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Abstract
Kawasaki disease (KD) or Kawasaki syndrome is known as a vasculitis of small to medium-

sized vessels, and coronary arteries are predominantly involved in childhood. Generally,

20–25% of untreated with IVIG and 3–5% of treated KD patients have been developed coro-

nary artery lesions (CALs), such as dilatation and aneurysm. Understanding how coronary

artery aneurysms (CAAs) are established and maintained in KD patients is therefore of

great importance. Upon our previous genotyping data of 157 valid KD subjects, a genome-

wide association study (GWAS) has been conducted among 11 (7%) CAA-developed KD

patients to reveal five significant genetic variants passed pre-defined thresholds and

resulted in two novel susceptibility protein-coding genes, which are NEBL (rs16921209

(P = 7.44 × 10−9; OR = 32.22) and rs7922552 (P = 8.43 × 10−9; OR = 32.0)) and TUBA3C

(rs17076896 (P = 8.04 × 10−9; OR = 21.03)). Their known functions have been reported to

associate with cardiac muscle and tubulin, respectively. As a result, this might imply their

putative roles of establishing CAAs during KD progression. Additionally, various model

analyses have been utilized to determine dominant and recessive inheritance patterns of

identified susceptibility mutations. Finally, all susceptibility genes hit by significant genetic

variants were further investigated and the top three representative gene-ontology (GO)

clusters were regulation of cell projection organization, neuron recognition, and peptidyl-

threonine phosphorylation. Our results help to depict the potential routes of the pathogene-

sis of CAAs in KD patients and will facilitate researchers to improve the diagnosis and prog-

nosis of KD in personalized medicine.
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Introduction
Kawasaki disease (KD; OMIM 611775), also known as mucocutaneous lymph node syndrome,
or Kawasaki syndrome, is one of the most common systemic vasculitis illnesses that preferen-
tially occur in children younger than 5 years old. KD was first described by Dr. Tomisaku
Kawasaki in 1967, and its diagnosis in clinics is primarily based upon a history of prolonged
fever for at least five days along with four or more of the following manifestations: oral mucosa
changes, conjunctivitis, enlargement of the cervical lymph nodes, swelling of the hands and
feet and polymorphous skin rashes [1]. Up to date, higher incidence rates of KD have been
reported in Asian populations; such as Japanese, Koreans, Taiwanese, and China, up to 239.6,
113.1, 66.2, and 49.4 per 100,000 children under five years old, respectively. Although the eth-
nic dominant pattern in KD has been identified, the incidence rate and the total number of
patients with KD have been continuously increasing all over the place. Taken Together, this
ethnic-preferential pattern implies that genetic factors might play a critical role as well as the
environmental influence in the development and maintenance of KD in those susceptible hosts
on genome scale.

As a vasculitis of the small to medium vessels, KD has a predilection for the involvement of
the coronary arteries. Up to 25% of patients with KD may develop coronary artery lesions
(CALs) if not given adequate treatment with intravenous immunoglobulin (IVIG), which in
turn greatly increases the risk of coronary artery aneurysms (CAAs), and subsequent coronary
artery thrombosis or myocardial infarction [2]. However, according to the current American
Heart Association (AHA) guidelines, treatment with high-dose IVIG during the acute phase of
the self-limited vasculitis in KD can substantially reduce the risk of coronary artery formation
to 3–5% [3]. Namely, delayed diagnosis of KD and late treatment with IVIG is one of the criti-
cal risk factors for the development of CALs [4]. As an important complication of KD, other
risk factors associated with CALs development include: children that are younger than 1 years
old, prolonged fever duration or those who require more than one dose of IVIG, and those
with higher inflammatory markers at baseline [5–8].

