll et al., 2019b. Some studies have
demonstrated that AIFM2 is effective for the suppression of
tumorigenicity in epithelial ovarian cancer and lung cancer cells
(Notaridou et al., 2011; Lu et al., 2016). Cholesterol metabolism
plays an important role in the regulation of tumor biological
processes, including ferroptosis, and a large number of
investigators were devoted to exploring the maximum
potential of cholesterol metabolism in tumor-targeted therapy
(Xu et al., 2020). As a key rate-limiting enzyme of cholesterol
metabolism, SQLE, has been closely connected with the
proliferation and metastasis of various cancers and has been
used to predict poor prognosis, such as in nonalcoholic fatty
liver disease-induced hepatocellular carcinoma, nasopharyngeal

FIGURE 4 |Gene Ontology (GO; A, B) and Kyoto Encyclopedia of Genes and Genomes (KEGG;C, D) enrichment analyses of differentially expressed genes in the
training set TCGA-LAML. (A, B) The top 10 results of the GO enrichment analysis. (C, D) are the most significant KEGG pathways. In the bar charts (A, C), the length of
each column represents the number of genes enriched, with longer columns indicating more enriched genes. The colors of the columns represent the significance of the
enrichment, with redder columns being more significant. In the bubble diagrams (B, D), the sizes of the circles represent the number of genes enriched, with larger
circles indicating more genes enriched. The colors of the circles represent the significance of the enrichment, with the redder circles being more significant.
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carcinoma, lung squamous cell carcinoma, and breast cancer
(Liu et al., 2018; Ge et al., 2019; Li L. et al., 2020; Kim et al.,
2021). PGD is an enzyme that mediates the third step of the
pentose phosphate pathway (PPP) and is overexpressed in
multiple tumor cells, promoting the proliferation, survival,
and metastasis of tumor cells through reprogrammed tumor
bioenergetics. In addition, its overexpression induces the

development of chemotherapy resistance in lung cancer,
thyroid cancer, and ovarian cancer (Sarfraz et al., 2020).
Moreover, PGD is involved in the growth and therapy
resistance of AML cell lines (Bhanot et al., 2017). ACSF2,
encodes regulators of acyl-CoA synthesis, there are few
investigations concerning the relationship between ACSF2,
and the prognosis of AML patients to date. A retrospective

FIGURE 5 | The ssGSEA analysis compares immune cells (A) and immune-related functions (B) between the two risk groups in the training set TCGA-LAML. ***, p <
0.001; **, p < 0.01; *, p < 0.05; ns, p > 0.05. ssGSEA: single-sample gene set enrichment analysis.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 70869910

Song et al. Prognostic Model for AML

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


study identified ACSF2 as a sensitive and specific molecular
marker of recurrent deep vein thrombosis by gene expression
profiling for the first time, which makes great significance for
selecting groups requiring extended anticoagulant therapy after
confirmed in larger prospective studies (Montes et al., 2016).
Yao et al. observed the iron chelator deferoxamine could
promote the recovery of the traumatic spinal cord by
downregulating ACSF2, inferring drugs specifically targeting
ferroptosis are expected to be a novel treatment avenue for
spinal cord injury (Yao et al., 2019). Although previous studies
have confirmed the important role of ferroptosis-related genes
in certain diseases, further investigations are needed to explore
specific mechanisms associated with the pathogenesis and
prognosis of the disease.

As expected, the enriched pathways are primarily associated
with immunity, metabolism and cancer. PI3K-AKT signaling
pathway was the most significant pathway of enrichment.
Activation of the PI3K-AKT-mTOR pathway has been found
to protect cancer cells from ferroptosis, while inhibition of the
pathway enhances the effect of ferroptosis-induced cancer
treatment (Yi et al., 2020). And p53 signaling pathway plays a
dual role in the regulation of ferroptosis ADDINADDIN (Liu
et al., 2020). These indicate that these pathways may affect
tumorigenic progression by inhibiting or inducing ferroptosis.
In the ssGSEA analysis, the high-risk group had a higher
proportion of regulatory T cells and T helper cells. According
to previous studies, regulatory T cells can help leukemic cells
achieve escape from immune surveillance to promote tumor
progression, which is associated with the poor prognosis of
AML patients (Guo et al., 2020). Whereas different types of T
helper cells play their respective roles in tumor immunity, and its
specific mechanism in leukemia remains largely unknown. Both
the type I IFN response and type II IFN response were higher in
the high-risk group. Some studies have instructed that IFN can
kill tumor cells by inducing ferroptosis (Zitvogel and Kroemer,
2019). Yet some studies have illustrated the cancer-promoting
effect of IFN (Castro et al., 2018), a clear understanding of the
mechanisms involved needs to be demonstrated through more
investigations.

Some limitations must be mentioned in our research. First,
our data were obtained from the public TCGA database, which
has a higher rate of censored data, and affecting the reliability of
the results. The lack of additional clinical information, such as
data regarding chemotherapy, transplantation, and other
attempted therapeutic methods, the number of response
events, and event-free survival (EFS), limited our deep
investigations of the model and made our analysis less
extensive and comprehensive. Second, the sample sizes of the
training and validation sets were far from sufficient to support
the widespread application of the developed model in clinical
practice, and larger volumes of data from real-world trials are
still needed. Third, we did not consider whether the testing
performance of the model might be reduced when applied across
different AML subtypes.

In summary, although we successfully developed a ferroptosis-
related prognostic signature to predict the survival time of
patients with AML, further investigations are still needed to
elucidate the accuracy and universality of the model.

CONCLUSION

In conclusion, according to the expression level of ferroptosis-
associated genes in AML, we established an effective survival
scoring model by bioinformatics analysis method and verified it
as an independent prognostic factor for OS of AML patients.
Furthermore, we performed functional analysis to explore the
possible pathways and the relationships between ferroptosis and
immunity. However, due to the limitations of the study,
additional investigations should be done to further explore the
significance and mechanisms of ferroptosis in AML.
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