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Abstract

The fact that herbivores and predators exert top-down effects to alter community

composition and dynamics at lower trophic levels is no longer controversial, yet we still

lack evidence of the full nature, extent, and longer-term effects of these impacts. Here,

we use results from a set of replicated experiments on the local impacts of white-tailed

deer to evaluate the extent to which such impacts could account for half-century shifts

in forest plant communities across the upper Midwest, USA. We measured species’

responses to deer at four sites using 10–20 year-old deer exclosures. Among common

species, eight were more abundant outside the exclosures, seven were commoner

inside, and 16 had similar abundances in- and outside. Deer herbivory greatly

increased the abundance of ferns and graminoids and doubled the abundance of

exotic plants. In contrast, deer greatly reduced tree regeneration, shrub cover (100–

200 fold in two species), plant height, plant reproduction, and the abundance of forbs.

None of 36 focal species increased in reproduction or grew taller in the presence of

deer, contrary to expectations. We compared these results to data on 50-year regional

shifts in species abundances across 62 sites. The effects of herbivory by white-tailed

deer accurately account for many of the long-term regional shifts observed in species’

abundances (R250.41). These results support the conjecture that deer impacts have

driven many of the regional shifts in forest understory cover and composition observed

in recent decades. Our ability to link results from shorter-term, local experiments to

regional long-term studies of ecological change strengthens the inferences we can

draw from both approaches.
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Introduction

Ecological processes occur and interact at various spatial and temporal scales [1].

Most ecological research occurs over short periods of time and is limited in its

spatial extent, restricting our understanding of longer-term and broader-scale

processes [2]. The resulting gaps in our knowledge are sometimes labeled the

‘‘invisible present’’ [3] and the ‘‘invisible place’’ [4]. Without baseline data to

provide a reference, it is difficult to infer what long-term changes may be

occurring and whether short-term local studies are representative or merely

anecdotal [5]. Although top-down effects of particular herbivores and carnivores

are now well-recognized in the literature, these results have generally been

demonstrated to occur locally and over short periods of time. Importantly, we

now have ample evidence that deer can dramatically affect plant communities

derived from fenced exclosure studies, island studies, and direct observation.

Nevertheless, doubts and uncertainty persist concerning whether such impacts are

serious or pervasive and how long they persist [6, 7, 8, 9, 10, 11].

It has proved surprisingly difficult to understand how factors affecting local

populations accumulate into regional meta-population dynamics, particularly

when the ecological forces affecting those populations vary conspicuously over

time and space. The complexity of these dynamics makes it difficult to disentangle

the impacts of deer from other drivers and to predict how plant communities may

respond cumulatively to deer over long time periods and broad spatial scales.

Long-term ‘‘then vs. now’’ studies replicated over many sites reveal that forest

plant communities in northern Wisconsin have undergone significant shifts in

composition and diversity since the 1950s [31, 32]. These changes include declines

in mean alpha (site) diversity, floristic quality, and community homogenization

(declines in beta diversity among sites) as well as conspicuous increases in some

species and declines in others [33]. These observed long-term regional changes in

community composition could reflect the action of many ecological factors

including succession, habitat fragmentation, climate change, and aerial nitrogen

deposition as well as deer impacts.

Deer of several species have increased in abundance across much of North

America in recent decades [12, 13]. In the Upper Midwest, USA, increases in

white-tailed deer (Odocoileus virginianus) are thought to reflect favorable habitat

conditions (landscapes with mixtures of forest, openings, and agricultural fields),

scarce predators, limits on hunting (especially does), and, in northern parts of

their range, mild winters and supplemental winter feeding [12, 14, 15]. At current

densities, deer threaten tree regeneration [16, 17, 18, 19, 20, 21] and the growth

and diversity of many understory species [22, 23, 24, 25]. Failures in tree

regeneration incur serious economic impacts. The decline and loss of plant cover,

structure and diversity further threaten ecosystem health and function [12]. These

impacts of white-tailed deer reach beyond direct effects on vegetation to include

many indirect effects on forest birds, mammals, and invertebrates

[26, 27, 28, 29, 30]. The impacts of ungulate browsing are not restricted to one

region or deer species. Researchers around the globe are assessing deer species’
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impacts to vegetation and their role in trophic systems, finding detrimental effects

that permeate through several ecosystem levels [62, 63]. In sum, deer are acting as

keystone herbivores [15, 26] in many regions around the world, affecting

community structure and many ecosystem processes.

