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Abstract: Based on interviews with 695 smallholders in Jianghan Plain, this paper introduced the
three-stage data envelopment analysis (DEA) model to analyze the agricultural production efficiency
of conservation tillage adopters and explored the impact of environmental factors on agricultural
production efficiency. The empirical results showed the following (1) Planting area, seed consumption,
labor input, pesticide usage, chemical fertilizer usage, agricultural film usage were selected as input
indicators, agricultural output was chosen as an output indicator, and the traditional DEA model was
used to calculate the production efficiency of smallholders, and the agricultural production efficiency
of smallholders was found to be at a low level. In addition, environmental and random factors both
have significant impacts on efficiency, so they should be stripped. (2) After excluding environmental
factors and random factors, the drop in pure technical efficiency of smallholders in the third stage was
higher than the drop in scale efficiency when compared with the first stage. Moreover, the true technical
efficiency was the main restricting factor for the agricultural production efficiency. (3) Educational level
of smallholders, policy support, and information acquisition were the factors that affect the technical
efficiency significantly. Improving the efficiency of agricultural production technology for smallholders
requires strengthening rural basic education, improving subsidy policies for conservation agricultural
technology, and establishing and improving rural information technology services.

Keywords: conservation tillage; agricultural production efficiency; three-stage DEA model; smallholders;
Jianghan Plain

1. Introduction

Agriculture in China has experienced rapid development during the past several decades.
Every year huge amounts of chemical fertilizer and pesticides were put into farmland to guarantee the
national grain production and effective supply of agricultural products [1]. This long-lasting highly
intensive agricultural production pattern has triggered severe social and ecological problems to the
further development of human beings, such as extreme climates [2], environment deterioration [3],
biodiversity loss [4] and low agricultural productivity and efficiency [5]. Therefore, it is of vital
importance both for the government and growers to discover and implement new agricultural
conservation practices to reduce the above consequences resulting from extensive agriculture land
uses [1]. Conservation tillage has attracted considerable attention and has been implemented in
developed countries such as United States and Australia as it puts equal weight on ecological and
economic benefits. Specifically, farmland conservation has been proved to have a promising positive
prospect to restrain farmland degradation, reduce greenhouse emission, and improve the quality of
agricultural products. Therefore, conservation tillage has been treated as the effective way to facilitate
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a transformation in agricultural development modes and to achieve the sustainable development of
agriculture [6–9].

Compared with conventional agriculture, the conservation tillage technology spawned to protect
the ecology has disadvantages in yield but advantages in price. Under the assumption of “rational man”,
the above factors have the dual role of resistance and attraction on the enthusiasm of the smallholders to
participate in the farmland protection work [10]. Hence, how to measure the smallholders’ agricultural
production efficiency and explore its potential influencing factors is still an unsolved important
issue. Therefore, the motivation for this study is to estimate the agricultural production efficiency of
smallholders who adopt different levels of conservation tillage and to explore the potential influencing
factors of the above agricultural production efficiency. The results of the project will help people
to accumulate experience in developing a balance between economy and environment, it can also
give a practical answer for whether conservation tillage will have a positive effect on rice production
and provide scientific support for the government to design more reasonable policies associated with
farmland conservation tillage.

Generally speaking, methods used for measuring production efficiency are classified into two
types: parametric methods and non-parametric methods [11]. Due to many advantages, such as
not having to preset specific functions and not having to normalize variable units, non-parametric
methods have become the mainstream method for evaluating production efficiency in the world [11].
The data envelopment analysis model (DEA) is a non-parametric production efficiency evaluation
method that estimates the effective production frontier based on a set of input–output observations [12].
Although DEA is a relatively mature and modern tool to calculate efficiency, it has some shortcomings.
The effect of errors on production efficiency cannot be explained by a one-stage DEA model,
while external environmental effects cannot be eliminated by the two-stage DEA model [12–14].
In order to overcome the above shortcomings, combined with stochastic frontier analysis (SFA)
technology, Fried et al. proposed three-stage DEA model [15]. In this model, the agricultural
production efficiency of smallholders who adopted conservation is equated with technology adoption,
external environmental variables, and random error. The three-stage DEA model has been widely
used to calculate the true agricultural production efficiency due to its unique advantages in excluding
the impacts from external environmental variables and random error.

