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ABSTRACT: Polymer-grafted nanoparticles (PGNPs) are an
important component of many advanced materials. The interplay
between the nanoparticle surface curvature and spatial confinement
by neighboring chains produces a complex set of structural and
dynamical behaviors in the polymer corona surrounding the
nanoparticle. For example, experiments have shown that the inner
portion of the corona is more stretched and relaxes more slowly
than the outer region. Here, we perform systematic core-modified
dissipative particle dynamics (CM-DPD) simulations and analyze
the relaxation dynamics using proper orthogonal decomposition
(POD) of the monomer coordinates. We find that grafted chains
relax more slowly than free chains and that the relaxation time of
the grafted chains scales inversely with the confinement strength.
For PGNPs in a polymer melt, the relaxation processes are always Rouse-like. However, we observe either Zimm-like or Rouse-like
dynamics for PGNPs in solution depending on the confinement strength.
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■ INTRODUCTION

The dynamics of polymer chains play an important role in many
physical properties of polymeric materials such as the character-
istics of the stress relaxation modulus G(t), fracture mechanics,
transport phenomena, energy dissipation, and many others.1−7

When polymers do not entangle, their dynamics can be
described in a couple of ways. The Rouse description of the
dynamics is based on a friction coefficient for segments of the
polymer chain (ζp) that scales linearly with the number of
monomers in that segment (i.e., ζp = pζ0). The resulting
diffusion coefficient for the chain produces a spectrum of
relaxation times corresponding to relaxations that occur across
different length scales or equivalently different groups of
monomers. As a result, the relaxation time of each mode p is
expressed as
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where ηs is the local viscosity, b is the Kuhn length, ν is the Flory
exponent, and N is the degree of polymerization of the chain.1

The longest relaxation time τ1, corresponding to that of the
entire chain, is referred to as the Rouse time. The Zimm
description of polymer dynamics is based on a friction
coefficient that is proportional to the size of the chain or
segment of interest (i.e., ζp = ηsR). As a result, it is sensitive to
hydrodynamic effects and the relaxation time of each mode

adopts a similar expression to eq 1, but with a scaling exponent of
3ν instead of 1 + 2ν. The Zimm model is most appropriate for
dilute chains at concentrations much less than the overlap
concentration (ϕ ≪ ϕ*), whereas the Rouse model is better
suited for unentangled polymer melts. While the success of the
Rouse model is typically attributed to a lack of hydrodynamic
effects, simulations8−10 and experiments8,11 have observed
deviations from its predictions of the internal dynamics of
polymer chains. These deviations may be due to considerations
that are absent from the Rouse model such as interactions.
The above discussion of relaxation times can be formulated in

terms of the dynamic structure factor S(Q, t), which can be
helpful in connecting simulations to experimental scattering
measurements. Under this description, for length scales less than
the size of the polymer, the incoherent dynamic structure factor
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where the value of α depends on the model describing the
polymer dynamics. In general, the mean-squared displacement
(MSD) of monomer m will evolve according to ⟨Δr2⟩ = ⟨[rm(t)
− rm(0)]

2⟩ ∼ tα, where α = 2ν/(2ν + 1) in the Rouse model and
α = 2/3 for the Zimmmodel.1 This implies that τ∼ Rg

(2ν +1)/ν for
Rouse dynamics and τ ∼ Rg

3 for Zimm dynamics, where Rg is the
root-mean-squared radius of gyration of the polymer.12 On the
one hand, this means that in dilute solutions, the relaxation times
of the polymer scale with the cube of Rg regardless of the
conformation of the polymer. On the other hand, this alsomeans
that a polymer’s excluded volume can influence relaxation times
according to the Rouse model. Similarly, others have found that
if active forces are present, their influence tends to speed up the
dynamics of polymer chains depending on the magnitude and
time scale of the active force.13−15 This enhancement of the
dynamics is characterized by an increase in the value of α
signifying some degree of directedmotion, which, in turn, results
in a weaker scaling of the relaxation times with N than would be
expected from classical theories alone. Du et al.15 specifically
observed that α increased as the magnitude of the active force
increased. If α = 1, as in normal diffusive processes, then one
predicts τ∼ Rg

2, while τ∼ Rg for a ballistic process (α = 2). Thus,
the scaling of τ with Rg weakens as α increases.
In this article, we examine the relaxation dynamics of polymer

chains that are grafted to spherical nanoparticle cores using core-
modified dissipative particle dynamics (CM-DPD) simulations.
Over the past decade or more, a multitude of investigations have
sought to understand the behavior of polymers in this coronal
layer.2,3,6,16−26 For example, dynamic light scattering
(DLS),17−19 transmission electron microscopy (TEM),2,22 and
small-angle neutron scattering (SANS)26−28 have all found that
at high values of grafting density (σ), the grafted polymers form a
brush that can be subdivided into two regions of concentration.
Near the nanoparticle surface, a high density of monomers
results in a concentrated polymer brush (CPB). In the CPB,
polymer chains are highly stretched due to confinement by
neighboring chains and the height of the brush in this region
scales as h ∼ N4/5. As the distance from the nanoparticle core
increases, the concentration of polymer decreases, and past a
cutoff distance rc, a semidilute polymer brush (SDPB) forms. In
this region, the conformation of the chain relaxes and
approaches that of an unconfined polymer (e.g., h ∼ N3/5 in a
good solvent). Although the appearance of two regions of
concentrations follows from the predictions of Daoud and
Cotton for star polymers,29 the theory itself does not produce
the scaling of h with N. These values have been determined
experimentally. Nevertheless, more detailed models30,31 predict
a variety of scaling exponents, depending on the curvature of the
underlying surface.
The conformation of the polymers within the corona can

strongly influence the mechanical properties of polymer-grafted
nanoparticle (PGNP) nanocomposites. For instance, it has been
found that the size of the SDPB region strongly influences the
fracture mechanics of a polymer nanocomposite.2 Short or
strongly stretched chains cannot effectively entangle with those
on neighboring particles, resulting in brittle composites. In
contrast, large SDPB regions lead to crazing. Others have
observed that the polymer grafting density impacts the storage
and loss moduli, G′(ω) and G″(ω), respectively.6,23,32 Broad-
band dielectric spectroscopy (BDS) measurements of grafted
polyisoprene found that the relaxation times of grafted chains
were longer than those of free chains and depend on their
molecular weight, grafting density,23 and nanoparticle concen-