Deer impacts on woody plants are often inferred from demographic profiles or

remnant stems. Assessing deer impacts on understory species presents more

challenges as herbaceous species leave few traces of previous herbivory or may

disappear altogether. Researchers instead document deer impacts on herbaceous

species by observing reductions in abundance, height and/or the number of

reproductive individuals [34, 35, 36, 37]. Alternatively, researchers can use fenced

exclosures to directly compare and evaluate the effects of deer (or other

mammals) on plant species over time. Exclosure studies can be highly

informative, particularly if they are replicated across landscapes and regularly

maintained. However, they can also exaggerate estimates of deer impacts relative

to less extreme comparisons or underestimate deer impacts if plant communities

were already impoverished prior to the time they were erected [38, 39]. Recovery

within exclosures is often manifested by a gradual increase in height and

recruitment. This recovery, however, may be limited if the less palatable or

browse-resistant plants already present create a ‘‘recalcitrant understory’’ that

prevents recolonization by browse-sensitive species [9, 40, 41, 42]. The slow

growth of plants under shady conditions can also prevent exclosures from

providing accurate estimates of impacts or recovery, particularly over shorter time

periods and at sites lacking light gaps [43, 44]. Finally, when deer browsing

preferences vary spatially, the impacts we infer from any one exclosure may lack

generality. In sum, we are often uncertain of the generality of the inferences we

can draw from smaller-scale exclosure studies even when these demonstrate

locally dramatic impacts.

Others use ‘natural experiments’ to compare changes in community

composition among sites or regions with different deer densities and presumed

impacts [62]. Resurveys of sites with accurate baseline data are scarce but highly

informative [45, 46, 47]. Although such studies often expose substantial ecological

changes, they do not reveal their causes. In northern Wisconsin, Rooney et al. [32]

noted that plant diversity declined the most in three state parks while diversity has

not declined in three Indian reservations. These observations and the trends

regarding which species increased and decreased led Wiegmann and Waller [33]

to hypothesize that deer may account for many of the changes observed over the

past half-century in Wisconsin’s northern forests. These changes include declines

in animal-pollinated native forbs and increases in wind-pollinated sedges and

grasses. The extent to which such trends reflect the effects of deer herbivory

[48, 49, 50, 51] or some other factor, however, remains unknown.

Here, we sought to isolate and identify the particular effects of deer on

community change using a set of regionally distributed, long-term fenced

exclosures. Comparing matched samples in- and outside the fences at these study

sites allowed us to rigorously isolate the effects of deer from other factors known

to affect plant community composition and dynamics. To increase the generality
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of the conclusions we could draw, we sampled 17 exclosures across seven sites. We

then compared results from these sites to the patterns that emerged from a

previous regional assessment of plant community change between the 1950s and

2000 based on quantitative resurveys of almost 10,000 quadrats sampling the

forest understory at 62 sites [32, 33]. This allowed us to assess the degree to which

deer herbivory has driven regional long-term changes and to demonstrate the

power of explicitly linking complementary results from distinct studies. Such

combined approaches are inherently more powerful and reliable than studies that

focus on the effect of a single factor at one place and time [15, 20, 38, 52].

Materials and Methods

Study areas

We used 17 experimental exclosures distributed across seven study sites in

northeastern and north-central Wisconsin (WI) and the western portion of

Michigan’s (MI) Upper Peninsula (UP) (Fig. 1). Field research was conducted at

seven sites, falling under the jurisdiction of four entities. Permission to work at

each location was granted by:

Plum Creek Timber Company site: Gary Wyckoff, Region Silviculturist, Plum

Creek Timber Company, 2831 North Lincoln Road, Escanaba, MI 49829-9569,

Phone 906-789-9076 ext. 12, FAX 906-789-9130. Ottawa National Forest sites:

Dave Steffensen, Silviculturist, R9 FACTS/TIM GIS Coordinator, Bergland,

Kenton, and Ontonagon Ranger Districts - Ottawa National Forest, 1209

Rockland Rd, Ontonagon, MI 49953, Phone: 906-884-2411 ext. 29, Email:

dsteffensen@fs.fed.us. Kemp Natural Resources Station site: Thomas W. Steele,

Kemp Natural Resources Station, 9161 Kemp Road, Woodruff, WI 54568, phone:

715-356-9070, kemp@cals.wisc.edu. Door County State Parks sites: Kathleen

Harris, Peninsula State Park, 9462 Shore Road, Fish Creek, WI 54212, phone: 920-

868-3258, email: kathleen.harris@wisconsin.gov.