Numerous studies conducted on technology adoption have shown that technical efficiency is not only
related to the scale of operation, factor allocation, and management level but also affected by technology
adoption [16]. Chen et al. pointed out that under the trend of decreasing agricultural planting area in China,
applying agricultural technology to productivity plays an important role in improving the efficiency of
agricultural production technology and increasing agricultural output [17]. However, will the adoption of
agricultural technology affect agricultural production efficiency? In response to this problem, Brummer took
Zhejiang as an example and found that the technical efficiency of China’s agricultural production will show
an inverted U-shaped characteristic along with technological progress [18]. Hasnah et al. found through
research that the excessive adoption of agricultural technology did not increase palm oil production in
West Sumatra [19]. On the other hand, Mwalupaso et al. found that adopters of sustainable agricultural
technology are more technically efficient than smallholders who have not adopted it [20]. In Nigeria,
Alene and Manyong’s research found that the leader of agricultural technology adoption had an advantage
in cowpea production compared to the followers of agricultural technology [21]. Technology adoption may
increase agricultural production and may also restrict agricultural development. This shows that only an
appropriate scale and effective deployment of agricultural technology can improve the technical efficiency
of agricultural production. Therefore, the impact of agricultural technology adoption on agricultural
production technology efficiency is very necessary. Because, if the adoption of agricultural technology can
effectively improve the technical efficiency of agricultural production, then the improvement of agricultural
technical efficiency will increase the production efficiency of smallholders and, ultimately, make the scale
effect of agricultural production be effective [22].
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The above studies have analyzed agricultural technology and technical efficiency in depth, but currently
little attention has been paid to agricultural technical efficiency for smallholders who adopt conservation
tillage. Moreover, the research methods cannot exclude the influences of environmental factors and random
factors, so it is difficult to measure the efficiency accurately. Therefore, taking 695 households in Jianghan
Plain as an example, this paper uses the three-stage DEA model to evaluate the agricultural production
technical efficiency level of different conservation tillage adopters by eliminating the interference of
environmental factors and random factors and explores the impact of environmental variables on the above
technical efficiency. It is expected to provide a theoretical reference for local governments to design more
smallholder-friendly policies to improve the technology production efficiency and promote the sustainable
development of agriculture. The following section describes the data of the variables used. The methods
and empirical procedure are presented in the third section. In the fourth section, the results are presented
and discussed, and the last section draws conclusions and implications for policy.

2. Study Area and Data Collection

2.1. Study Area

The study was conducted in Jianghan Plain, which is an important component of the middle and
lower reaches of the Yangtze River Plain. With subtropical monsoonal climate, flat terrain, and abundant
surface water, the land in Jianghan Plain is extremely fertile. There is 3.02 × 105 hm2 of high-quality
arable land in Jianghan Plain, which makes it one of the most fundamental basements for rice
production in central China. However, the severe social and ecological problems caused by traditional
intensive agricultural tillage modes have attracted attention from governments in the Jianghan Plain.
Conservation tillage is widely implemented in Jianghan Plain as it offers tremendous environmental
benefits by reducing energy consumption and curbing farmland degradation. Five different kinds of
conservation agriculture (CA) technologies (straw returning to field, shrimp/fish culture, the different
edaphic and climatic characteristics of no-till and less-tillage on farmland, pesticides control techniques,
and deep tillage) have been adapted to the edaphic and climatic characteristics of the Jianghan Plain.