tration.33 As the molecular weight of the polymer increased,
however, the relaxation times between the grafted and free
chains became very similar to each other. Presumably, the origin
of this behavior lies in the description of the corona from the
Daoud−Cotton model. Short chains form a corona that is highly
stretched and concentrated leading to longer relaxation times.
As the chain length increases, the chains become increasingly
unconfined far from the nanoparticle surface and the dynamics
more closely resemble those of free chains. In terms of the
description of these relaxation times (i.e., Rouse or Zimm),
neutron spin echo (NSE) measurements of polystyrene-grafted
SiO2 nanoparticles in the melt showed that at short times the
dynamics appeared Zimm-like but that the Zimm model could
not describe the dynamics at long times since the intermediate
scattering function I(Q,t) did not decay to zero.34 A similar trend
was observed in NSE measurements of carbon black,35 where
the lack of decay in I(Q,t) for large t was attributed to the
appearance of breathing modescollective, transverse motions
predicted by de Gennes.36 Mark et al.37 performed NSE
measurements on one-component nanocomposites and deter-
mined that the spatial confinement of grafted polymers within a
cone defined by their neighbors results in a slowing down of the
dynamics and that while the dynamics of the entire chain slow,
local segmental dynamics appear identical to a polymer melt.
NSE measurements by Wei et al. of poly(methyl acrylate)-
grafted SiO2 nanoparticles in solution took advantage of isotopic
labeling to separately measure the dynamics in the inner and
outer regions of the corona.26 In the inner regions, relaxation
times were approximately 2−3 times longer than those in the
outer regions, a finding that was consistent with previous BDS
measurements. However, in solution, the authors found that the
Zimm model appeared to describe the dynamics across all time
and length scales and that I(Q,t) fully decayed on the time scale
of the measurements. Why the dynamics in the CPB region are
2−3 times slower than in the SDPB region, yet appear to follow
the Zimm prediction in both regions, remains an outstanding
question that we will attempt to resolve in this article.
Computer simulations offer a means to further explore the

relaxation dynamics in spherical brushes, such as the corona of
PGNPs. Laradji et al.38 performed a detailed analysis of
ungrafted polymer dynamics in dilute and concentrated
solutions using DPD simulations. They observed that DPD
simulations of dilute solutions reliably reproduce predictions
from the Zimm model (τ1 ∼ N1.77), but as the polymer
concentration increased, hydrodynamics were not fully screened
and the scaling of the relaxation time was between the Rouse and
Zimm predictions (τ1 ∼ N1.86). A better agreement with the
Rouse prediction could be obtained by increasing the temper-
ature of the system or, equivalently, lowering the Schmidt
number. Spenley39 found τ1 ∼ N1.98 for a pure polymer melt, in
excellent agreement with the Rouse prediction. Molecular
dynamics (MD) simulations of polymer nanocomposites have
used Rouse mode analysis, which will be described later in this
article, to examine the relaxation of the free chains as a function
of nanoparticle (NP) size, concentration, and interaction
characteristics.4,40−42 Smith et al. demonstrated that attractive
interactions between NPs and polymers result in slower
dynamics.40 In athermal nanocomposites with bare NPs,
unentangled chains were largely unaffected by the inclusion of
NPs except for NPs whose size approached that of a solvent. The
largest impact on the dynamics was observed for entangled
chains.41 These results are largely in agreement with
investigations into unentangled polymer dynamics under

ACS Polymers Au pubs.acs.org/polymerau Article

https://doi.org/10.1021/acspolymersau.1c00031
ACS Polym. Au 2022, 2, 157−168

158

pubs.acs.org/polymerau?ref=pdf
https://doi.org/10.1021/acspolymersau.1c00031?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


cylindrical confinement.42 The standard Rouse mode analysis is
not directly applicable to understanding the dynamics of grafted
polymers, however, due to different boundary conditions.
Hattemer and Arya analyzed the dynamics of grafted chains
using sine functions as a basis to decouple the dynamics versus
cosine functions that are used for free chains. They found that in
their modified analysis two relaxation times appeared in each
mode. The authors attributed one of these times to the
relaxation of the grafted polymers and the other to rotational
relaxations of the chains about the nanoparticle core. Notably,
the autocorrelation functions they obtained in this way did not
fully decay to zero.4 Additional key results from their
investigations included that bare and grafted NPs essentially
had identical effects on the relaxation dynamics of free chains
and grafted polymers exhibited longer relaxation times than free
chains. Moreover, the relaxation times of grafted polymers
increased as theNP size increased. Simulations fromChremos et
al.43 investigated the behavior of bare and polymer-grafted
nanoparticles and found that the structure of the corona strongly
influences the diffusivity of the nanoparticle. Finally, Neha et al.
demonstrated that PGNPs could be modeled as star polymers
with a large, spherical core using a theoretical framework
although they did not explicitly examine the relaxation times of
the grafted chains.44

Motivated by previous experimental and simulation results,
we report in this article an analysis of the relaxation dynamics of
grafted polymers from CM-DPD simulations. PGNPs are
modeled as star polymers with a large impenetrable core, and
the relaxation times of the grafted chains are extracted using
proper orthogonal decomposition (POD) to obtain the normal
coordinates of the monomers. As we demonstrate below, an
advantage to this approach is that it does not require a priori
knowledge of the necessary basis functions to decouple the
dynamics (e.g., cosine functions for standard “Rouse mode
analysis”). The relaxation dynamics of the grafted chains are
examined in solution and in an unentangled melt for four
different confinement strengths and are compared to linear and
star polymers with identical chain lengths. The grafted chains
had an increased radius of gyration (Rg) relative to free chains,
which increased as the degree of confinement increased. We find
that relaxation times of the grafted polymers increase as their
confinement increases, with dynamics that can be explained by
considering the value of α, which describes monomer motions.