All exclosures were located in northern upland forests dominated by Acer

saccharum (sugar maple) with some Tsuga canadensis (hemlock). The three

northeastern WI sites lay in Door County on a limestone peninsula that extends

into Lake Michigan. The exclosures are located in three state parks in forests

dominated by A. saccharum, Fraxinus spp. (ash), Populus spp. (aspen), and Betula

papyrifera (paper birch). The north-central WI site, Kemp Natural Resources

Station (Kemp), lies alongside Tomahawk Lake in a mixed forest of northern

hardwoods and second-growth hemlock. Dominant species include A. balsamea,

A. saccharum, Betula spp. (birch), and T. canadensis. Two other sites lie in the

Ottawa National Forest, just south of Kenton, MI with exclosures in forests

dominated by A. saccharum, Betula allegheniensis (yellow birch), and T.

canadensis. The final study site, Plum Creek, lies 25 miles west of Escanaba, MI on

land owned by the Plum Creek Timber Company. Canopy dominants include A.

saccharum, Fraxinus pennsylvanica (green ash), and Ostrya virginiana (hophorn-

beam).
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Exclosures and sampling

The fenced exclosures vary in age, size, and design reflecting their different owners

and histories. We therefore varied plot placement and sampling to match the

shape and area of each exclosure. For each plot, we also identified and sampled an

adjacent control (browsed) plot matched for soil, management history, and

overstory conditions. Within each plot, we surveyed multiple 1 m2 quadrats

evenly spaced 2.5–5 m apart along successive parallel transect lines. Across the

three sites in Door County, WI, we used four medium-sized circular exclosures

constructed in 1991 and 1992 that measured 15.2 m in diameter (182 m2). In

each, we sampled 21 quadrats arranged along 5 transects spaced 2.5 m apart. At

the Kemp site, we sampled 16 quadrats in each of ten square exclosures (100 m2)

constructed in 2001. At the two Ottawa sites, we sampled 33 quadrats in each of

two plots within each of the large (2 ha) exclosures erected in 1998 and 2002. At

the Plum Creek site, we again sampled 33 quadrats in each of two plots within the

one large (8 ha) exclosure constructed in 1996. Together, these provided 20

exclosure plots, paired with 20 adjacent control plots, with 16–33 quadrat samples

for each. For more details on sampling, see Frerker [53].

Within each quadrat, we recorded the incidence of all herbaceous, shrub, and

tree seedling species. Where species could not be reliably distinguished, we later

lumped species to genera (e.g., Carex and Viola). We estimated the abundance of

each taxon by summing its incidence across all quadrats in the plot. For shrubs,

we also recorded the total length (cm) that each shrub species’ foliage intercepted

Fig. 1. Map of study sites. Exclosure and browsed plots are located in Northern Wisconsin and the Upper
Peninsula of Michigan in forests dominated by sugar maple with a hemlock component.

doi:10.1371/journal.pone.0115843.g001

Linking Local to Regional Deer Impacts

PLOS ONE | DOI:10.1371/journal.pone.0115843 December 31, 2014 5 / 17



our transect lines. We sampled the exclosure and control plots within 36 hours at

each site. All sites were surveyed between June and August, 2011.

To assess whether deer particularly affect those species known to have increased

or decreased across the region over the past 50 years (the ‘‘Winners’’ and ‘‘Losers’’

identified by Wiegmann and Waller [33]), we analyzed exclosure effects on these

species separately. Thirty four of these 42 species occurred in one or more of the

exclosure plots including 17 Winners and 17 Losers (Table 1). When these species

were present in a quadrat, we scored the number of individuals browsed, how

many were reproductive, and their maximum leaf height within the quadrat. We

also collected these data on two other species (Trillium grandiflorum and Uvularia

grandiflora) known to have declined and selectively favored by deer

[34, 35, 54, 55]. We term the 34 increasing and decreasing species present in the

plots plus these two others ‘‘focal’’ species.