Famous for the “shrimp and rice farming” mode and unique production bases of high-quality rice,
Jianli County, Qianjiang City, Yijiang City, and Jingshan City in Jianghan Plain were selected as the places for
the field survey. Specifically, Jianli County and Qianjiang City are located at the southern part of Jianghan
Plain. Superior irrigation and drainage conditions are conducive to develop modern agriculture, and they
both are the national modern agricultural reform pilots. Qianjiang City is known as the hometown of shrimp
in China, while Jianli County successfully transformed from “China’s first county for rice production”
to “China’s first county for shrimp”. In 2017, the area of “shrimp and rice farming” Jianli County and
Qianjiang City was 3.33× 104 hm2 [23] and 3.30× 104 hm2 [24], respectively, and they are becoming the core
area of rice and shrimp breeding in Hubei Province, accounting for 10% of the country’s total production.
Yicheng City and Jingshan City are located in the northern part of Jianghan Plain. They have a large rice
planting area, superior water conservancy conditions, and good conditions for agricultural development.
Agricultural science and technology demonstration farms that used pesticide control techniques and deep
tillage are vigorously constructed in Yicheng, with one of the largest parks taking up approximately 80 hm2,
in which the use of fertilizer decreased by 10% annually during 2017–2019 [25].Jingshan is the birthplace
of Chinese farming culture and unique production bases of high-quality rice (named as Guo Bao Qiao
Mi). Straw returning to field, no-till, and less-tillage are the three main conservation tillage types applied
in Jingshan County. The mechanized pulverization of straw returned to the fields in Jingshan reached
1.06 × 105 hm2 in 2018 [26].

2.2. Data Collection

The data in this study were collected in the form of questionnaire interviews. The content of
the questionnaire consisted of three parts: (1) the respondents’ family socio-economic characteristics,
including smallholders’ disposable income, education level, government‘s support policy for conservation



Int. J. Environ. Res. Public Health 2020, 17, 7470 4 of 12

tillage, and smallholders’ access to information status; (2) the input and output factors on agricultural
land, which mainly includes the planting area, seed consumption, pesticide usage, fertilizer usage,
and agricultural film usage; (3) smallholders’ adoption of conservation agricultural technology. It consists
of the decision of smallholders to adopt conservation agricultural technology, the degree of adoption of
conservation agricultural technology, and the reasons for adoption and non-adoption.

The data used in this study come from a rural householders’ sample survey of 4 places (Jianli County,
Qianjiang City, Yijiang City, and Jingshan City) in Jianghan Plain during July to December of 2019. In each
surveyed place, the stratified sampling method was applied to select samples. More specifically, based on
the economic development level of each township and population size, 3 towns were selected in each place.
Then, 3 to4 villages in each town were chosen based on the smallholders’ status of conservation tillage
adoption. Finally, 15 farmers in each village were selected through random sampling. In all, 775 sample
households were collected in this survey, and 704 (90.84%) were valid. Moreover, the DEA model is very
sensitive to outliers, which will cause serious distortion of the results. Therefore, the outliers were excluded
in this paper, and 695 smallholders were included in the models finally.

3. Research Methods and Variables’ Definition

3.1. Three-Stage DEA Model

The DEA model is implemented through two different methods, both of which are based on
technical efficiency. The concept of technical efficiency is defined as the DMU (the decision-making unit
of production) that produces the highest level of output given the existing technology (output-oriented
model), or alternatively, uses the least possible amount of inputs to obtain a given output (input-oriented
model) [27]. At the same time, the DEA model can find the optimal weights through linear programming
without estimating the production function. It is not affected by the dimension of input and output
variables and simplifies the calculation and conversion process [28]. However, the traditional DEA
model does not consider the external environmental factors and the impact of random errors in
the overall efficiency. Therefore, based on the previous research, a new three-stage DEA model
was proposed by Fried [15]. It combines DEA and SFA, using the slack variables of the traditional
DEA model as the explained variable and the environmental variables as the explanatory variables.
The regression results of the SFA model are used to eliminate the environmental factors and statistical
noise in the initial input, and finally the true efficiency is recalculated.