Although the underlying etiology of KD remains largely uncharacterized, clinical and epide-
miology evidence indicates that an inflammatory response has been induced due to a ubiqui-
tous infectious factor, subsequently host immune dysregulation frequently occurred in a small
subset of genetically predisposed children. In immunopathogenosis, the activation of innate
and acquired immunity has been reported to associate with KD patients in human and animal
studies. In children with KD, CAAs usually develop within the first 4–6 weeks after disease
onset [9]. Specifically, increased neutrophilic infiltration of the coronary vessels walls occur ini-
tially in the first two weeks after KD onset [10], followed by higher infiltration rate of natural
killer cells and CD8 T cells afterwards [11]. On the other hand, from gene perspective, tumor
necrosis factor α (TNF-α) appears to be a crucial mediator of inflammatory response in KD
patients, by up-regulating the transcription of matrix metalloproteinases (MMP) such as
MMP-9, which in turn leads to increased vessel wall elastin degradation and CAA formation
[12]. Therapeutic blockage of TNF-α in murine model prevents the development of coronary
artery disease, and has been used as an alternative therapy for children with IVIG-resistance in
KD [12, 13].

The power of genome-wide association study (GWAS) makes it as one of the commonly
used approaches to detect genomic loci individually or coincidently associated with the disease
of interest in one high-throughput experiment on a genome-wide scale. In recent years, numer-
ous GWASs have been conducted to identify single nucleotide polymorphisms (SNPs) signifi-
cantly associated with the occurrence of KD among different populations, further resulting in
the discovery of a number of susceptibility genes and their potential roles in the development
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and maintenance of KD [14–19]. It gives rise to a handful of SNPs being consistently reported
in different GWASs of KD across different ethnics. For instance, rs28493229 and rs2290692 in
ITPKC [15, 20–23], rs113420705 (formerly rs72689236) in CASP3 [24–27], rs1801274 in
FCGR2A [15, 19, 28–31], rs4813003 and rs1569723 in CD40 [18, 19, 31], and rs2736340,
rs2254546 and rs2618476 in BLK [18, 19, 28, 30–32] have been frequently revealed as signifi-
cant genetic variants associated with the occurrence of KD in various GWASs. DNAmethyla-
tion array data also identified an association between genomic hypomethylation of FCGR2A
and susceptibility to KD and IVIG resistance [33]. Additionally, when considering the different
outcomes upon KD subjects; for instance, the presence of CALs [16, 25, 34–39]/CAAs [40–45]
or IVIG resistance [25, 26, 34, 46], a number of studies have been developed aiming to uncover
the association between genetic variants and KD. Most of these studies inspected individual
susceptibility genes and corresponding SNPs involved in the regulatory network of immune
responses as well as cardiovascular-associated pathogenesis that might contribute to the forma-
tion of different outcomes or the response of treatments in KD.

The objectives of this study are to determine the genetic differences in CAA-developed
(CAA+) KD patients using non-CAA developed (CAA-) KD as control, and further imply
underlying molecular mechanisms, by which susceptibility genes located by significant poly-
morphisms might be associated with cardiac dysfunction. In this study, a comprehensive
GWAS has been conducted guided by our previous high throughput genotyping microarray
data [18] to reveal susceptibility loci associated with the development and maintenance of
CAA in KD. The result of this study may be of interest to researchers in the KD community
attempting to develop a more precise diagnosis or even prognosis of CAAs in KD patients.

Methods

Ethical statement
This study was approved by the Ethics Committee of the Institutional Review Board in Kaoh-
siung Chang Gung Memorial Hospital in Taiwan. Written informed consents were acquired
from the Kawasaki disease patients’ parents or guardians according to institutional require-
ments and Declaration of Helsinki principles.

Study subjects and phenotype definition
Individuals fulfilling the diagnostic criteria of KD (n = 183) (including 146 patients without
CAAs, 11 patients with CAAs, and 26 unclassified ones in our previous study [18]) were con-
secutively identified and recruited from Kaohsiung Chang Gung Memorial Hospital, Taiwan.
CAA complications were determined from the echocardiograms according to the criteria pro-
vided by the Japanese Kawasaki Disease Research Committee: coronary arteries were identified
as abnormal if the internal lumen diameter was�3 mm in children<5 years old or�4 mm in
children�5 years old, if the internal diameter of a segment measured�1.5 times that of an
adjacent segment, or if the coronary lumen was apparently irregular and the lesions were till
noted 8 weeks after disease onset. Transient dilation of coronary artery was excluded.