Data on 50-year shifts in abundance

To test whether the differences in species abundance that we observed in- vs.

outside the exclosures were related to the long-term (1950s to 2001) regional shifts

in abundance measured by Wiegmann and Waller [33] over 62 sites, we first

calculated the proportional change in abundance across the fence line as the log of

each taxon’s frequency in the control browsed plot divided by its frequency inside

the exclosure. We then calculated each taxon’s regional proportional change in

abundance over the last 50 years as the log of its total abundance at all 62 sites in

2000 divided by its abundance in the 1950s. We did this for all 20 species that

occurred at reasonable density (5+ times) in both data sets. This represents a

representative sample of the metacommunity species pool biased toward the more

common species. We then plotted these estimates of regional long-term changes

in abundance as a function of the average local, short-term shifts in abundance

across the fence line. Because rare species are more likely to have undergone

regional declines over the late 20th century than common species [32] and are

more likely to be palatable to deer [33], this approach underestimates actual deer

impacts.

Data analyses

To determine how the exclosure treatment affected species’ abundances, we

analyzed effects of the fence at different spatial scales. To test whether study area

affected patterns of species occurrence, we applied logistic regression to assess how

each species’ presence/absence at a site varied over the seven study sites (3 Door

County, 1 Kemp, 2 Ottawa, 1 Plum Creek) and two exclosure treatments (in or

out). To assess how deer herbivory has affected forest structural diversity (the

abundance of shrub species), we used mixed model ANOVA to test how each

shrub species’ abundance (log-transformed line intercept total) was affected by

excluding deer (a fixed effect) and site (Door County, Kemp, Ottawa, Plum Creek,

a random effect). We omitted four plots at Kemp where no shrubs occurred.
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Finally, to assess the overall regional effects of deer, we pooled data across all four

sites and 20 paired plots to assess how each species responded to the presence of

deer using Chi-squared tests. We restricted these tests to species that occurred in

at least 50 quadrats overall and had expected frequencies greater than five in each

treatment.

We similarly analyzed reproductive condition and plant height in the focal

species (Table 2). We compared counts of the frequency of reproductive

individuals in the protected and unprotected quadrats using x2 tests. We

compared measures of mean maximum leaf height in these focal species using a

mixed model ANOVA with exclosure as the main effect and site as a random

effect. To assess how deer affect species invasions, we used a 262 x2 test to

compare the ratios of native to exotic species between treatments. We performed

all analyses using R 2.11.0 (R Development Core Team 2010) and JMP (Vers. 9.0).

Results

Species’ responses to deer

Of the 256 species encountered in the exclosure and browsed plots, 31 occurred

commonly enough (a total frequency .50) to analyze differences in abundance

in- and outside the fences using x2 tests. Eight species were more abundant in

browsed plots while seven were more abundant in the exclosures (Table 2). The

Table 1. Species that significantly increased (‘‘Winners’’) or decreased (‘‘Losers’’) in abundance over the past 50+ years in the study area [33].

Winners Losers

Anemone quinquefolia Aralia nudicaulis

Arisaema triphyllum Circea alpina

Athyrium filix-femina Clintonia borealis

Carex spp. Cornus canadensis

Cinna latifolia Diervilla lonicera

Corylus cornuta Eurybia macrophylla

Dryopteris intermedia Fragaria virginiana

Galeopsis tetrahit Galium aparine

Hieracium aurantiacum Huperzia lucidula

Maianthemum canadense Mitchella repens

Oryzopsis asperifolia Pteridium aquilinum

Poa nemoralis Rubus parviflorus

Poa saltuensis Streptopus lanceolatus

Trientalis borealis Trillium grandiflorum*

Vaccinium angustifolium Uvularia grandiflora*

Veronica officinalis Uvularia sessilifolia

Viola spp.