3.1.1. The First Stage: The Traditional DEA Model

At this stage, the traditional input-oriented Banker Charnes and Cooper (BBC) model is applied
to optimize the production input factors of smallholders to improve production efficiency, and the
initial input–output data of 695 DMUs are used. In the BBC model,

min[θ− ε(eTs− + eTs+)] (1)

n∑
j=1

λ jyrj − s+ = yr0

n∑
j=1

λ jxi j + s+ = θx j0

n∑
j=1

λ j = 1

λ j ≥ 0; i = 1, 2, · · · , m; j = 1, 2, · · · , n; r = 1, 2, · · · , s; s+ ≥ 0; s− ≥ 0

(2)

where θ demonstrates the comprehensive operational efficiency value of each DMU, xi j and yrj are the
i-th input and r-th output of the j-th DMU, and λi implies a j dimensional weight vector of the DMU j,
s−, s+ are the input slack variable values and output slack variable values for smallholders.
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Based on the input-oriented CharnesCooper and Rhodes (C2R) and BCC model, the comprehensive
total efficiency (TE) can be decomposed into two parts: pure technical efficiency (PTE) based on the
variable return to scale (VRS) DEA model and scale efficiency (SE) based on the constant returns to
scale (CRS) DEA model. The comprehensive technical efficiency based on the technical reference at
time t and t1 can be expressed by the following mathematical formula:

Total efficiency = Pure technical efficiency × Scale efficiency. (3)

3.1.2. The Second Stage: Stochastic Frontier Analysis

After the traditional DEA model analysis, the input slacks of all DMUs are influenced by the
external environment parameters, managerial inefficiency, and statistical noises. However, at the
second stage, they can be eliminated by the stochastic frontier analysis approach. Fried [15] decomposes
the redundant variables obtained from the first-stage DEA analysis into the external environment,
managerial inefficiency, and statistical noises. He also constructs a similar SFA regression function to
strip three factors as follows:

Si j = f i(Z j; βi) + µi j + νi j, i = 1, 2, · · · , n (4)

where Si j is the slack variable values of the i-th input of the j-th farm household; Zi implies the
exterior environmental values; βi implies the coefficients of the environmental variables; µi j represents
managerial inefficiency term; νi j illustrates the statistical noises.

Setting γ = δ2
iu/(δ2

iu + δ2
iv), then the value of γ closes to 1 and demonstrates that the impacts of

management inefficiency dominate the investment inefficiencies of DMUs, and thus the SFA approach
could be utilized for estimation. Therefore, the value of γ is used to identify the feasibility and
applicability of the SFA approach for regression.

In order to make all the decision-making units in the same external environment, the regression
model eliminated the environmental factors and random disturbances in the original input.

∧
xi j = xi j + [max{Z j

∧

β
i
} −Z j

∧

β
i
] + [max{

∧
νi j} −

∧
νi j], i = 1, 2, · · · , m; j = 1, 2, · · · , n (5)

where xi j is the input before adjustment;
∧
xi j implies the input after adjustment; βi are the coefficients of

the environmental variables; νi j illustrates the statistical noise.

3.1.3. The Third Stage: Adjusted Efficiency

After adjusting the input slacks in the second stage, the investment value
∧
xi j replaces the original

input value xi j, and then the BCC model is applied again to recalculate Equation (1). Finally, the real
efficiency value excludes the influence of external environmental variables and statistical noise, which is
more accurate [15].

3.2. Variables’ Definition

3.2.1. Definition of Input–Output Variables

According to the agricultural conditions of the Jianghan Plain and a large number of literature
references, the input and output variables are selected to measure agricultural productivity growth
by DEA models, as shown in Table 1.six variables for DEA models are used as inputs: planting area,
seed consumption, labor input, pesticide usage, chemical fertilizer usage, and agricultural film usage;
while agricultural output is regarded as output. The input and output data of the 695 smallholders
from the four major cities in Jianghan Plain were collected between July and December in 2019.
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Table 1. Pearson correlation for inputs and outputs.