SNP genotyping and quality control
Genomic DNA was extracted from blood using the Puregene DNA Isolation Kit (Gentra Sys-
tems). Each individual was genotyped using the Affymetrix Genome-Wide Human SNP Array
6.0 (with a total of 906,600 SNPs) according to the manufacturer’s protocols by the National
Center for Genome Medicine (NCGM) at Academia Sinica, Taiwan [18]. Three major criteria
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were utilized to qualify valid SNPs including call rate (CR)>99%, minor allele frequency
(MAF)>0.01, and the p-value of Hardy-Weinberg equilibrium (HWE)>1 × 10−4.

Statistical analysis
The allelic and genotypic frequency distributions of polymorphisms in KD patients according
to the presence or absence of CAAs were determined through chi-square and Fisher’s exact
analysis using PLINK software (v1.07, 10/Aug/2009) [47], respectively. Genotypes were
obtained from direct counting followed by allele frequency calculations variables, and odds
ratios (ORs) were calculated from allelic frequencies with a 95% confidence interval (95% CI).
P-value of less than 0.001 was considered statistically significant, and adherence to the HWE
constant was evaluated using a chi-square test with one degree of freedom. Furthermore, the
dominant, recessive, and general genotypic models were employed to determine the genetic
inheritance patterns of significant SNP candidates to susceptibility of CAA formation in KD
patients [48]. Gene-ontology (GO) enrichment analysis has been calculated using chi-square
distribution, and the collection of GO terms were further summarized into GO clusters using
the web-based tool of REVIGO [49].

Results

Genetic association analysis between individual SNP and the risk of
CAA complications in KD patients
To identify susceptibility genes associated with KD-associated CAAs, the presence and absence
of CAAs occurred in 183 Taiwanese KD patients were linked toward our previous genotyping
data [18]. After excluding 26 (14.21%) KD subjects without the determination of developing
CAAs, 157 (85.79%) KD cases with the determination of CAA formation as listed in Table 1
were used in further analysis. In this study, a comprehensive GWAS has been applied to these
valid genotyping data of KD patients consist of 96 (61.15%) males and 61 (38.85%) females
(Table 1). In total, eleven (7.01%) KD patients with CAA formation were compared to the rest
of 146 (92.99%) KD patients without CAA formation to identify significant genetic polymor-
phisms associated with the development and maintenance of CAAs in KD. Before identifying
significant SNPs, customized criteria; including minor allele frequency (MAF), call rate (CR),
and p-values of Hardy-Weinberg equilibrium (HWE), were applied to filter uncertain SNPs as
described in the Methods, resulting in 559,609 (64.46%) out of 868,153 genotyped variants in
the array remained and further qualified for the follow-up analysis. The genome-wide associa-
tion results were plotted throughout chromosomes according to p-values calculated using chi-
square tests as significance (Fig 1).

A p-value of less than 0.001 was used as the threshold to specify the final set of significant
genetic variants associated with CAA formation in KD patients, which in turn 720 (0.13%)
sites were qualified for further analyses. When mapping these significant genetic

Table 1. Subject statistics used in this study.

Phenotype/Sex CAA+ CAA- Sum

Female 5 (3.18) 56 (35.67) 61 (38.85)

Male 6 (3.82) 90 (57.32) 96 (61.15)

Sum 11 (7.01) 146 (92.99) 157

KD patients were divided into two groups according to the presence or absence of CAAs as CAA+ and

CAA-, respectively.