■ MODEL AND METHODS

Dissipative Particle Dynamics

The temporal evolution of polymer solutions and melts was simulated
using dissipative particle dynamics (DPD) using a parallel, in-house
code (PD2). Under this approach, DPD particles correspond to fluid/
polymer elements that may contain many “physical” atoms. The DPD
particles interact via a conservative force, which accounts for
interactions between particles, as well as a random and dissipative
force, which together form the DPD thermostat for the system. These
pairwise forces are expressed as

a w rF r( )ij ij ij ij
C R= ̂ (3)

w rF r v r( )( )ij
D

ij ij ij ij
D γ= − ̂ · ̂ (4)

and

t
w rF r( )ij

R
ij ij ij

R σ θ=
Δ

̂
(5)

with rij = ri −rj, vij = vi −vj, rij = |rij|, and rîj = rij/rij. θij is a symmetric
random variable with zero mean and unit variance, uncorrelated for
different times and particle pairs. The strength of the conservative force
is governed by the coefficient aij, and the force is weighted by a factor
that sets the length scale of the simulation (rc)
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rc was set equal to 1. Although not required, a common choice for the
dissipative weighting factor is wD(rij) = w2(rij), which is used here. To
maintain thermal equilibrium, the fluctuation−dissipation theorem
requires that the coefficients of the dissipative and random forces be
related as σ2 = 2γkBT. The friction parameter σ = 3.0. In DPD units, kBT
= ϵ0 = 1.0. To reproduce good solvent conditions, the strength of the
conservative interaction between polymer (P) and solvent (S) is set
such that aPS = aPP = aSS = 25ϵ0/rc. In a polymer melt, as will be shown
below, these interaction parameters result in neutral interactions and
ideal chain characteristics. As noted previously, DPD preserves
hydrodynamics38,45 and these interaction parameters provide a good
solvent condition in solution.38,39 Simulations were performed at a fixed
density of ρ = 3rc

−3.
Neighboring beads in each polymer chain were connected using a

FENE potential
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with kF = 40ϵ0/rc
2, rmax = 2rc, and req = 0.7rc. Finally, the positions and

velocities for a given particle i are governed by the equations
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where mi is the mass of bead i, and Fi is the net force acting on that
particle. For simplicity, mi = 1 for all monomers and solvent particles.
Although entanglements can be modeled in DPD by including a
segmental repulsive potential,46,47 we opted to omit it for simplicity and
restricted our focus to short, unentangled chains. Equations 8 and 9 are
solved using the velocity-Verlet algorithm, with Δt = 0.001τ0 as the
integration time step.

Initially, PGNPs were placed at random locations in the system and
all polymers were initialized with a random configuration and random
velocity. Systems were equilibrated until the temperature converged to
kBT = 1.0 and the root-mean-squared radius of gyration converged to a
constant value. Rg fluctuated by no more than 0.001rc over the duration
of the simulation. The equilibration process was accomplished after
approximately 50 000 time steps forN≤30 and approximately 100 000
time steps forN≥ 50. After equilibration, the structure and dynamics of
the polymers were observed over 1−30 million production steps,
depending on the degree of polymerization of the grafted chains, until
the normal mode autocorrelation function Cp(t), described below,
decayed below 0.1. Rg and the longest relaxation time, τ1, were obtained
from a single trajectory for each set of parameters. However, we
performed multiple simulations on select systems to ensure that our
values of Rg and τ1 were reproducible and representative of the true
values.

Core-Modified DPD
Polymer-grafted nanoparticles were modeled using core-modified DPD
(CM-DPD). CM-DPD, introduced by Whittle and Travis,48 is an
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extension to the standard DPD framework, which allows calculations
using beads with a finite size, rather than the point-like particles used in
traditional DPD. This extension has enabled facile simulations of
colloids and does not require the use of rigid-body dynamics to
integrate the equations of motion. For two interacting particles i and j,
the weighting factor is modified to read
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where the surface-to-surface separation distance hij = rij−Ri− Rj. For all
simulations, Ri = 0 if the particle belongs to the solvent or a polymer
chain and Ri = RNP if the particle represents the nanoparticle core. The
size of the grafted monomers was fixed at Rmon = 0rc (i.e., the standard
DPD implementation). Penetration of the interior of the nanoparticle
by solvent and/or polymer beads was mitigated by including a repulsive
force Fij

core = fcore = 500ϵ0rîj if hij <0. To model PGNPs, the objects are
represented as star polymers with an impenetrable core of radius RNP =
1.15rc. This value was chosen to most effectively map the simulations
onto previous NSE studies by Wei et al.26 For pure star polymer
simulations, RNP = 0 to relax the impenetrability of the core bead. The

Figure 1. (Left) Representative snapshot of a typical simulated system. For clarity, the solvent has been omitted. The volume fraction of PGNPs shown
is ϕNP = 0.1. (Right) Representative snapshots of nanoparticles grafted with polymers with chain lengths of N = 10 and N = 50. ξ* is a confinement
parameter (described below) that decreases as the polymer grafting density increases.

Figure 2. Proper orthogonal decomposition (POD) computes the relaxation modes from snapshots of the monomer positions, as depicted in the
illustration. Comparison between (a) the basis functions from the Rousemodel for the first three modes (p = 1−3) for a linear polymer withN = 30 and
(b) the first three eigenvectors from POD for the same polymer. Note that p = 1 is the eigenvector with the largest eigenvalue, p = 2 is that with the
second largest eigenvalue, and so on. (c) First three eigenvectors obtained from POD for an f = 6-arm star polymer withNarm = 30 and a total degree of
polymerization of N = 1 + f Narm = 181.
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polymer arms are attached to the core through a FENE potential, with
rmax = (2 + RNP)rc and req = (0.7 + RNP)rc to reflect the larger size of the
core bead.
The larger core-modified beads have a corresponding increased

mass. Whittle and Travis suggested that if the density of the core-
modified bead is set equal to that of the surrounding fluids, then its mass
should be rescaled asmi = (2Ri + 1)3.48 We verified that the mass of the
central NP core does not influence the value and scaling relationships of
Rg and τp. A typical system and representative nanoparticles for select
values of the polymer chain length N and confinement parameter ξ*
(described below) are shown in Figure 1. Because the number of
PGNPs in the systems were kept fixed, the volume fraction of the
polymer is not fixed in the system. The system shown in Figure 1 is at a
volume fraction of ϕNP = 0.1the largest value we considered.