Variables Planting
Area

Seed
Consumption Labor Input Pesticide

Usage
Chemical

Fertilizer Usage
Agricultural
Film Usage

Agricultural
output

0.407 ***
(0.000)

0.048 ***
(0.000)

0.064 ***
(0.000)

0.253 ***
(0.000)

0.247 ***
(0.000)

0.069 *
(0.073)

Note: * indicates 10% significance level; *** indicates 1% significance level; Values in parentheses are p-values.

The choosing of input and output variables is a critical procedure in the evaluation of DEA
efficiency. It requires that all variables grow in the same direction, namely an increase in inputs should
lead to an increase in outputs responsively. In order to ensure that the input and output items of
the DEA model conform to the “isotropic” assumption, this paper adopts the Pearson correlation
coefficient to test the correlation between inputs and outputs. If the correlation coefficients between
input items and output items are all positive and pass the 1% explicit significance test, this shows
that the selected input–output indicators are reasonable. As shown in Table 1, the selected input and
output variables are consistent with the requirements of the DEA model.

3.2.2. Definition of Environmental Variables

According to Zhang et al. [29], agricultural production efficiency is not only affected by the input
and output factors but also influenced by the external environmental factor. In addition to the effect of
farmland input factors, they also include local socioeconomic development [30], policy environment [5],
and information channel [31]. These factors will directly affect the input elements and, thus, affect their
agricultural production efficiency. Environmental variables are factors that are not subjectively controlled
by the sample farmers in the agricultural production process [29,32,33]. Due to the characteristics that
the producers themselves cannot control or change in the short term, these factors are called external
environmental factors. According to the research of Wu [34], Xu [35], and Xue et al. [36], this paper
selects indexes such as smallholders’ agricultural income, education level of smallholders, policy support,
and information acquisition as external environment variables.

Smallholders’ agricultural income often affects their decision-making of production behavior,
the degree of information acquisition, and the use of technology. On the other hand, the improvement
of economic conditions may increase the degree of concurrent employment of smallholders, which in
turn affects agricultural production. The level of education directly determines the scientific and
reasonable structure of input factors to achieve the optimal agricultural output of smallholders.Policy
support has an important impact on the production behavior of smallholders by ensuring the basic lives
of smallholders, improving their production enthusiasm, and increasing income expectations. At the
same time, the application of technology and information is inseparable in the process of agricultural
modernization. The acquisition of agricultural information resources and the application of advanced
technologies have a great role in promoting traditional agricultural production. Based on the above
analysis, the descriptive statistical characteristics of the input–output variables and environmental
variables for conservation tillage adoption are shown in Table 2.

As shown in Table 2, the interviewee’s agricultural output is 2.55 × 104 kg/hm2, and the farming
households are large in scale, and the average farming area per household is 1.47 hm2. At the same time,
the smallholders’ use of seed fertilizers and pesticides during planting is 3500 Yuan/hm2. Most growers
invest 2 laborers for agricultural production, while most smallholders invest 323.25 Yuan/hm2 in
agricultural film for agricultural production. Comparing the basic information of the interviewee with
the corresponding indicators in the statistical yearbook of the Jianghan Plain, it is found that indicators
such as agricultural output, farmland management scale, and labor input are relatively close to the
selected sample average.Therefore, the selected samples are highly scientific and representative.
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Table 2. Descriptive statistical characteristics of each variable.

