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Abstract

Fumaric acid esters (FAE) are oral analogs of fumarate that have recently been shown to decrease relapse rate and
disease progression in multiple sclerosis (MS), prompting to investigate their protective potential in other neurological
diseases such as amyotrophic lateral sclerosis (ALS). Despite efficacy in MS, mechanisms of action of FAEs are still
largely unknown. FAEs are known to activate the transcription factor Nrf2 and downstream anti-oxidant responses
through the succination of Nrf2 inhibitor KEAP1. However, fumarate is also a known inhibitor of prolyl-hydroxylases
domain enzymes (PhD), and PhD inhibition might lead to stabilization of the HIF-1α transcription factor under
normoxic conditions and subsequent activation of a pseudo hypoxic response. Whether Nrf2 activation is associated
with HIF-1α stabilization in response to FAEs in cell types relevant to MS or ALS remains unknown. Here, we show
that FAEs elicit HIF-1α accumulation, and VEGF release as its expected consequence, in astrocytes but not in other
cell types of the central nervous system. Reporter assays demonstrated that increased astrocytic VEGF release in
response to FAEs was dependent upon both HIF-1α and Nrf2 activation. Last, astrocytes of transgenic mice
expressing SOD1(G93A), an animal model of ALS, displayed reduced VEGF release in response to FAEs. These
studies show that FAEs elicit different signaling pathways in cell types from the central nervous system, in particular
a pseudo-hypoxic response in astrocytes. Disease relevant mutations might affect this response.
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Introduction

Fumaric acid esters (FAE) are oral analogs of fumarate and
have been used in the treatment of psoriasis in Europe for
more than 50 years [1]. Most recently, DMF (contained in
BG00012/Panaclar) was successfully tested in phase II and III
studies of multiple sclerosis (MS) and shown to decrease the
frequency of relapses [2]. This promising potential of FAEs in
MS prompted to test its efficacy in other degenerative diseases
of the central nervous system, in particular in amyotrophic
lateral sclerosis (ALS), a lethal motor neuron disorder with
currently few therapeutic options.

How FAEs achieve protection in MS remains very uncertain.
FAEs exert anti-inflammatory effects through inhibition of pro-
inflammatory cytokines [3]. FAEs also exert immunomodulatory
effects on dendritic cells [4]. Multiple evidence have shown that
FAEs activate the transcription factor nuclear factor (erythroid-
derived 2)-related factor 2 (Nrf2) and downstream anti-oxidant
pathways including heme-oxigenase 1 (HO-1) and NAD(P)H

dehydrogenase quinone 1 (NQO-1) [5–8]. Nrf2 activation is
likely due to succination and inactivation of the Nrf2 negative
regulator Kelch-like ECH-associated protein 1 (KEAP1) by
FAEs [9]. This leads to increased nuclear Nrf2 activity, both in
vivo and in vitro upon FAEs treatment. Importantly, Nrf2 is
absolutely required for the protective effects of FAEs during
oxidative stress [8,9]. It is thus currently hypothesized that
FAEs are protective in MS through their capacity in increasing
Nrf2 activity.

FAEs are cell permeant analogs of fumarate, and their
application on cultured cells lead to increased intracellular
concentrations of fumarate [10]. Interestingly, fumarate has
been shown to inhibit the prolyl-hydroxylase domain (PHD)
enzymes [11]. PHDs are required for the constitutive
degradation of the transcription factor hypoxia-inducible
transcription factor 1 alpha (HIF-1α). Upon oxygen deprivation,
PHDs inhibition leads to HIF-1α stabilisation and subsequent
activation. This in turn activates the expression of a number of
target genes required for the adaptation of the cell to low
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oxygen tension [10,12,13] Upon FAEs application, PHDs
inhibition stabilizes HIF-1α leading to activation of its target
genes under normoxic conditions [10]. Whether FAEs can
activate HIF-1α in the brain in the context of central nervous
system (CNS) diseases such as MS is unknown. Interestingly,
HIF-1α activation might lead to increased production of VEGF,
an angiogenic and neurotrophic factor. VEGF is a highly
valuable therapeutic target in amyotrophic lateral sclerosis
(ALS). Indeed, mutation of the HIF-1α response element in the
VEGF promoter leads to ALS in mouse and VEGF
polymorphisms are associated with ALS [14–16]. Moreover,
VEGF displays potent protective potential in ALS mouse
models [17].