doi:10.1371/journal.pone.0154943.t001
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polymorphisms toward gene structures, 31 (4.31%), 289 (40.14%), and 400 (55.56%) SNPs
were identified to locate in genic, intronic, and intergenic regions, respectively. In addition, to
identify potential susceptibility genes of the development of CAAs in KD patients, the gene hits
of the top ranking non-intergenic SNPs were further investigated. The unique collection of
genes located by significant genetic variants includes NEBL (Nebulette sarcomeric isoform;
chr10:21,110,094–21,226,537), TUBA3C (Tubulin, Alpha 3c; chr13:18,645,918–18,653,936),
SETBP1 (SET Binding Protein 1, chr18:40,535,138–40,898,771), ZNF618 (Zinc Finger Protein
618; chr9:115,678,383–115,858,696), MDGA1 (MAM Domain Containing Glycosylphosphati-
dyl Inositol (GPI) Anchor 1; chr6:37,708,262–37,773,744), MESP2 (Mesoderm Posterior Basic
Helix-Loop-Helix Transcription Factor 2; chr15:88,120,593–88,122,986), FHAD1 (Forkhead-
Associated (FHA) Phosphopeptide Binding Domain 1; chr1:15,446,355–15,597,209), and
COL24A1 (Collagen, Type XXIV, Alpha 1; chr1:85,967,504–86,394,742) (Table 2). In this col-
lection of susceptibility genes, NEBL (rs16921209 and rs7922552) and MDGA1 (rs12210919
and rs12211370) both have been hit only by two significant genetic polymorphisms from the
top ranking list of mutations, whereas the genetic variant, rs17076896, is shared in the
upstream promoter region between TUBA3C and LOC101928697. The putative functional
roles of these genes in the formation of CAAs in KD will be discussed afterward.

Fig 1. Manhattan plot of the association between SNPs and susceptibility of CAA formation in KD. The −log10 P-values of significance shown in
chromosomal order for qualified 559,602 SNPs tested for association in initial sample of 11 KD patients with CAA and 146 KD ones without CAA. The x-axis
represents each of the SNPs used in the primary scan according to their genomic location. The y-axis indicates the −log10 P-values of the trend test.
Horizontal lines indicate the general and stringent thresholds of −log10 P as 5 and 7, respectively.

doi:10.1371/journal.pone.0154943.g001
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In addition to association analyses based upon individual major and minor alleles, the dis-
tribution of allele types (DD, Dd, and dd indicating major homozygous, heterozygous, and
minor homozygous, respectively) were put into dominant, recessive, and general genotypic
model analyses to identify the difference between cases and controls. Hence, the hit list of top
ranking SNPs ordered by p-values computed using genotypic model has been identified and
involved in genes including KCNH7 (Potassium Channel, Voltage Gated Eag Related Subfam-
ily H, Member 7), TRAF5 (TNF Receptor-Associated Factor 5), NDUFA5 (NADHDehydroge-
nase (Ubiquinone) 1 Alpha Subcomplex, 5), and MDGA2 (MAMDomain Containing
Glycosylphosphatidyl-inositol (GPI) Anchor 2) (Table 3). When considering inheritance pat-
terns, rs981840 (P = 2.93 × 10−5) and rs4383352 (P = 3.06 × 10−5) in KCNH7 and rs10137971,
rs34362363, rs4900777, rs6572432, and rs7155197 (all p-values of 5.36 × 10−5) in MDGA2
were qualified as significant in dominant inheritance model, whereas rs4951523
(P = 3.34 × 10−5) and rs7550702 (P = 3.34 × 10−5) in TRAF5 and rs12666974 (P = 3.34 × 10−5)
in NDUFA5 were more significant in recessive inheritance model.

Table 2. Top 15 non-intergenic SNPs associated with susceptibility of CAA formation in KD.

SNP LOCUS Allele (D/d) F_A F_U P OR CR HWE TYPE SYMBOL

rs16921209 10:21208109 C/G 0.182 0.007 7.44E-09 32.22 100.00% 0.0475 intron NEBL

rs17076896 13:18654063 A/G 0.227 0.014 8.04E-09 21.03 99.36% 1.0000 promoter TUBA3C

rs7922552 10:21225030 G/C 0.182 0.007 8.43E-09 32.00 99.36% 0.0478 intron NEBL

rs17782904 18:40567708 C/T 0.136 0.003 8.24E-08 45.95 100.00% 0.0191 intron SETBP1