Variable Type Variable Name Mean SD

Output variables Agricultural output (kg/hm2) 2.55 × 104 820.42

Input variables

Planting area (hm2) 1.47 1.87
Seed consumption (Yuan/hm2) 5666.7 691.57
Labor input (person) 2.18 1.57
Pesticide usage (Yuan/hm2) 4468.65 439.27
Chemical fertilizer usage (Yuan/hm2) 5474.1 351.85
Agricultural film usage (Yuan/hm2) 323.25 77.99

Environmental
variables

Smallholders’ agricultural income (Yuan) 47,380.37 49,100.91
Education level of smallholders(Year) 2.42 0.90
Policy support (Yes or No) 1.54 0.50
Information acquisition (5-Likert Scale) 1.84 0.88

4. Empirical Analysis of Smallholders’ Agricultural Production Efficiency

4.1. Analysis of Smallholders’ Traditional Agricultural Production Efficiency

In this stage, the DEAP 2.1 software was used to measure smallholders’ agricultural production
efficiency without considering the impact of external environment variables. It can be concluded
that the total efficiency of agricultural production is 0.465 (0.501 × 0.930), and the pure technical
efficiency is 0.501. It is at a low efficiency level (TE, PTE < 0.600). The average scale efficiency is 0.930,
which is at a high efficiency level (SE ≥ 0.800). Therefore, the ineffectiveness of pure technology is the
main factor that leads to inefficient use of resources. Furthermore, the analysis of the total efficiency
shows that the current economic behavior of smallholders in the production process accounts for
53.5% (1–0.456) of resource waste. In other words, under the premise of a basically stable market
environment, improving the efficiency of production technology can significantly improve the efficiency
of agricultural production andincrease the household income of smallholders. Therefore, in the process
of agricultural production in China, the adoption of conservation agricultural technology needs to
be maintained at a reasonable ratio of production factors. Because this stage does not consider the
impact of external environment variables, random errors, and other factors, it cannot reflect the real
investment efficiency of these enterprises. In the second stage, therefore, after eliminating the external
environmental variables, random errors, and low management efficiency through the SFA regression
model, the original input of smallholders’ agricultural production will be adjusted accordingly.

4.2. Analysis of Impact of Environment Variables on Efficiency

At this stage, the SFA model is used to perform regression analysis on the input slack variables
(interpreted variables) separated in the first stage including planting area, seed consumption, pesticide
usage, chemical fertilizer usage, and agricultural film usage. Four external environmental variables,
smallholders’ agricultural income, education level of smallholders, policy support, and information
acquisition, are used as explanatory variables. The SFA regression results are shown in Table 3.
The log-likelihood function is notable at 1% level in Table 3, which indicates that the regression
results are valid. The value of γ of the 6 input variables is close to 1, indicating that the main factor
contributing to the inefficiency of DMUs is management inefficiency. Environment variables have
strong impacts on the efficiency of smallholders’ productivity. Therefore, to accurately assess the
efficiency of smallholders’ productivity, the uncontrollable external environment variables must be
eliminated. Since the SFA model uses the input redundancy value as the explained variable at this
stage, a positive coefficient indicates that the environmental variable increases the redundancy value,
resulting in a decrease in technical efficiency. A negative coefficient indicates that the environmental
variable will reduce the redundancy value and improve technical efficiency.

According to Table 3, the impacts of environmental variables on the input variable are listed as
follows: (1) The impact of farm households’ agricultural income on planting area, agricultural film