Here we sought to determine whether FAEs are able to
activate VEGF in different cell types from the CNS. We show
that FAEs induce HIF-1α activation and subsequent VEGF
production in astrocytes, while activating Nrf2 in all investigated
cell types except microglia. This cell-type specific response to
FAEs might be of importance for the protective potential of
FAEs.

Materials and Methods

Materials
DMEM + GlutaMAX, GlutaMAX, 1xDPBS, penicillin (10.000

Units/mL) and streptomycin (10.000µg/mL) were purchased
from GIBCO; poly-L-ornithine hydrobromide, dimethyl
sulphoxide Hybri-Max and Trypan Blue Solution were
purchased from SIGMA; 1x trypsin-EDTA from PAA; DNaseI
from Worthington, Protein Assay from BIORAD; Lipofectamine
LTX from Invitrogen; IGF-1-Mouse-ELISA and VEGF-Mouse-
ELISA from R&D Systeme; albumin Fraktion V from ROTH;
ECL, Super Signal West Pico chemiluminescent substrate for
detection HRP from THERMO SCIENTIFIC; Protease Inhibitor
Cocktail Tablets “complete Mini EDTA-free” from ROCHE and
TMB Substrate Reagent Set was purchased from
BIOLOEGEND. Following used plasmids were ordered by
ADDGENE; plasmid 27986 (9kB VEGF-luc) [18], plasmid
21103 (PBS/pU6-HIF-1α RNAi plasmid 1) [19], plasmid 21104
(PBS/pU6-HIF-1α RNAi plasmid 2) [19], plasmid 26731 (HRE-
luciferase) [20], plasmid 28025 (hrGFP-Keap1) [21].
Mammalian expression vectors, pEF (control vector) and
dominant negative Nrf2 (DN Nrf2) were provided by Dr. Jawed
Alam (Alton Ochsner Medical Foundation) [22,23].

Animals
Transgenic male mice bearing the G93A human SOD1

mutation B6.Cg-Tg(SOD1-G93A)1Gur/J were purchased from
Jackson Laboratory and bred to female wildtyp mice C57BL/6
purchased from Charles River. Transgenic and nontransgenic
offspring were used for further analysis. Genomic DNA was
isolated from tail biopsies collected at the 1-5 day-old pups
(used for astrocytes-preparation) using the DNeasy genomic
DNA isolation kit (Qiagen) following the procedure described by
the manufacturer. Genotyping was performed using PCR. SOD
and wild type alleles were detected using following primers:
SOD 113 (hSOD1-sense) 5’-CAT CAG CCC TAA TCC ATC
TGA-3’; SOD 114 (hSOD1-antisense) 5’-CGC GAC TAA CAA

TCA AAG TGA-3’; SOD 43 (Interleukin2-sense) 5’-GTA GGT
GGA AAT TCT AGC ATC ATC-3’ and SOD 42 (Interleukin2-
antisense) 5’-CTA GGC CAC AGA ATT GAA AGA TCT-3’.

All experiments were conducted according to the protocol
approved by the Regional Steering Committee Tübingen, Reg.
C.0177.