rs11793049 9:115813690 T/A 0.091 0.000 2.36E-07 100.00% 1.0000 intron ZNF618

rs12210919 6:37753490 T/C 0.227 0.021 3.67E-07 14.02 100.00% 1.0000 intron MDGA1

rs12900413 15:88122043 T/C 0.364 0.062 7.18E-07 8.70 100.00% 1.0000 intron MESP2

rs10127456 1:15526459 C/T 0.182 0.014 1.39E-06 16.00 100.00% 0.0873 intron FHAD1

rs12211370 6:37757322 C/T 0.227 0.024 1.62E-06 11.97 100.00% 1.0000 intron MDGA1

rs1842579 1:86061670 G/A 0.318 0.051 2.27E-06 8.62 100.00% 0.5464 intron COL24A1

The major SNP allele frequency in cases and controls were indicated in the F_A and F_U columns, respectively. OR and CR represent the odds ratio and

call rate. The p-values of Hardy-Weinberg equilibrium were indicated in the HWE column.

doi:10.1371/journal.pone.0154943.t002

Table 3. Top 10 non-intergenic SNPs associated with susceptibility of CAA formation in KD using the general genotypicmodel.

SNP LOCUS TYPE SYMBOL G_A G_U G_P LABEL

rs981840 2:163129567 intron KCNH7 4/7/0 7/61/78 2.93E-05 D

rs4383352 2:163199542 intron KCNH7 4/7/0 7/62/77 3.06E-05 D

rs4951523 1:209596667 intron TRAF5 8/2/1 19/68/59 3.34E-05 R

rs7550702 1:209596192 intron TRAF5 8/2/1 19/68/59 3.34E-05 R

rs12666974 7:122979210 intron NDUFA5 5/6/0 12/62/72 5.15E-05 R

rs10137971 14:47045511 intron MDGA2 0/0/11 19/77/50 5.36E-05 D

rs34362363 14:47016756 intron MDGA2 0/0/11 19/77/50 5.36E-05 D

rs4900777 14:47044337 intron MDGA2 0/0/11 19/77/50 5.36E-05 D

rs6572432 14:47036604 intron MDGA2 0/0/11 19/77/50 5.36E-05 D

rs7155197 14:47045336 intron MDGA2 0/0/11 19/77/50 5.36E-05 D

The patients with different genotypes (ordered as dd/Dd/DD representing minor homozygous, heterozygous, and major homozygous, respectively) in

cases and controls were represented as G_A and G_U, respectively. The p-values of genotypic tests using Fisher’s exact test in 2 degree of freedom

were shown as G_P. Corresponding inheritance patterns have been indicated as D (dominant) or R (recessive) in the LABEL column.

doi:10.1371/journal.pone.0154943.t003
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NEBL genetic polymorphisms may be related to KD-associated CAA
complications
Nebulette protein has been reported to encode a 109 kDa nebulin homologous protein that is
considerably expressed in cardiac muscle and is specifically localized in the sarcomeric Z-line
of the heart [50]. Genetic variants in NEBL have been indicated to be causative for the occur-
rence of sudden cardiac death (SCD), in which an abrupt loss of heart function results in a sud-
den, unexpected death [51]. Moreover, it has been demonstrated to involve in mechanosensing
and facilitate generation via the association with actin and tropomyosin-troponin complex
[52]. In vitro and vivo studies, both have suggested its critical role in the stabilization of the
thin-filament-Z-line alignment [50]. Missense abnormalities in NEBL have been illustrated to
attribute to dilated cardiomyopathy (DCM) and endocardial fibroelastosis in humans and ani-
mal models [53]. Additionally, the observation of up-regulating genes responsive to cardiac
stresses on nebulette-deficient mice has indicated its dispensable role on the regulation of nor-
mal cardiac function [50]. In this study, two genetic variants: rs16921209 (P = 7.44 × 10−9;
OR = 32.22) and rs7922552 (P = 8.43 × 10−9; OR = 32.0) in the intronic regions of NEBL were
revealed as significant SNPs to susceptibility of CAA formation in KD patients (Table 2). Fur-
thermore, in linkage disequilibrium (LD) analysis, they were found to be in strong LD (r2 =
0.99; Fig 2) at 10p12.31, in which the enclosed genomic region comprises multiple qualified
SNP hits in the upstream introns of NEBL. As a result, this might imply that NEBL also play an
important role on the development of CAAs during KD progression.