Int. J. Environ. Res. Public Health 2020, 17, 7470 8 of 12

usage, and labor input redundancy is significantly positive, indicating that the increase in farm
household income will increase the redundancy of input variables and reduce technical efficiency.
Due to the irrational behavior of smallholders in the actual production process, the increase in income
may cause pure smallholders to blindly expand the planting area in order to increase agricultural
income and invest excessive agricultural film in the production process, resulting in waste of resources;
relying on part-time work income, smallholders prefer non-agricultural industries with higher returns,
which reduces technical efficiency. (2) The educational level of the smallholder has a significantly
negative impact on the redundancy of planting area, amount of pesticides, and the amount of
agricultural film. This can be explained by the fact that smallholders who have a higher than
average education level have the ability to organize more reasonable planting area and design more
scientificinputting amounts of pesticides and agricultural film. Therefore, repeated investment can be
reduced, and technical efficiency can be improved. (3) The impact of policy support on planting area,
seed consumption, labor input fertilizer, and pesticide usage input redundancy is significantly negative.
This indicates that although agricultural subsidies have increased the expected income of smallholders
to a certain extent, the greater the government’s support for the conservation tillage technology,
the better smallholders can reasonably plan the planting area and the input of seed fertilizers and
pesticides, thereby reducing redundancy and improving technical efficiency.(4) Information acquisition
has a negative impact on the redundancy of chemical fertilizers, pesticides, and agricultural film inputs,
and it has passed the 10% significance test, indicating that the more convenient the smallholders’
information acquisition, the more rationally they can plan their agricultural land material expenditures
to increase resource utilization. However, smallholders who fail to receive information onconservation
agriculture in time have a low technology penetration rate. In actual production, smallholders blindly
invest in production factors, leading to a waste of resources.

Since various environmental variables have a significant impact on the redundancy of input
elements, it is necessary to adjust the original input to examine the true efficiency level of smallholders.

4.3. Smallholders’ True Efficiency

In order to examine whether the efficiency values of the DEA model operation in the first stage
and the third stage are consistent, a Wilcoxon rank-sum test was conducted in this study. Suppose H0:
the two evaluation results are consistent, H1: the two evaluation results are inconsistent. The result of
the above test is shown in Table 4.

From the test results in Table 4, we can see that the sum of negative signs is 152,289.30, the sum
of positive signs is 71,156.50, the Z test statistic is −8.130, and the corresponding p value is 0.000.
The significance level α is 0.01, which means the p value is less than the significance level α, so the
null hypothesis is rejected.Therefore, the efficiency values of each stage are significantly different from
each other. This further verifies that the environment and random factors in the original data in this
paper have a greater impact on the calculation of the efficiency value, so it is very necessary to create a
homogeneous environment by adjusting the amount of input slack.

After excluding the influence of environmental factors and random errors, the adjusted input and
original output are brought into the BCC–DEA model, and the DEAP 2.1 software is used to obtain the
trueagricultural production efficiency of smallholders, the relevant result of the efficiency values of the
first stage and the third stage are shown in Table 5.
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Table 3. Results of the stochastic frontier analysis (SFA) regression.

Variables Planting Area Seed Consumption Labor Input Pesticide Usage Chemical Fertilizer Usage Agricultural Film Usage

Constant term (β0) −17.75 *** −279.94 *** −274.25 *** −274.25 *** −350.42 *** −34.99 ***
Smallholders’ agricultural income (β1) 0.00004 *** 0.00006 0.00003 * 0.00005 0.00002 0.00002 *

Education level of smallholders (β2) −0.02 * 1.49 0.01574 −11.59 * 0.61 −1.93 **
Policy support (β3) −3.69 *** −63.36 *** −0.00659 ** −54.10 *** −63.12 *** −0.17

Information acquisition (β4) −0.22 1.00 0.00604 −1.75 * −3.42 * −0.16 *
δ2 −842.76 *** 39,215.74 *** 2.60 *** 20,765.72 *** 19,623.25 *** 8987.48 ***
γ 1.00 ** 1.00 *** 1.00 *** 1.00 *** 1.00 *** 1.00 ***

Log-likelihood Function −2663.00 *** −5179.51 ** −857.83 *** −4612.78 *** −4593.88 *** −3507.67 ***
Likelihood Ratio test 695.15 649.84 805.81 647.48 635.99 714.02

Note: *, **, *** means passing the significance test of 10%, 5%, and 1%, respectively.

Table 4. The results of Wilcoxonrank-sum test.