Proper Orthogonal Decomposition
Proper orthogonal decomposition (POD) was performed to extract the
normal coordinates for the polymer chains, from which the relaxation
dynamics can be analyzed. In standard simulations of linear
polymers,40−42 these normal coordinates are the Rouse coordinates
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which are cosine transforms of the monomer positions at time t, ri(t).
49

However, as noted by others,4,50,51 for grafted polymers and nonideal
conformations, these coordinates may not represent the true normal
coordinates, which can complicate the analysis of polymer dynamics.
To overcome this, Wong and Choi52 showed that the normal modes
can be obtained numerically through POD. Under this approach, a
covariance matrix with elements Cij is constructed from the time-
averaged fluctuations in the positions of monomers i and j from the
center of mass of the polymer as

C
T

q t q t
1

( ) ( )ij
q

t

T

i j
0

1

∑= ′ ′
=

−

(12)

where q is the x, y, or z component of r(t). T is the total number of
snapshots from the trajectory of the system, and the fluctuations in the
positions each monomer from the center of mass of the chain are given
by

q t q t
N

q t( ) ( )
1

( )i i
j

N

j
1

∑′ = −
= (13)

The three spatial components were treated separately in our analysis,
and the results are averaged to reduce statistical deviations. Note that eq
12 implies that the matrix is self-adjoint and that the eigenvalues are
guaranteed to be real. The normalized eigenvectors of this matrix, ψ̃p

q,
when ordered by the decreasing value of their corresponding eigenvalue
describe relaxations at progressively shorter times/smaller length scales.
The comparison between the classical result from Rouse and
eigenvectors obtained from POD is shown in Figure 2a,b,
demonstrating that the two approaches produce similar results and
that the eigenvector with index p represents relaxations of the pth Rouse
mode for linear chains. However, as will be discussed later, this
correspondence is not true for star polymers/PGNPs. For comparison,
the first three eigenvectors for an f = 6-arm star polymer, with each arm
having a degree of polymerizationNarm = 30 (N = 1 + f Narm = 181), are
shown in Figure 2c. The eigenvectors consist of f segments of length
Narm, separated by ( f −1) nodes, where ψp

x(kNarm) = 0. The normal
coordinates of the polymer are then given by the transformation

t n q tX ( ) ( ) ( )p
q

n

N

p
q

n
1

∑ ψ= ̃
= (14)

where ψ̃p(n), with n ∈[1, N], is the nth component of the eigenvector,
and qn(t) is the coordinate of monomer n in the chain. ψ̃p

q(n) is
analogous to the cosine term in eq 11.
The characteristic relaxation times described by each eigenvector p

can be extracted by computing the normalized time autocorrelation for

the normal coordinates obtained from that eigenvector. This was
computed separately for each chain in the system and averaged across
the ensemble of all chains. The autocorrelation function is expected to
decay as
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with βp ≈ 1. Wong and Choi52 noted that in their POD analysis of
molecular dynamics simulations βp tended to fall between 0.95 and
1.05. If βpwas treated as a free parameter in our fits ofCp(t), we found it
to be converged to 0.9 ≤ βp ≤ 1.1. For the results presented in the
following sections, we set βp = 1, which resulted in a good fit (R2 ≥
0.95).

■ RESULTS AND DISCUSSION

Linear and Star Polymers

To verify that POD produces a correct description of polymer
dynamics in DPD simulations, we first considered linear and star
homopolymers with chain lengths between N = 10 and N = 100
in the melt and dilute solution states. The logarithm of the root-
mean-squared radius of gyration (Rg) is plotted as a function of
the logarithm of the number of segments in the chain in Figure
3a, along with linear least-squares fits (solid lines). The results
confirm that in the melt, linear chains have a size that scales as Rg
∼ Nν in the melt, with ν = 0.51. In solution, we found that ν =
0.58. Both values of the Flory exponent agree with predictions
from classical theories1 as well as DPD simulations by
others.38,39

In Figure 3b, the normalized time autocorrelation function
Cp(t) of the normal coordinates is plotted for linear chains in the
melt (circles) and solution (squares) for the longest mode (p =
1). The functions all decay exponentially with βp = 1 and are
equivalent to those obtained using Rouse mode analysis (not
shown), implying that POD correctly produces the expected
relaxation characteristics. In addition, the similarity means that
the p = 1, 2, 3, ..., N eigenvectors from POD can be directly
mapped onto the p = 1, 2, 3, ...,N Rouse modes for linear chains.
The relaxation times of the chains were extracted by fitting Cp(t)
to eq 15 and are plotted in Figure 3c on a double-logarithmic
scale. The solid lines are linear least-squares fits to obtain the
scaling exponents. In the melt, the longest relaxation time τ1 ∼
N1.97, where the scaling exponent is close to the prediction from
the Rouse model of 1 + 2ν = 2.02 and in quantitative agreement
with previous results from Spenley.39 In solution, where the
hydrodynamic effects are assumed to accelerate relaxation times,
we find τ1 ∼ N1.81, which is in accord with the Zimm model
prediction of 3ν ≈ 1.76 and in exact agreement with previous
results from Laradji et al.38 Thus, the combination of DPD
simulations and POD correctly reproduces the expected scaling
of the chain size and relaxation times for linear polymers and
exactly matches the results of previous DPD simulations using
Rouse mode analysis.
Because we model PGNPs as star polymers with a large,

impenetrable spherical core, we next investigated the scaling
relationships between Rg, τp, andN that are produced fromDPD
simulations of simple star polymers with f = 6 arms. These
polymers have a central bead with a size that is identical to the
monomer size. We considered the case of star polymers in the
melt, solution, and in a melt of linear chains with a degree of
polymerization equal to the degree of polymerization of a single
arm of the star,Narm. Rg for a single arm is plotted as a function of
(Narm−1) on a double-logarithmic scale for these three systems
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in Figure 4a. While the star polymers in a pure melt and a melt of
linear chains exhibit ν = 0.51, we find a weaker scaling of Rg in
solution (ν = 0.52) compared to linear polymers. Nevertheless,
the solution results are in quantitative agreement with our
previous experimental SANS measurements of poly(N-
isopropyl acrylamide) star polymers in D2O with 3 ≤f ≤6.53
Although we cannot definitively identify the source of this
weaker scaling, we speculate that a higher concentration of
monomers near the core of the molecule may lead to a weaker

scaling relationship due to the expulsion of solvent in the interior
of the star and a corresponding partial screening of excluded
volume interactions.54