TUBA3C genetic variants to susceptibility of CAA occurrence in KD
patients
The susceptibility variant of rs3818298 in T-Complex 1 (TCP1) has first been reported by
Burgner et al. [14] to associate with KD risk and recently Lou et al. [31] has confirmed the pat-
tern with additional independent cohort in a Chinese population. The protein encoded by
TCP1 plays an important role in a member of the chaperonin of TCP1 ring complex in the
functions of interacting with and structurally folding actin and tubulin. Instead of identifica-
tion of TCP1, another tubulin family gene, TUBA3C has been identified with a significant SNP
of rs17076896 (P = 8.04 × 10−9; OR = 21.03) located on its upstream promoter region in KD
group with CAA formation (Table 2). To share the same promoter region, another uncharac-
terized gene, LOC101928697, on the downstream region with divergent transcription direction
to TUBA3C might imply its putative function associated with the risk of CAA in KD patients.
Additionally, the rs17790632 SNP in LOC101928697 has shown a high linkage pattern with
rs17076896 in the shared promoter region with TUBA3C (r2 = 0.90; Fig 3) in LD analysis,
which it reflects that LOC101928697 might also serve as susceptibility gene to CAA formation
during KD progression.

TNF- α and MMP associated genes may play a role in the formation of
CAAs in KD
It has been reported that tumor necrosis factor α (TNF-α) plays a crucial role of inflammatory
response in KD patients via up-regulating the transcription of matrix metalloproteinases
(MMP) such as MMP-9, resulting in increased vessel wall elastin degradation and CAA forma-
tion [12]. In this study, we did reveal several associated, co-functional genes to susceptibility of
this regulatory pathway. On one hand, two out of three qualified genetic variants (rs4951523
(P = 3.34 × 10−5) and rs7550702 (P = 3.34 × 10−5)) in TRAF5 (TNF Receptor-Associated Factor
5) have been associated with inheritance patterns as recessive genotype models (Table 3). It has
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been shown that TRAF5 is an important, versatile mediator beyond the TNFR-superfamily
(SF); including viral mimics of its members, mediating specific cytokine receptor signals and
innate immune receptor, as well as signal transductions of the T-cell receptor (TCR) complex
[54]. Therefore, this reflects again that TNF and its co-regulatory genes like TRAF5 might play
a crucial role in coronary artery disease.

Alternatively, it has been demonstrated by both animal models and clinical studies, matrix
metalloproteinases (MMPs) such as MMP-9 are putative biomarkers for the function of cardiac
remodeling, which are regulated by inflammatory signals to mediate changes in extracellular
matrix [12]. Furthermore, within this family, some membrane-type MMPs (MT-MMPs) with
lacks of an additional transmembrane domain or a small cytoplasmic tail, need to deliver sig-
nals by attaching to the plasma membrane using glycosylphosphatidyl-inositol (GPI) anchor
proteins. In allelic association analysis, two specific SNPs of rs12210919 (P = 3.67 × 10−7;
OR = 14.02) and rs12211370 (P = 1.62 × 10−6; OR = 16.00) in MDGA1 (MAMDomain Con-
taining GPI Anchor 1) were identified as significant genetic variants in our top-ranking list

Fig 2. Linkage disequilibrium plot of a region covering all SNPs of NEBL. Two significant SNPs; rs16921209 (P = 7.44 × 10−9; OR = 32.22) and
rs7922552 (P = 8.43 × 10−9; OR = 32.0), both located in the introns of NEBL are in high linkage disequilibrium (r2 = 0.99), which might imply their co-interplay
to susceptibility of CAA formation in KD patients.

doi:10.1371/journal.pone.0154943.g002
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(Table 2). Meanwhile, in general genotypic association analysis, at least five SNPs of
rs10137971, rs34362363, rs4900777, rs6572432, and rs7155197 (all p-values of 5.36 × 10−5) in
MDGA2 were defined as significantly dominant inheritance patterns (Table 3). Taken together,
it might imply that MDGA gene family functions a putative regulatory role in association with
the formation of CAA in KD patients.