Cell cultures
To prepare primary astrocytes, neurons, oligodendrocytes

and microglia, 1-5 day old transgenic SOD1-G93A mice and
their nontransgenic littermates were decapitated. Meninges
were removed from the brains, neopallia were dissected and
enzymatically (1% Trypsin, Invitrogen, 0,05% DNAse,
Worthington, 5 minutes) and mechanically dissociated
(oligodendrocytes are digested with papain). The resulting cells
were centrifuged (500U/min; 4°C; 10 min), the supernatant
discarded, suspended in culture medium (DMEM, 10% FCS
[heat-inactivated], 100U/mL penicillin, 100µg/mL streptomycin)
and plated into 75-cm2 flasks, which were precoated with
1µg/mL poly-ornithine (astrocytes, microglia, neurons) or poly-
L-lysine (oligodentrocytes). Cells from one brain were plated
into one flask. For getting astrocytes and microglia, adherent
cells were washed three times with DPBS and incubated with
serum-supplemented culture media after three days. After 7-14
days in culture, microglia cells were manually shaken off,
centrifuged (500U/min, 10min), and seeded into 6-well
(concentration of 60x104 cells/well) or 96-well plates
(concentration of 4x104 cells /well). After 30 minutes, the media
were changed to DMEM without phenol red. For neurons,
media was changed into Neurobasal medium/B27 after cell
plating and after one, four and seven days half of the medium
was exchanged and 10 µM cytosine arabinofuranoside were
added. For oligodendrocytes the media was exchanged after
3-4h after cell plating. After 3, 6 and 9 days of cell culture 2/3 of
the medium were exchanged and 5 µg/ml insulin were added.

For astrocyte cultures, attached cells in the flasks were
washed twice with DPBS, detached with 0.05% Trypsin /
0.5mM EDTA, centrifuged (500U/min, 10min) and plated into 6-
well (concentration of 10x104 cells/cm2) or 96-well plates
(concentration of 1x104 cells/cm2) in culture media. After 3-5
days when the cells were grown confluently, the media was
changed to DMEM without phenol red.

Treatment of cultures
Using confluent cell monolayers, media were changed into

DMEM without phenol red with the same contents, as
described. Cells were incubated for 4-24h with the final
concentration of 30µM diethyl fumarate (DEF, dissolved in
PBS) or dimethyl fumarate (DMF, dissolved in DPBS:DMSO at
1:1) (SIGMA). The HIF-1α-inhibitor YC-1 (final concentration
10µM, dissolved in DMSO), was added 30 minutes before DEF
or DMF.

ELISA for VEGF
The amount of VEGF and IGF-1 was determined with

specific ELISAs (R&D Systeme Duo Set) following the
manufacturer’s instructions. For ELISA supernatant samples
were collected and frozen at -80°C. The remaining cell layers
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were lysed in 1% Triton/PBS and the total protein amount was
quantified by Bio-RAD Dc Protein Assay, following the
manufacturer’s instructions. The amount of VEGF and IGF-1
was normalized to the total amount of protein. The
concentrations of VEGF and IGF-1 were calculated in pg/mg
protein.

Western Blot
For quantitative Western Blot analysis the medium was

removed and the total cell protein extracts were obtained by
lysing cells in RIPA-Buffer (50mM Tris, 150mM NaCl, 0.02%
NaN3, 0.5% NP-40, 0.5% Triton X-100) containing protease
inhibitors. Protein content was determined by Protein Assay
from Bio-Rad with bovine serum albumin as standard. Cell
lysates were electrophoresed on 12% SDS-PAGE under
reducing conditions and transferred to a nitrocellulose
membrane (Bio-Rad) by standard procedures. Membranes
were blocked in PBS containing 3% bovine serum albumin
(BSA) for at least 1 hour. After blocking, membranes were
incubated with the following primary antibodies: rabbit
polyclonal against HIF-1α (Novus Biologicals; 1:500 buffered in
1% BSA; 0,05% NaN3 in PBS containing 0,05% Tween 20) or
against Nrf2 (Santa Cruz; 1:200 buffered in 1% BSA; 0,05%
NaN3 in PBS containing 0,05% Tween 20) over night at 4°C.
After washing in PBS/0.05% TWEEN 20, membranes were
incubated at room temperature for 1h with the secondary
antibody (Bio-Rad; 1:5000 in 2.5% non-fat milk powder, goat
anti-rabbit IgG-HRP-conjugated) and washed again. Bands
were visualized (ECL-immunodetection) using Image Quant
LAS4000. Samples were corrected for background and
quantified using Image Quant LAS 4000. All values were
normalized to housekeeping protein (beta-actin).