Zimm and Kilb55 investigated the relaxation dynamics of
branched polymers analytically by deriving the normal modes of
symmetric and asymmetric star polymers. Their results
indicated that if the eigenvectors, which decouple the dynamics
of star polymers, contain nodes, even-numbered modes will
vanish and the eigenvectors/eigenvalues for odd-numbered
modes will occur as degenerate sets with a multiplicity of ( f−1)
for eachmode. Thus, the first three eigenvectors shown in Figure
2c all describe the same relaxation process in the star polymer
and correspond to the longest mode p = 1. In addition, Zimm
and Kilb demonstrated that the relaxation time of each mode is
equivalent to that of a linear polymer that has an effective degree
of polymerizationNeff = 2( f Narm + 1) /f. The modes in this case
represent relaxations of two arms connected to the central core
bead. The autocorrelation function Cp(t) for a star polymer with
Narm = 100 and f = 6 is plotted in Figure 4b for p = 1−11 (p odd).
As predicted by Zimm and Kilb, groups of ( f −1)
autocorrelation functions appear, all with similar relaxation
times. By plotting τp as a function of (Neff/p) (Figure S1,
Supporting Information), we confirmed that only odd-
numbered modes appear on the basis of their position on a
master curve, and we indexed the actual mode numbers as
denoted in the annotations in the figure. In Figure 4c, we
compare the autocorrelation functions for p = 1 for star polymers
with (left to right)Narm = 10, 20, 30, 50, and 100 in both amelt of
linear chains withN =Narm and in a dilute solution. Unlike in the
case of linear chairs, Cp(t) looks very similar for all values ofN in
both the melt and solution statesindicating similar values and
scaling of τ1 with N.
The Zimm and Rouse times for a polymer chain scale with N

to a power that depends on the Flory exponent, which is
different for our star polymers than for linear polymer chains. To
eliminate the dependency on ν, the longest relaxation time can
be plotted as a function of Rg, where τ1∼ Rg

3 for the Zimmmodel
and τ1 ∼ Rg

4 for the Rouse model, assuming ν = 0.5.38 In Figure
4d, the relaxation times for linear polymers are plotted as a
function of Rg on a double-logarithmic scale, showing that τ1 ∼
Rg
3.0 in solution and τ1 ∼ Rg

3.7 in the melt (black dashed lines),
both of which are in agreement with theory. Also shown in the
figure are the relaxation times for the star polymers (blue points)
in the melt (filled diamonds), solution (triangles), and linear
melt states (open diamonds), where the lines are least-squares
fits to determine the scaling exponents. τ1 is increased for the star
polymers relative to the linear polymers because each relaxation
time corresponds to that of a linear chain with Neff = 2( f Narm +
1) /f, as described above. However, the scaling of τ1 with Rg is
different for star polymers than for linear polymers due to effects
that are not captured by a different value of N. Whereas linear
chains in solution exactly follow the predictions of Zimm, star
polymers in solution exhibit relaxation times that scale as τ1 ∼
Rg
3.3 (τ1 ∼N1.81), which deviates from the Zimm prediction of τ1

∼ Rg
3 and is likely Rouse-like. Earlier experiments from Richter et

al. observed signs of hydrodynamic screening in star polymer
solutions.54 In a melt of identical star polymers, τ1 ∼ Rg

3.5, which
is a weaker scaling than both the Rouse prediction and our
simulations of linear chains. When fit as a function of N, we find
that melts of star polymers display relaxation times that scale as
τ1 ∼ N1.86, which is intermediate between the Rouse and Zimm
predictions. Finally, when star polymers are dispersed in a melt
of identical linear chains, τ1∼ Rg

3.4 (τ1∼N1.80), which is similarly

Figure 3. (a) Scaling relationship for the root-mean-squared radius of
gyration (Rg) of linear chains as a function of the number of bonds in
the chain. The numerical values correspond to the value of the Flory
exponent ν determined from least-squares fitting. (b) Normal
coordinate autocorrelation functions obtained from POD for linear
polymers in solution (blue squares) and in the melt (black circles).
From left to right, sets of curves correspond to N = 10, 20, 30, 50, and
100. (c) Scaling relationship of the longest relaxation time, extracted
from panel (b), of the chain with N. The scaling exponent of τ1 is
indicated near each curve.

ACS Polymers Au pubs.acs.org/polymerau Article

https://doi.org/10.1021/acspolymersau.1c00031
ACS Polym. Au 2022, 2, 157−168

162

https://pubs.acs.org/doi/suppl/10.1021/acspolymersau.1c00031/suppl_file/lg1c00031_si_001.pdf
https://pubs.acs.org/doi/10.1021/acspolymersau.1c00031?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acspolymersau.1c00031?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acspolymersau.1c00031?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acspolymersau.1c00031?fig=fig3&ref=pdf
pubs.acs.org/polymerau?ref=pdf
https://doi.org/10.1021/acspolymersau.1c00031?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


weaker than one would expect from considering the Rouse
model. In summary, star polymer simulations indicate that the
relaxation of the arms of the star polymers is Rouse-like but show
weaker scaling of τ1 with Rg and N than predicted from the
Rouse model.
If instead the dynamics are examined on the basis of eq 2, the

relaxation times of the star polymers imply that ⟨Δr2⟩ = ⟨[rm(t)
− rm(0)]