Waldsteinia fragarioides

*enumerated in other studies - see text.

doi:10.1371/journal.pone.0115843.t001
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other 16 species did not differ in abundance between treatments. Species that

increased in the presence of deer included a forb (Anemone quinquefolia – 1.56),

a fern (Athyrium filix-femina – 2.46), three graminoids (Oryzopsis asperifolia –

1.76, Carex pensylvanica – 46, and Poa pratensis – 1.76), and two woody

species (Ostrya virginiana – 1.66 and Prunus virginiana – 2.16). Exotic species

also increased being almost twice as abundant in the browsed plots vs. the

exclosures (424 vs. 221 occurrences, x2561.2, p,0.0001). Conversely, several

woody species, Rubus spp., and two forbs (Mitchella repens and Trillium

grandiflorum) declined. Seedlings of Thuja occidentalis and Tsuga canadensis were

much scarcer outside the exclosures. The shrubs Cornus rugosa and Diervilla

lonicera also occurred 100–200 times more often within the exclosures than in the

browsed plots (mean intercepts of 328.3 vs. 15.5 cm and 199.7 vs. 2.0 cm,

respectively, Table 3). Responses of Rubus allegheniensis also varied over sites

reflecting geographic variation in browse impacts. Combining taxa to higher

levels, Galium spp., ferns, and grasses were all more abundant in the browsed

Table 2. Differences in species abundances in- and outside deer exclosures.

Abundance

Species Control Exclosure Chi-square value

More Abundant in Control:

Carex pensylvanica 49 11 24.07 ***

Ostrya virginiana 41 25 3.88 *

Lapsana communis 61 14 29.45 ***

Poa pratensis 49 29 5.13 *

Athyrium filix-femina 59 25 13.76 ***

Oryzopsis asperifolia 57 33 6.40 *

Prunus virginiana 62 30 11.13 ***

Anemone quinquefolia 72 48 4.80 *

Galium spp. 53 23 11.84 ***

Poaceae spp. 213 109 33.59 ***

Fern spp. 236 169 11.08 ***

More Abundant in Exclosure:

Mitchella repens 14 36 9.68 **

Diervilla lonicera 17 34 5.67 *

Thuja occidentalis 5 54 4.07 ***

Trillium grandiflorum 27 51 7.38 **

Tsuga canadensis 28 52 7.20 **

Acer rubrum 35 56 4.84 *

Rubus idaeus 77 116 7.88 ***

Rubus spp. 111 167 11.28 ***

Abundance values reflect the incidence of species across quadrats in the control and exclosure plots. We judge whether species are more abundant in or
outside exclosures from the x2 and significance values for the differences observed. No significant differences in abundance were observed in: Acer
saccharum, Dryopteris intermedia, Prunus serotina, Anemone americana, Eurybia macrophyyla, Taraxacum officinale, Aralia nudicaulis, Fraxinus
pensylvanica, Tilia americana, Arisaema triphyllum, Maianthemum canadense, or Trientalis borealis. ***p,0.001, **p,0.01, *p,0.05.

doi:10.1371/journal.pone.0115843.t002
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plots. In sum, graminoids, ferns, and exotic species all thrived in the presence of

deer while forbs, several shrubs and tree seedlings tended to decline.

Focal species responses

Across all exclosure and browsed plots, none of the 36 focal species showed more

reproductive individuals or taller leaves in the plots accessible to deer. Eleven

species had more reproductive individuals inside the exclosures. Six of these

preferentially browsed species have declined across the region over the last half of

the 20th century (Diervilla lonicera, Trillium grandiflorum, Uvularia grandiflora,

Viola spp., all p,0.0001; plus Mitchella repens, p50.02, and Streptopus lanceolatus,

p50.001; Fig. 2). However, five of these species (Anemone quinquefolia,

Maianthemum canadense, Maianthemum racemosum, Trientalis borealis, and

Veronica officinalis) actually increased since the 1950s (all differences p,0.0001).

Four species had greater maximum leaf heights inside the fence including one

regional increaser (Maianthemum racemosum, p,0.0001) and three regional

decreasers (Eurybia macrophylla and Mitchella repens, both p,0.0001, and

Diervilla lonicera, p50.006; Table 4 and Fig. 3). Thus, we see that deer tend to

reduce plant height and/or reproduction even in species that have increased in

abundance in the presence of deer.