RT-qPCR
After indicated time points, astrocytes, microglia, neurons or

oligodendrocytes were harvested and total RNA was extracted
using RNA extraction kit (RNeasy Mini Kit, QIAGEN).
Complementary cDNA was synthesized from 0.4µg to 1µg of
total RNA using the iScript cDNA Synthesis Kit (Bio-Rad).
Gene expression of VEGF, Glut1, NQO-1, HO-1, Pol2 and TBP
was quantified using the qPCR Mastermix of iQ SYBR Green
SupermixR (Bio-Rad). The PCR reactions were performed
according the manufacturer’s instructions. The primer sets
used for VEGF were (F) 5’-TGA TCA GAC CAT TGA AAC
CAC T-3’ and (R) 5’-GGA AGG GTA AGC CAC TCA CA-3’; for
Glut1 (F) 5’-ATG GAT CCC AGC AGC AAG-3’ and (R) 5’-CCA
GTG TTA TAG CCG AAC TGC-3’; for NQO-1 (F) 5´-AGC GTT
CGG TAT TAC GAT CC-3´ and (R) 5´-AGT ACA ATC AGG
GCT CTT CTC G-3´; for HO-1 (F) 5´-GTC AAG CAC AGG
GTG ACA GA-3´ and (R) 5´-ATC ACC TGC AGC TCC TCA
AA-3´ and for the house keeping genes Pol2 (F) 5’-GCT GGG
AGA CAT AGC ACC A-3’ and (R) 5’-TTA CTC CCC TGC ATG
GTC TC-3’; and for TBP (F) 5’-CGG TCG CGT CAT TTT
CTC-3’ and (R) 5’-GGG TTA TCT TCA CAC ACC ATG A-3’.
Amplification conditions were set to 3 minutes at 95°C followed
by 40 cycles [15 seconds at 95°C, 15 seconds at 60°C] using
the real time PCR thermocycler from BioRad (Real Time
System CFX 96). All reactions were performed in duplicates.

Data were analyzed using the iCycler software and normalized
to the normalization factor calculated from the reference genes
encoding Pol2 and TBP.

Transient transfection and luciferase reporter assay
All plasmids were purified by Maxi Prep (EndoFree Plasmid

Maxi Kit, Qiagen) using the manufacturer’s instructions.
For transient transfection astrocytes were seeded into 24-

well plates with a concentration of 10x104 cells/cm2 and grown
24h in cultured media. In brief, for each well to be transfected
3µl lipofectamine LTX and 1µl PLUS REAGENT per 1µg
plasmid-DNA was suspended in 100µl DMEM/well. After 10
minutes at room temperature plasmid DNA was added. The
mixture was incubated for another 25 minutes at room
temperature and then added to the cell culture. Plates were
centrifuged for 5 minutes at 500U/min. Cells were incubated for
24h, the transfection complex was removed and then treated
with DMF (30µM) or DEF (30µm) for 6h or 18h. After treatment
cells were harvested and processed for luciferase activity
assay using the luciferase assay system (Promega).
Luminescence was measured using a 96-well luminometer
(Multilabel Reader PerkinElmer VIKTOR X3).

Statistical analysis
Statistical analysis was performed using GraphPad version

5.0. Comparison of multiple groups was performed using
ANOVA followed by post-hoc Newman-Keuls. Significance was
considered at p<0.05.

Values are presented as means +/- SEM.

Results

FAEs activate HIF-1α target genes in astrocytes
We hypothesized that FAEs could have differential effects on

Nrf2 and HIF-1α pathways in the different CNS cell types. To
determine whether this is the case, we screened systematically
the expression levels of Nrf2 and HIF-1α target genes in
primary cultures of wild type murine astrocytes, microglia,
oligodendrocytes and neurons. According to previous studies
showing strongly increased Nrf2 activity under these
conditions, we stimulated cells for 6 h or 18 h with 30µM of
membrane-permeable diethyl- or dimethyl fumarate esters
(DEF and DMF) [5,7–9]. Both fumarate esters are converted to
fumarate by cellular esterases, and these concentrations are
known to double intracellular fumarate levels [10]. Treatment
with both FAEs induced robust overexpression of NQO-1 and
HO-1, two Nrf2 targets in all cell types except microglia (Figure
1). In contrast FAEs induced the expression of VEGF and
GLUT1, two HIF-1α targets in astrocytes and microglia but not
in neurons (Figure 1). GLUT1 but not VEGF expression was
increased by DMF in oligodendrocytes. Thus, FAEs activate
broadly Nrf2 target gene expression, and more cell type
specifically HIF-1α target genes.