2⟩∼ t0.6, which is below the Zimmprediction of ⟨Δr2⟩∼
t2/3 but accelerated relative to the Rouse prediction. This
behavior was previously observed in both molecular dynamics
and Monte Carlo simulations of linear homopolymers under
cylindrical confinement.56 Brochard and de Gennes calculated
that a polymer under cylindrical confinement would show
relaxation times that scale as τ∼N2D1/3, whereD is the diameter
of the cylinder. However, molecular dynamics and Monte Carlo
calculations found a weaker scaling of τ1 ∼ N1.75 or equivalently
τ1 ∼ Rg

3.5, which is in quantitative agreement with the star
polymer melt and consistent with our results, which find a
weaker-than-expected scaling of τ with Rg in the solution and

linearmelt systems. If τ1∼N1.75, then ⟨Δr2⟩∼ t0.57, which is faster
than the Rouse model predicts. However, we note that the
nature of confinement and the value of D are ill-defined in our
simulations of star polymers. Nevertheless, in our simulations,
the scaling exponent of ⟨Δr2⟩ is always higher for grafted
polymers relative to free chains and is higher in the presence of
solvent than in a polymer melta behavior that persists in the
PGNP systems described in the following sections.

PGNPs in Solution and Linear Melts

To map our CM-DPD simulations to previous experiments,26

we define a confinement parameter in the same way as the
correlation length in the Alexander-de Gennes brush,1

1/ξ σ* = * . The rescaled grafting density σ* = σRg0
2 , where

Rg0 is the radius of gyration of a free chain with the same degree
of polymerization. We calculate σ* using the radius of the
impenetrable core, RNP = 1.15rc. The confinement parameter
represents the average spacing of chains on the nanoparticle
surface. Under this definition, if ξ* < 1, the grafted chains are

Figure 4. (a) Scaling relationship of Rg for a single arm of f = 6-arm star polymers in a melt of identical star polymers (circles), in a dilute solution
(squares), and in a melt of identical linear chains (triangles) with N = Narm. (b) Cp(t) for a star polymer with Narm = 100, showing the ( f−1)-fold
degeneracy of the modes for (right to left) p = 1, 3, 5, 7, 9, and 11. (c) Comparison of Cp(t) between star polymers in a linear melt and solution (p = 1)
and (d) scaling relationship between the longest relaxation time τ1 and the root-mean-squared radius of gyration of a single arm. For comparison, the
data from Figure 3c for linear chains are shown in black. Lines are least-squares fits to the points.
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closer to each other than Rg, and chains begin to be confined by
their neighbors. Conversely, ξ* ≥ 1 roughly corresponds to an
unconfined chain.
We simulated dilute systems with ξ* = 2.04, 1.77, 1.44, 1.12,

0.98, 0.75, 0.46, and 0.35, corresponding to Nc = 3, 4, 6, 10, 13,
22, 60, and 100 grafted polymers, respectively. The volume
fraction of the PGNPs, which includes both the NP core and
grafted polymers, was kept below ϕNP = 0.1. Earlier neutron spin
echo (NSE) measurements investigated SiO2 nanoparticles
(RNP ≈ 10 nm) that were grafted with poly(methyl acrylate) (σ
= 0.3 chains/nm2) with a molecular weight of Mn ≈ 30 kg/mol
(Rg ≈ 5 nm). Therefore, to map our CM-DPD simulations to
previous experiments, the closest comparison occurs for σ* = 7.5
and ξ*≈ 0.35. The nanoparticle radius was fixed at a value of Rg
for linear chains withN = 10: RNP = 1.15 rc. In the rescaled units
used in our CM-DPD simulations, the Daoud−Cotton model
predicts that the brush should be stretched at distances smaller
than

( )
r

R

N
NP

1
2

ξ χ
* =

* * − (16)

where N* = 10 is a reference chain length, and χ = 0 for our
choice of parameters. If r* < RNP, then no stretched region is
expected in the corona. Equation 16 predicts no stretched region
for ξ* ≥ 1. For ξ* < 1, eq 16 predicts r* = 1.61rc for ξ* = 0.46
and r* = 2.1rc for ξ* = 0.35.
Rg is plotted as a function of the number of bonds in the chain

for the PGNPs in Figure 5. In both solution and a linear melt, Rg
adopts a similar value for ξ* ≥ 1 and increases more strongly as
ξ* decreases below unity, signifying an increasing amount of
confinement. In solution, the grafted chains adopt swollen
configurations that are reflective of good solvent conditions (ν =
0.6). Similarly, in a melt of linear chains, the grafted chains adopt
an ideal conformation (ν = 0.5). These scaling relationships
persist even as ξ* decreases and confinement increases. We
hypothesize that similar scaling exponents reflect the fact that
standard DPD beads do not have a well-defined size and can
overlap with one another, as depicted in the illustration in Figure
5. For this reason, confinement effects on the chain
conformations are diminished. In addition, 2Rg ≈ 2.2rc for N
= 10, which is larger than the thickness of the predicted stretched
region: h = (r*−RNP) = 0.46rc for ξ* = 0.46 and h = 0.95rc for ξ*
= 0.35. These relatively small values of h compared to 2Rg imply
that the region of strong confinement is smaller than the size of
the polymer chain and contributes only slightly to the scaling of
Rg with N. However, in comparison to the star polymer results
above which found Rg ∼ N0.52 in solution, the polymers grafted
to the nanoparticles show stronger stretching in solution.
Although the standard DPD implementation of the grafted

monomers does not appear to reproduce the large Flory
exponent that is observed experimentally, as ξ* decreases, the
grafted polymers are stretched relative to their equilibrium size.
In Figure 6a, Rg for each value of N is normalized by the root-
mean-squared radius of gyration of a free chain (Rg0) and plotted
as a function of ξ*. On one hand, for ξ* > 1, Rg/Rg0 is not
substantially larger than unity but does increase slightly as ξ*
decreases, indicating that the size of the grafted chain is
essentially the same as in the ungrafted case and at most ∼ 5%
larger. On the other hand, for ξ* < 1, Rg/Rg0 grows significantly
as ξ* decreases, showing that the close proximity of neighboring
chains leads to an increase in the grafted chain size by as much as
25 % due to the increased spatial confinement. Finally, the