Do responses to deer reflect long-term regional shifts in

abundance?

The proportional differences in abundance that we observed within vs. outside the

exclosures mirrored observed long-term regional changes in abundance over the

past 50 years (Fig. 4). For a subset of 20 focal species, we detected a strong

correlation (R250.41) between measures of local deer effects and long-term

regional changes in plant abundance. Since these 20 focal species are mostly

common, the regression likely underestimates the overall historical effect of deer

on these plant communities (see Methods).

Discussion

Ecologists rarely have the opportunity to link results from rigorous, short-term

experiments to longer-term and broader-scale studies. Here, we used results from

experimental exclosures to isolate the effects of a single ecological factor –

herbivory by white-tailed deer – and examine whether the impacts demonstrated

in these experiments corresponded to half-century shifts in forest plant

community composition across the broad region of the upper Midwest, USA. In

this case, we took advantage of existing exclosures and an unusually detailed set of

1950s baseline data and 2000s resurvey data. Plant responses to deer exclusion

largely match observed long-term regional shifts in abundance. The close

correspondence between the exclosure results and long-term regional changes in

species abundance suggest that deer have indeed substantially altered plant
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community dynamics over the region for decades. Our study also illustrates the

value of linking experimental to observational data at divergent temporal and

spatial scales.

Table 3. Results from ANOVAs of shrub abundance.

Species F d.f. P-value

Cornus rugosa 6.2 7, 26 0.0002

Site 9.8 3 0.0002

Exclosure 2.9 1 0.10

Interaction 3.6 3 0.028

Diervilla lonicera 3.8 7, 26 0.006

Site 3.9 3 0.020

Exclosure 13.3 1 0.001

Interaction 1.1 3 0.36

Rubus allegheniensis 3.8 7, 26 0.006

Site 2.6 3 0.07

Exclosure 0.6 1 0.43

Interaction 6.21 3 0.0025

The Table shows F-values for predictor variables of shrub-line intercept values (log-transformed) with site, exclosure and their interaction as factors.

doi:10.1371/journal.pone.0115843.t003

Fig. 2. Effects of deer on plant reproduction. Bars compare the total number of reproductive individuals
encountered for 11 focal species between the exclosure (protected from deer) and the control plots
(accessible to deer). These species differ significantly between treatments in the x2 analyses.

doi:10.1371/journal.pone.0115843.g002
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Forest structural diversity, plant height, the abundance of several herbaceous

species and tree seedlings, and the frequency of flowering and fruiting all declined

outside the exclosures. From this, we infer that white-tailed deer have driven

parallel changes in forest community structure and composition throughout the

Table 4. Results from ANOVAs of maximum leaf heights in each of four focal species.

Species F d.f. P-value

Diervilla lonicera 3.5 7, 32 0.006

Site 4.6 3 0.009

Exclosure 8.0 1 0.008

Interaction 2.2 3 0.11

Eurybia macrophylla 7.2 7, 32 ,0.0001

Site 14.1 3 ,0.0001

Exclosure 4.7 1 0.038

Interaction 1.2 3 0.33

Maianthemum racemosum 3.6 7, 32 0.006

Site 3.6 3 0.025

Exclosure 14.2 1 0.0007

Interaction 1.64 3 0.20

Michella repens 16.8 7, 32 ,0.0001

Site 32.1 3 ,0.0001

Exclosure 9.2 1 0.005

Interaction 14.6 3 0.013

Table shows F-values for variables predicting maximum leaf height with site, exclosure and their interaction as factors.

doi:10.1371/journal.pone.0115843.t004

Fig. 3. Effects of deer on plant height. Bars compare the mean maximum leaf heights of four focal species
between the exclosure (protected from deer) and browsed plots (accessible by deer) as measured by the
logarithm of their proportional differences. Depicted species differ significantly between treatments in a mixed
model ANOVA using exclosure as the main effect and site as a random effect.Mitchella, Eurybia, and Diervilla
have declined in the region over the past 50 years.

doi:10.1371/journal.pone.0115843.g003
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region. A landscape once dominated by a diverse set of forbs, shrubs, and

regenerating tree seedlings is now increasingly dominated by ferns, grasses, Carex

pensylvanica, and exotics [32]. Of the 31 most abundant species in our study,

almost half showed strong differences in abundance between in- and outside the

exclosures. The species that benefitted from protection from deer also tend to be

the species that have declined since 1950 while many that thrive in the presence of

deer have increased in abundance since 1950 [33].