Fumarate, HIF1α and VEGF in Astrocytes

PLOS ONE | www.plosone.org 3 October 2013 | Volume 8 | Issue 10 | e76670



FAEs induce HIF-1α accumulation and VEGF release in
astrocytes

An expected consequence of HIF-1α activation would be
release of VEGF. Astrocytes are the major source of VEGF in
the CNS and we focused on this cell type. Indeed, microglia did

not release detectable VEGF under unstimulated or FAEs
stimulated conditions (data not shown) although VEGF mRNA
levels were similar, suggesting post-transcriptional regulation of
VEGF in this cell type [24,25]. To ascertain that the increase in
HIF-1α target mRNA was associated with HIF-1α stabilization,

Figure 1.  Transcriptional effects of FAEs.  (A) mRNA levels of NAD(P)H dehydrogenase quinone 1 (NQO-1) and Heme
Oxygenase 1 (HO-1), two Nrf2 target genes in astrocytes, microglia, neurons and oligodendrocytes of wild type mice after vehicle
(empty columns, Ctrl), or after 6 hours or 18 hours of either 30µM DEF (grey columns, DEF) or DMF (black columns, DMF). Note
the robust upregulation of these two genes in all cell types except microglia.
(B) mRNA levels of vascular endothelial growth factor (VEGF) and glucose transporter 1 (GLUT1), two HIF1-α target genes in
astrocytes, microglia, neurons and oligodendrocytes of wild type mice after vehicle (empty columns, Ctrl), or after 6 hours or 18
hours of either 30µM DEF (grey columns, DEF) or DMF (black columns, DMF). FAEs induced the expression of HIF1-α target genes
in astrocytes and microglia but not in oligodendrocytes or neurons. *p<0,05; **p<0,01; ***p<0,001; significantly different from
corresponding control. Values are mean+/- SEM of n=3 independent experiments.
doi: 10.1371/journal.pone.0076670.g001
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we measured HIF-1α protein levels in response to FAEs in
astrocytes. Increasing levels of HIF-1α were observed with
DEF (Figure 2A/C) and DMF (Figure 2B/D). Interestingly, the
kinetics of HIF-1α accumulation were different between DEF
and DMF, with a seemingly biphasic response for DMF and an
earlier and stronger response for DEF. This might be due to
differences in the metabolism of FAEs. This HIF-1α
accumulation was transient and HIF-1α returned to
undetectable levels after 24h of treatment (Figure 2C-D).
Consistent with previous studies, Nrf2 protein levels were
increased upon both DEF or DMF treatments under the same
experimental conditions, (Figure S1). HIF-1α accumulation is
known to translate into increased mRNA of VEGF and
increased VEGF release. Consistently, the application of both
FAEs strongly increased the release of VEGF into the culture
medium of primary astrocytes (Figure 2E-F). Altogether, our

results show that FAEs activate HIF-1α and the HIF-1α
associated VEGF release in astrocytes.

VEGF release upon FAEs is dependent upon HIF-1α
and Nrf2 in astrocytes

VEGF release and HIF-1α accumulation might be
independent events. We pharmacologically inhibited HIF-1α
with YC-1 [26–28]. YC-1 inhibits HIF-1α through poorly
described mechanisms that include direct destabilization of
HIF-1α protein and indirect mechanisms [29]. Pretreatment with
YC-1 reverted the accumulation of HIF-1α [30] after DMF
treatment (Figure 3A-B), and decreased VEGF release (Figure
3C). YC-1 was unable to decrease HIF-1α accumulation upon
DEF treatment (not shown), and this might be due to the earlier
and stronger HIF-1α response with DEF as compared with
DMF (see Figure 2). To provide further evidence of HIF-1α