Fig 3. Linkage disequilibrium plot of a region containing all SNPs of TUBA3C and LOC101928697. The significant genetic variant of
rs17076896 (P = 8.04 × 10−9; OR = 21.03) is located in the shared promoter region between TUBA3C and LOC101928697, which showed a high
linkage disequilibrium (r2 = 0.90) with another down-stream SNP, rs17790632, in LOC101928697.

doi:10.1371/journal.pone.0154943.g003
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GO cluster enrichment analysis revealed consistent results as in genetic
association analysis
To focus on investigating the underlying mechanism of developing CAAs in KD patients, 263
protein-coding genes hit by 720 significant SNPs qualified from our genetic association analy-
sis were collected, and gene ontology (GO) enrichment analysis has been applied to those sus-
ceptibility genes to determine over-represented GO terms. Accordingly, in total 162 enriched
GOs were acquired and further summarized into higher levels of representative GO clusters to
facilitate the interpretation of major functions related to CAA formation during KD progres-
sion upon genetic variants. Among the susceptibility genes highlighted above, NEBL and
TUBA3C were associated with the GO clusters of regulation of cellular component size and
protein complex assembly, respectively. TRAF5 was related to apoptotic process/death/positive
regulation of cell proliferation and MDGA1/2 were contributed to neuron differentiation.
The top three representative GO clusters were regulation of cell projection organization
(P = 2.22 × 10−6), neuron recognition (P = 6.72 × 10−5), and peptidyl-threonine phosphoryla-
tion (P = 1.53 × 10−3) (Fig 4). For regulation of cell projection organization, most GO terms in
this cluster were composed of cellular and extracellular organizations, involving in actin related
genes. As a result, the global pattern has shown that genes involved in the formation of muscle
cells like actin might function importantly in the development of CAAs in KD patients.

Fig 4. Top three gene ontology enrichment groups associated with susceptibility of CAA formation in KD. After gene ontology (GO) enrichment
analysis, 162 over-represented GO terms were obtained and further summarized into GO clusters. The top three significant clusters were regulation of cell
projection organization (P = 2.22 × 10−6), neuron recognition (P = 6.72 × 10−5), and peptidyl-threonine phosphorylation (P = 1.53 × 10−3).

doi:10.1371/journal.pone.0154943.g004
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Potassium (K+) channels are the most heterogeneous and extensively recognized class of ion
channels, and are widely identified as putative therapeutic targets in the treatment of neuron
diseases like multiple sclerosis. They have been reported to be involved in a variety of cell types
underlying both normal and pathophysiological processes, including nerve impulse propaga-
tion, muscle contraction and cellular activation [55]. They are comprised of dynamic pore-
forming transmembrane proteins that selectively allow the flow current of potassium ions
down an electrochemical gradient. In KD community, susceptibility genetic variants contained
in Potassium channels associated genes have been reported to show a connection with the com-
plication of CALs in KD patients [35]. In this study, a quantity of Potassium channels associ-
ated genes has been identified by containing significant SNPs to susceptibility of the
development of CAAs in KD patients, resulting in the identification of neuron recognition in
GO enrichment analysis (Fig 4). Hence, this represents that Potassium channels associated
genes might facilitate CAA formation during KD progression.

For the over-representative cluster of peptidyl-threonine phosphorylation (Fig 4), one
member gene TGFBR2 (Transforming Growth Factor, Beta Receptor II) has been reported to
associate with the pathogenesis of KD and CALs [56]. Meanwhile, another member gene
CAMK2D (Calcium/Calmodulin-Dependent Protein Kinase II Delta) has been demonstrated
to involve in a plausible biological network and to decrease transcript abundance in the acute
phase of KD [14, 31]. Therefore, some critical genes identified to act significantly in KD with
CALs might also perform alternative role in the pathogenesis of CAAs in KD patients.