amount of stretching in the grafted polymers is larger for PGNPs
in solution (open squares) than for PGNPs in the melt state
(filled circles).
To answer how spatial confinement affects the longest

relaxation time τ1 for the grafted polymers, we plot τ1 as a
function of ξ* in Figure 6b. Sets of autocorrelation functions for
each value of ξ* are given in the Supporting Information
(Figures S2−S17). From bottom to top, sets of points
correspond to N = 10, 20, 30, and 50. Square points correspond
to PGNP solutions, and circles correspond to PGNP melts. We
observe that the scaling of τ1 with ξ* is similar for each value ofN
and indeed between the solution (dashed lines) and melt states
(solid lines). We define the parameter β to be the magnitude of
the slope of each line and find that τ1 ∼ (ξ*)−β. On average, β =
1.28 ± 0.22 in solution and β = 1.07 ± 0.09 in the melt, where
the uncertainty is calculated as the standard deviation of the
average. Thus, the value of τ1 scales approximately with the
inverse of ξ*. The larger value of β in solution is likely the result
of the larger Flory exponent for the PGNPs (ν = 0.6), resulting in
stronger spatial confinement as ξ* decreases (i.e., grafting
density increases).
Finally, we considered how τ1 scales with Rg for the grafted

chains and extracted the value α that corresponds to the scaling
of the mean-squared displacement of a monomer in the chain
with time, as discussed above. The results are plotted in Figure 7
and show that in themelt (circles) α≈ 0.65 for large values of ξ*,

Figure 5. Scaling relationship for the root-mean-squared radius of
gyration (Rg) of grafted chains as a function of the number of bonds in
the chain in the (a) solution and (b) linear melt states. ξ* is the
confinement variable, which decreases as the chains become more
confined. Red lines are least-squares fits, with the slope denoted below.
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which decreases very slightly to α = 0.6 as ξ* decreases. Thismay
indicate that the diffusion of the monomers is more directed
than would be expected on the basis of the Rouse model, which
predicts α = 1/2. Similarly, the value of α for the PGNPs in
solution is higher than either the Zimm or Rouse model would
predict. In solution, α ≈ 0.8 for large values of ξ* but crosses
over to a value of α ≈ 0.65 for ξ* < 1. This implies that in
solution, one would expect approximate scalings of τ1 ∼ Rg

2.5 for
α ≈ 0.8 and τ1 ∼ Rg

3.3 for α ≈ 0.6. The higher values of the
solutions relative to the melts could be explained, in part, on the
basis of the excluded volume, which tends to increase the Flory
exponent ν as interactions between the polymer and the
environment become more favorable or as the chains become
more stretched. For this reason, since ν is larger in the solution
systems, one would expect a slightly increased value of α.
The values of α that we obtain fromCM-DPD simulations can

be understood on the basis of previous quasielastic neutron
scattering (QENS) measurements. Neutron backscattering
measurements by Jhalaria et al.3 probed the self-motions of
grafted polymers on particles similar to those in our previous
NSE measurements and found that the scaling of τ with q
transitions from Rouse behavior (τ ∼ q−4∼ Rg

4) to diffusive
behavior (τ ∼ q−2 ∼ Rg

2) as q increases. This signifies that self-
motions are diffusive at small length scales and transition to
subdiffusive motions (i.e., Rouse-like motions) at larger length
scales in the chain or, equivalently, that α decreases from α ≈ 1
to α ≈ 0.5 as q decreases. Thus, the origin of higher values of α
that we observe relative to the Rouse prediction may be due, in
part, to a crossover from diffusive to subdiffusive motion at the
length scales relevant to our CM-DPD simulations. However, a
crossover from diffusive to subdiffusive dynamics would be
expected to produce a value of α that is always greater than the
theoretical prediction (i.e., α = 1/2 for Rouse dynamics or α = 2/
3 for Zimm dynamics). Therefore, our data suggest that for
PGNPs in the melt, the relaxation processes are always Rouse-
like since 1/2 < α < 2/3. In contrast, we hypothesize that in
solution, for ξ* > 1, the relaxation processes could be Zimm-like
since α > 2/3, but for ξ* < 1, the relaxation processes must be
Rouse-like since α < 2/3. This conclusion warrants additional
experiments and simulations in the future. Nevertheless, the
values we obtain from CM-DPD simulations are consistent with
experiments that measure the local dynamics, as we will describe
in the following section.

Comparison to Previous Experiments

Several experimental studies in the literature can be used to
interpret the results of our CM-DPD simulations.3,26,32,33,37,57

First, neutron scattering measurements by Mark et al.37 found
that the conformation of grafted chains was not significantly
different from free chains. The CM-DPD simulations find
similarities and differences to this work. While our simulations
show that the Flory exponent of the grafted chains remains
identical to free chains, we find that grafted chains can be
stretched by as much as 20 % under high confinement (ξ* < 1).
The fact that the chains can be stretched agrees well with the
work from Bockstaller et al.,2,22 Hore et al.,27 Kumar et al.,18,58

and Ohno et al.19 However, all of these studies were performed
with different techniques and/or analyzed with differing
scattering models and not all explicitly evaluated the local
conformation.
In terms of dynamics, Mark et al. measured that the dynamics

of grafted polymers were slowed relative to free chains at length
scales comparable to the entire chain, but that local segmental

Figure 6. (a) Rg normalized by the radius of gyration of an equivalent
free chain (Rg0) plotted as a function of the confinement parameter ξ*.
Circles correspond to PGNPs in the melt, and squares correspond to
PGNPs in solution. For ξ* < 1, the grafted chains are more strongly
confined and show an increase in Rg. (b) Longest relaxation time τ1
plotted as a function of ξ*. Solid and dashed lines are least-squares fits
to the melt and solution data, respectively, and show that τ1 ∼ (ξ*)−β,
with β = 1.07 ± 0.09 in the melt and β = 1.28 ± 0.22 in solution. The
colors of the points correspond toN = 10 (black),N = 20 (red),N = 30
(blue), and N = 50 (green).