Figure 2.  FAEs induce HIF-1α accumulation and VEGF release in astrocytes.  Wild type astrocytes were treated with 30µM
DEF (A, C, E) or 30µM DMF (B, D, E) for the indicated times. HIF-1α level was measured by Western-Blot (A, B, C, D). VEGF in the
supernatant was quantified by ELISA (E, F); *p<0,05; ***p<0,001; significantly different from corresponding control. Values are
mean+/-SEM of n=3 independent experiments.
doi: 10.1371/journal.pone.0076670.g002
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involvement in FAE-induced VEGF release, we performed
reporter assays. FAEs treatment weakly but consistently
increased the activity of a luciferase reporter under the control
of 6 hypoxia-response elements (HRE) selectively activated by
HIF-1α (Figure 4A). When luciferase was placed under the
control of a 9kb VEGF promoter, the induction by FAEs was
more potent (Figure 4B), suggesting the involvement of other
transcription factors than HIF-1α. shRNA knock-down of
HIF-1α reverted VEGF promoter activity showing that HIF-1α is
necessary for VEGF induction in response to FAEs (Figure
4C). Since FAEs also increase Nrf2 activity in astrocytes, we
probed for Nrf2 involvement. Expression of a dominant-
negative isoform of Nrf2 also decreased the VEGF promoter
activity elicited by FAEs (Figure 4C). Thus, HIF-1α and Nrf2
cooperate to activate VEGF release in astrocytes upon FAEs
treatment.

ALS astrocytes display a reduced release in VEGF in
response to FAEs

At this point of our studies, we had shown that FAEs display
a novel pharmacological action on astrocytes leading to
increased VEGF release. Increasing VEGF release by
astrocytes is of direct therapeutic relevance for ALS. Indeed,
impaired hypoxic response is a feature of ALS [31] and VEGF
delivery is strongly neuroprotective in animal models [14,17].
To provide evidence that FAEs could be of therapeutic interest
in ALS, we first sought to determine whether these drugs were

able to increase VEGF release in astrocytes derived from an
animal model of ALS. To this aim, we cultured astrocytes from
transgenic SOD1(G93A) mice, a well documented animal
model of ALS to assay for FAEs response. While wild type
astrocytes strongly accumulate HIF-1α when stimulated with
either DEF or DMF, SOD1(G93A) astrocytes had a blunted and
delayed response to both FAEs (Figure 5A-B). Consistently,
the VEGF mRNA expression (Figure 5C) and VEGF release
(Figure 5D) upon FAE stimulation were much weaker in
transgenic astrocytes than in wild type astrocytes. Interestingly,
while HIF-1α activation by FAEs was blunted, Nrf2 dependent
gene expression (Figure 5F) and protein levels (Figure S2)
were similar in wild type and SOD1(G93A) astrocytes. Thus,
astrocytes from a transgenic model of ALS are less responsive
to FAE-induced HIF-1α activation (Figure 5C-D) but retain the
activation of Nrf2.

Discussion

Here, we show that FAEs are able to differentially activate
HIF-1α and Nrf2 in cell types of the CNS. We further show that
HIF-1α activation elicited by FAEs lead to release of VEGF by
astrocytes and that this is likely to be potentiated by Nrf2. Last,
we observed that astrocytes from a transgenic mouse model of
ALS are much less sensitive to FAEs induced HIF-1α
activation.

Figure 3.  Pharmacological evidence of HIF-1α involvement in VEGF release.  Wild type astrocytes were treated with 30µM
DMF for indicated times. HIF1-α level was measured by Western-Blot (A) 6h after DMF treatment (B) or 16h after DMF treatment
(C). The HIF1-α inhibitor YC-1 was incubated 30min before treatment with DMF. VEGF in the supernatant was quantified by ELISA
(C) *p<0,05; ***p<0,001; significantly different from corresponding control. Values are mean+/-SEM of n=3 independent
experiments.
doi: 10.1371/journal.pone.0076670.g003
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FAEs show differential effects among cell types
Previous work indicated that FAEs were able to activate Nrf2