Discussion and Conclusion
Due to the obscurity of the causes resulting in KD, there is no existing clinical method to pre-
vent its occurrence. Moreover, KD remains the leading cause of acquired heart damages in chil-
dren younger than 5 years old. Many studies have been dedicated to investigate critical factors
in the development of CAAs during KD progression. Briefly, in 2005 Matsubara et al. reported
that histological findings in KD including vasculitis, endothelial necrosis, and infiltration of
mononuclear cells into blood vessels [57]. In previous studies, plasma levels of inflammatory
cytokines (TNF-α, IL-4, IL-5, IL-6, IL-17, IL-31, and IP-10) [7, 8, 58–62], chemokines and
adhesion molecules were elevated at the acute stage of KD [57]. Macrophage colony-stimulat-
ing factor (M-CSF) has been performed to play a critical role in the pathogenesis of KD and
can be used as an indicator for the risks of valvulitis and coronary arteritis [11, 63]. Guiducci
et al. reported that microparticles (MPs) may develop from endothelial damage and cell activa-
tion is significantly increased as well as endothelial cells and T cells are the major sources [64].
Taken together, macrophages and platelets also get recruited to this site of vasculitis or may
play a role in the immunopathogenesis of KD.

In this study, a comprehensive GWAS has been conducted upon 157 valid KD patients to
identify susceptibility genetic polymorphisms and their corresponding genes as major risk fac-
tors to CAA formation in KD patients. Although potential links between susceptibility loci
identified in this study and the formation of CAAs in KD patients still remain gaps for
researchers to clarify. However, this study provides various hints for researchers in KD com-
munity to postulate that the essential underlying mechanism of the pathogenesis of CAAs in
KD might be associated with genes related to cardiac muscles and vessels. Accordingly, our
results indicate that susceptibility genes (e.g., NEBL, TUBA3C, TRAF5, and MDGA1/2) carried
with certain significant genetic polymorphisms might play important roles in the risk of CAA
complications in KD patients from genetic perspective. Furthermore, from GO perspective,
these susceptibility loci were enriched in the functions related to regulation of cell projection
organization, neuron recognition, and peptidyl-threonine phosphorylation.
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To examine the connection between genetic alternations and gene expression, the suscepti-
bility genes highlighted in this study were investigated in recent transcriptome studies related
to KD CAA. For instance, according to the 1,074 DEGs reported by Rowley et al. [65], most of
our reported genes with significant genetic variants were not classified as dysregulation ones.
Accordingly, the authors claimed that most genes in cytokine and growth factor family might
not play the most prominent role in KD CAA from the transcriptome perspective. However, as
explained in the same study, the interplay between genetic alternations, gene expression, and
protein production are not always associated with each other. Therefore, more integrative stud-
ies (genomics, transcriptomics and proteomics together) will be needed to help us understand
the underlying pathogenesis of KD CAA.

Recently, IVIG treatment has been demonstrated to associate with the inhibition of TNF-α-
induced MMP9 expression and shows a protective effect in KD CAA [66]. Some IVIG-resistant
patients have been reported with a higher risk of developing coronary artery abnormalities in
KD [67]. Infliximab, as an anti-cytokine therapy, leverages the blocking of TNF-α pathway to
provide another treatment solution to KD patients with IVIG resistance [68]. Therefore,
although in the recent transcriptomic study, genes from TNF-α family were shown as no up-
regulation in KD CAA [65], genetic alternations [69], animal models [59, 70–72], and clinical
therapy [66, 68] associated with these genes have been keeping to report as susceptibility fac-
tors and consequences to KD CAA. This remains an open question about the interplay among
different levels to the pathogenesis of KD CAA. As a result, our results help to gain insights
into the potential routes of the development of CAAs in KD and might benefit researchers in
KD community to improve the diagnosis and prognosis of KD in personalized medicine.

Supporting Information
S1 File. GWAS table containing all non-intergenic SNPs of KD CAA in this study.Major
(D) and minor (d) alleles were shown in the Alleles column. The major SNP allele frequency in
cases and controls were indicated in the F_A and F_U columns, respectively. OR represents the
odds ratio. The p-values of Chi-squared test were indicated in the P column.
(XLSX)
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