Given the potential complexity of plant communities and long-term ecological

change, it is remarkable to see such a close relationship between deer-mediated

differences in abundance (across the exclosure fences) and regional trends in

abundance over the past 50 years (Fig. 4). Single factors rarely account for

complex long-term changes in community composition and structure. The results

presented here, however, support such a conclusion and the predictions made by

Fig. 4. Local deer effects predict long-term regional changes in abundance. The graph shows species’
proportional changes in regional abundance over the late 20th century (1950s–2000s) plotted as a function of
the deer exclosure effect (the proportional differences in abundance due to the exclosure). Points represent
the 20 species that occurred with adequate frequency in both data sets. Slope 51.07, Adj. r250.41, F514.4,
p50.0013.

doi:10.1371/journal.pone.0115843.g004
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Alverson & Waller [56], Rooney & Waller [37], and Côté et al. [12] that deer are

acting as a ‘‘keystone herbivore’’ to drive long-term ecological changes in these

forests.

The particular value of these exclosure results lies in what they tell us about how

the impacts of deer differ among species. We did not detect any overall difference

in species richness or diversity between the exclosure and browsed plots,

suggesting that these aggregate metrics provide poor indicators for deer impacts

(in agreement with Royo et al. [41]). This result reflects the fact that roughly

similar numbers of species benefited or suffered from the effects of deer. Several

species proved to be highly vulnerable to deer as reflected by their declines in, or

disappearance from, the browsed plots. Many of these have also been in regional

decline over the past 50 years (Table 2). These are native species that tend to be

biotically pollinated and dispersed. In contrast, species that occurred more

abundantly outside the exclosures are mostly abiotically pollinated and dispersed

ferns and graminoids – matching traits and species that have generally increased

across the region. Declines in biotically pollinated and dispersed species might

reflect direct browsing or the dramatic effects that abundant deer can have on

forest animal communities, e.g., by altering the abundance and quality of plant

food resources and habitat available to pollinators and songbirds [29, 57, 58, 64].

Several taxa did not differ significantly in abundance between exclosure and

browsed plots. Three of these experienced historical declines (Aralia nudicaulis,

Eurybia macrophylla, and Viola spp.) while seven (Arisaema triphyllum, Carex

spp., Dryopteris intermedia, Maianthemum canadensis, Maianthemum racemosum,

Trientalis borealis and Veronica officinalis) have increased [33]. Our inability to

detect differences in abundance across the fence in these exclosures could reflect

low statistical power. As species consumed by deer become rare on the landscape,

they may become too infrequent to be included in statistical analyses or so sparse

that we have low power to detect differences in abundance. For example, Taxus

canadensis (Canada yew), is heavily browsed by deer wherever it is encountered.

We only observed Taxus seven times - all within exclosures. Within the 992

quadrats sampled, six declining species (Circaea alpina, Clintonia borealis, Cornus

canadensis, Osmorhiza claytonii, Uvularia sessifolia, and Waldsteinia fragarioides)

occurred in fewer than 2% of the quadrats. Apparent lack of exclosure effects may

also reflect occasions where populations of sensitive species within the fence have

not yet had the opportunity to recolonize or recover from decades of browsing.

We could not include rarer species in our analyses but encourage other

researchers to devise methods to determine just how sparse plant populations of

various species can become before they lose their ability to rebound from heavy

herbivory.

Summary

Forests in the upper Midwest have experienced strong shifts in community

composition with declines in herb, shrub, and tree species diversity and vertical

structure with cascading impacts on other species [12, 59]. Our results comparing
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broad regional changes since the 1950s to exclosure effects on plant abundance

suggest that many of the historical changes observed reflect the effects of deer.

Combining experiments with observational data reinforces the inferences we can

make from both approaches allowing us to conclude that deer are having heavy

impacts on these plant communities. Similar efforts elsewhere will eventually

allow managers to recognize thresholds at which deer populations still allow plant

populations and communities to retain their resiliency and ability to recover

[60, 61].
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