in neurons and astrocytes [5,7–9,32,33] and that this Nrf2
activation is at least partially responsible for the cytoprotective
potential of these compounds [8,9]. However, whether this Nrf2
activation also occurs in microglia or oligodendrocytes, which
are important players in MS and ALS was unknown. Here we
show that FAEs activate Nrf2 in most CNS cell types, excluding
microglia. Apart from Nrf2 activation, FAEs have been shown
to activate HIF-1α through inhibition of prolyl hydroxylases in
cell lines [10]. This likely occurs through the release of
fumarate by hydrolysis of FAEs, although the intracellular
metabolism of FAEs is poorly documented [10]. Here we show
that this HIF-1α activation occurs in primary cells but only in
some cell types (astrocytes and microglia). Neurons did not
activate HIF-1α upon FAE exposure while oligodendrocytes
displayed a late and partial response. The reason for this
difference in cell sensitivity is unknown, but astrocytes and

Figure 4.  Reporter assay evidence of HIF-1α involvement
in VEGF release.  Wild type astrocytes were transfected with a
HRE-Luciferase reporter plasmid (A), with a VEGF-Luciferase
reporter plasmid (B), or were cotransfected with both VEGF-
Luciferase plasmid and either an empty vector or a vector
encoding a shRNA targeting HIF-1α (two different used,
shRNA1 or 2), or an expression vector encoding a dominant
negative Nrf2 isoform (C). After 24h cells were treated with
30µM DEF, 30µm DMF or 0,05% DMSO for 6h (A), for 8h (B)
or 18h (A-C). Luciferase activity was then measured in cell
extract by luminescence. *p<0,05 - ****p<0,0001; significantly
different from corresponding control. Values are mean +/- SEM
of n=3 independent experiments.
doi: 10.1371/journal.pone.0076670.g004

microglia are known to be sensitive to hypoxia. Of note
astrocytes display a strong metabolic flexibility as compared
with neurons. In particular, astrocytes are able to strongly
activate glycolysis upon mitochondrial inhibition, which is not
the case for neurons [34]. This intrinsic metabolic difference
might underlie the differential sensitivity of astrocytes to FAEs
as compared to neurons. Further research is needed to
elucidate this point.

FAEs activate HIF-1α leading to astrocytic VEGF
release

In our study, we show that FAEs induce HIF-1α activation in
astrocytes and subsequent VEGF production. FAEs are able to
stabilize the HIF-1α subunit of the HIF complex, and
subsequently increase the expression of VEGF and GLUT
target genes. This was associated with increased VEGF
release in astrocytes. In contrast to astrocytes in microglia
FAEs induced not a release of VEGF, even though HIF-1α was
activated and VEGF mRNA was produced. This might be
associated with a post-transcriptional regulation specific for
microglia [24,25,35]

Our pharmacological and shRNA experiments converge to
demonstrate that HIF-1α is required for the transcriptional
activation of VEGF by FAEs, and presumably of increased
VEGF release in astrocytes. Fumarate, an intermediate of the
Tri-carboxylic acid cycle, activates HIF-1α through inhibition of
PHDs [11]. It is thus likely that the same mechanism accounts
for astrocytic HIF-1α accumulation in response to FAEs since
FAEs application doubles fumarate intracellular levels [10].
While HIF-1α is required for VEGF transcriptional activation, its
sole activation is not sufficient to account for the full blown
effect. Indeed, the FAEs-increased reporter activity detected
with 6 x HRE, that is only activated through HIF-1α, is much
weaker than when using the full VEGF promoter. This suggests
that other transcription factors are involved in the observed
effect. Our data further indicate that one of these additional
transcription factors is Nrf2, since the overexpression of a
dominant-negative Nrf2 abolishes the FAE-mediated activation
of VEGF. The effect of Nrf2 on VEGF transcription remains
unknown, in particular, whether it is direct or indirect. Other
transcription factors or transcriptional co-activators might be
involved, in particular PGC-1α, that mediates VEGF activation
in ischemic muscle independently of HIF-1α [36]. Our study
illustrates a potential beneficial effect of HIF-1α activation on
neuronal survival. However, the role of astrocytic HIF-1α is
more complex. In particular astrocytic HIF-1α has been shown
to be deleterious for neuronal survival in cellular models of
hypoxia [37] and VEGF release due to HIF-1α activation is
deleterious in vivo for animal models of EAE [38]