Figure 7. Diffusion exponent α plotted as a function of confinement
parameter ξ*. Circles correspond to PGNPs in the melt and squares
correspond to PGNPs in solution. The lines are to guide the eye. In the
melt state, α ≈ 0.6 for all values of the confinement parameter, while in
solution, α ≈ 0.8 for ξ* > 1. Under strong confinement, α is the same
between the melt and confinement, implying that the scaling of τ1 with
Rg is similar.
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dynamics were not affected. These findings agree with BDS
measurements from Archer et al.,23,33 NSE measurements from
Wei et al.,26 and certain features of neutron backscattering
measurements from Jhalaria et al.3 Our CM-DPD simulations
find that the longest relaxation time increases as ξ* decreases as a
result of increasing spatial confinement. However, our
simulations cannot address whether the local dynamics of the
chains are affected by ξ* because we cannot observe higher
modes than p = 1 for the PGNP simulations. In addition,
because we focused on the case where there are no preferential
interactions between the polymers and solvent/matrix, we
cannot comment on effects such as interchain interactions.8−10

However, experiments have demonstrated that attractive
polymer−particle interactions can slow polymer dynamics in
nanocomposites and in other cases also leave local segmental
dynamics unchanged.57,59,60 In addition, our CM-DPD
simulations do not take into account entanglements that may
also be an important consideration.37

Because we chose parameters that are close to those used in
experiments by Wei et al.,26 we can make more quantitative
comparisons to that work. Wei et al. made neutron spin echo
measurements26 at ξ* = 0.35 and observed that the relaxation
times of grafted poly(methyl acrylate) scaled with the scattering
vector as τ ∼ q−2.5 ∼ Rg

2.5 and that the relaxation times in the
inner region of the corona were approximately 2−3 times slower
than in the outer regions. The results of our CM-DPD
simulations find that for the outer region of the corona, τ1 ∼
q−2.5, as was found experimentally. However, we predict a
stronger scaling of τ1 with q than was measured experimentally
for the inner region of the corona. Although we cannot say
definitively, the origin of this discrepancy could be due to a
combination of the length scales that we are probing in NSE and
DPD, experimental resolution, a larger value of ξ* for the inner
region of the corona in the experiments than we estimated, the
effect of a nonzero value of the Flory−Huggins parameter χ
between the polymer and solvent in the experiments, or the fact
that experimental measurements probed only a portion of the
entire polymer chain while our CM-DPD simulations produce a
relaxation time for the entire chain. Regardless, the values of α
that we observe are in reasonable agreement with those seen by
Wei et al.26 and Jhalaria et al.3 and are likely the result of a
transition between diffusive and subdiffusive motions.
A final validation of the CM-DPD simulations is to estimate

what the difference in τ1 for the inner and outer regions of the
corona would be, assuming that they can be treated
independently as they were in experiments. A key result from
our simulations is the relaxation time τ1 ∼ (ξ*)−β, with β = 1.28
±0.22 in solution and β = 1.07 ±0.09 in the melt. From this, we
can estimate that the ratio between the relaxation times in the
inner (τi) and outer regions (τo) is related to the ratio of their
confinement parameters
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Note that this equation breaks down in the event that no CPB
region exists (i.e., r* < RNP). Using ξ*i = 0.35,N* = 10, β = 1.28,
and χ = 0, we predict that τi ≈ 2τo, Thus, our current CM-DPD
simulations are in excellent agreement with the measurements
from Wei et al.26 and support the conclusion that the different
relaxation rates observed in the inner and outer regions are due
primarily to different degrees of confinement. However, on the
basis of the CM-DPD simulations and the scaling of τ with q

found experimentally, it may be the case that Zimm dynamics do
not govern the relaxation processes in the inner region of the
corona as was previously concluded,26 although additional
experiments may be needed to fully address this point.

■ CONCLUSIONS
In summary, we have performed systematic CM-DPD
simulations of PGNPs in the melt and solution states to
determine how the structure and dynamics in the corona
respond to increasing confinement by neighboring chains.
Because the standard Rouse mode analysis is not directly
applicable to the case of PGNPs, we used proper orthogonal
decomposition (POD) to examine the relaxation dynamics of
the grafted chains.
We characterized our PGNPs by a single parameter ξ*, which

describes the degree to which grafted chains are confined, with
ξ* < 1 being strongly confined. We find that the ill-defined size
of the grafted DPD beads results in the weak scaling of Rg withN
compared to what has been generally observed experimentally.
However, the grafted chains express larger values of Rg than free
chains due to spatial confinement by neighboring chains. A key
result from our study is that the longest relaxation time of a
grafted polymer scales as τ1 ∼ (ξ*)−β, with β slightly larger than
1 and larger in solution than in themelt. The scaling of τ1 with Rg
is weaker than the classical Rouse predictions, which we
attribute to a crossover from diffusive motion at small length
scales to subdiffusive motion at larger length scales. Our
simulations suggest that for ξ* < 1, the relaxation processes are
Rouse-like regardless of whether the PGNPs are in solution or a
polymer melt. For ξ* > 1, the relaxation processes are Rouse-like
in the melt and may be Zimm-like in solution. Previous QENS
measurements3,26,37 support the results of our simulations.
Looking at the future, additional NSE measurements of

PGNPs in both the melt and solution states would be useful to
compare to our CM-DPD simulations, which predict that the
stretching of the grafted chains should be weaker in the melt and
the scaling of τ with q should be stronger than was measured for
PGNPs in solution. Additional simulations and theory that can
provide more insight into the origin of the elevated values of α
that we observe in CM-DPD simulations would provide a clearer
molecular-level description of what exactly governs the
relaxation of grafted polymers. Such a description is bound to
lead to an enhanced understanding of the complex behaviors of
PGNPs as we continue to utilize them as components in
functional materials for a variety of applications.
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