ALS astrocytes show blunted sensitivity to FAEs
A third major result of our study is that astrocytes from

SOD1(G93A) mice exhibit strongly reduced HIF-1α
accumulation in response to FAEs. A large body of litterature
has previously linked ALS and HIF-1α. First, a deletion of HRE
in the Vegf murine gene leads to reduced VEGF levels and
ALS-like disease [15]. Conversely, increasing VEGF through
either gene therapy [17] or intracerebrovascular delivery [39]

Fumarate, HIF1α and VEGF in Astrocytes

PLOS ONE | www.plosone.org 7 October 2013 | Volume 8 | Issue 10 | e76670



increases the survival of SOD1(G93A) mice. Thus, a
straightforward therapeutic strategy would be to
pharmacologically increase VEGF expression, in particular in
astrocytes that produce most of brain VEGF. In this respect,
FAEs would be strong candidates for such a therapeutic
strategy since they are able to promote VEGF expression and
release by wild type astrocytes. However, while FAEs are able
to induce HIF-1α stabilization in SOD1(G93A) astrocytes, they

fail to increase VEGF mRNA levels or VEGF release after
stimulation with FAEs. Indeed, in basal conditions, transgenic
astrocytes release less VEGF than wild type astrocytes. These
data suggest that mutant SOD1 expression impairs the
signalling from HIF-1α to transcriptional activiation. These data
mirror that obtained in peripheral monocytes of ALS patients
that display a blunted hypoxic response [16] and are consistent
with the observation that ALS patients display paradoxical

Figure 5.  Transgenic (mSOD-G93A) astrocytes show abnormal response to FAEs.  Transgenic (mSOD-G93A) astrocytes
were treated with 30µM DEF (A,C,D,F) or 30µM DMF (B,C,E,F) for indicated times and the following read-outs were measured;
HIF-1α level by Western-Blot (A,B); HIF-1α (VEGF, GLUT1) target genes using qPCR (C). VEGF release as determined by ELISA
(D,E); and Nrf2 target genes (NQO-1, HO-1) (F) *p<0,05; **p<0,01; ***p<0,001; significantly different from corresponding control.
Values are mean +/- SEM of n=3 independent experiments.
doi: 10.1371/journal.pone.0076670.g005
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regulation of VEGF in hypoxia [40]. It is likely that ALS-related
events, in particular expression of mutant SOD1, deregulates
HIF-1α signalling, downstream of HIF-1α stabilization, through
yet unknown mechanisms. These results cast doubts on the
utility as a therapeutic strategy of drugs stimulating VEGF
release through HIF-1α stabilization in ALS.

Altogether, we show here that FAEs are able to elicit
differential transduction pathways depending on cell types, that
include Nrf2 and HIF-1α, and converge, at least in astrocytes,
to promote a pseudo-hypoxic like response with increased
VEGF expression and release. ALS mutant cells are unable to
respond properly to FAEs, suggesting that disease intrinsic
mechanisms are involved in FAE response.

Supporting Information

Figure S1.  FAEs induce Nrf2 in astrocytes. Wild type
astrocytes were treated with 30µM DEF (A, C) or 30µM DMF
(B, D) for the indicated times. Nrf2 levels were measured in
duplicates by western blot. *, p<0.05, **, p<0.01 significantly
different from corresponding control (ANOVA followed by post-
hoc Newman-Keuls). Values are the means +/- SEM of n=3
independent experiments.

(TIFF)

Figure S2.  FAEs induce Nrf2 in transgenic ALS astrocytes.
Transgenic (mSOD1-G93A) astrocytes were treated with 30µM
DEF (A, C) or 30µM DMF (B, D) for the indicated times. Nrf2
levels were measured in duplicates by western blot. *, p<0.05,
**, p<0.01 significantly different from corresponding control
(ANOVA followed by post-hoc Newman-Keuls). Values are the
means +/- SEM of n=2 independent experiments.
(TIFF)
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