Efficiency Value N Rank Mean Sum of Ranks Z Test Statistics Cumulative Probability of Two-Tailed Binomial Distribution

The first-stage
efficiency value Negative rank 418 a 364.33 152,289.30 −8.130 a 0.000

The third-stage
efficiency value Positive rank 250 b 284.63 71,156.50

sum 695

Note: a Represents first-stage efficiency value < second-stage efficiency value;b represents first-stage efficiency value > second-stage efficiency value; Z test statistics are statistical results
based on negative rank.

Table 5. Efficiency values of the first and third stages.

Efficiency Value Efficiency Value of the First Stage Efficiency Value of the Third Stage

The total efficiency 0.465 0.434
The pure technical efficiency 0.501 0.469

The scale efficiency 0.930 0.926
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Compared with the first stage, after excluding the environment and random factors in the third stage,
the total efficiency of the smallholders dropped from 0.465 to 0.434 (0.469 × 0.926). The pure technical
efficiency dropped significantly from 0.501 to 0.469, and the scale efficiency dropped from 0.930 to 0.926.
It can be concluded that the low total efficiency still comes from the inefficiency of pure technical efficiency.
In other words, 56.6% (1–0.434) (as shown in Table 5) loss of the total efficiency comes from the economic
behavior of smallholders during the production process. More specifically, the ineffectiveness of pure
technology efficiencyof the traditional DEA result in the first stage is more seriously underestimated than
that in the third stage. Theoretically, the efficiency values obtained by the DEA model in the third stage can
better characterize the smallholders’ trueagricultural production efficiency. Therefore, as a new element
of agricultural production, conservation tillage technology can not only change the previous intensive
agricultural production model but can also effectively improve the total efficiency of agricultural production.
It shows that the scale conditions of the agricultural land of smallholders in the Jianghan Plain are not bad,
but the agricultural production technology is relatively low. Based on the above analysis, it is more reliable
for the smallholders in Jianghan Plain to improve their agricultural income by adoptingconservation tillage
during the agricultural production process.

5. Conclusions and Policy Implications

5.1. Conclusions

Based on the field survey data of 695 smallholders from the Jianghan Plain, the three-stage DEA
model was used to eliminate environmental factors and random factors and to analyze the agricultural
production efficiency of smallholders in this study. The specific conclusions of this research are as
follows: (1) Using the traditional DEA model to calculate the production efficiency of smallholders in
Jianghan Plain, the agricultural production efficiency of smallholders is at a low level in the studied
group. In addition, environmental and random factors have impacts on efficiency, so they need
to be stripped. (2) External environment variables and random errors have significant impacts on
the agricultural production efficiency of smallholders in this study. Compared with the results of
the first stage, the drop in pure technical efficiency of smallholders in the third stage is higher than
the drop in scale efficiency. It shows that pure technical efficiency is the main factor restricting
the agricultural production technical efficiency of smallholders, and the adoption of conservation
agricultural technology for smallholders’ agricultural production has not yet reached the optimal
level in the studied group. (3) In this study, the educational level of the smallholder, policy support,
and information acquisition are conducive toimprove the agricultural production technical efficiency,
while farm households’ agricultural income has a negative effect on agricultural production efficiency.

5.2. Policy Implications

In order to improve the agricultural production efficiency of smallholders in Jianghan Plain and
areas sharing similar edaphic and climatic characteristicsto Jianghan Plain, this article puts forward
the following policy implications according to the conclusions in the studied group. (1) At present,
the technical efficiency of agricultural production in the Jianghan Plain is still very low, which is mainly
due to the low pure technical efficiency of farmers rather than due to scale efficiency. In order to
improve agricultural production efficiency, the level of agricultural technology management should be
improved. Hence, the government should actively publicize the benefits of conservation tillage to
smallholders and carry out scientific agricultural production guiding activities to ensure the smooth
implementation of the above technologies. More importantly, appropriate conservation tillage that
is adapted to the local agricultural production conditions should be adopted by the smallholders
rationally. Only in the above way can the conservation tillage effectively improve the technical efficiency
of agricultural production.(2) The education level of smallholders, the government’s policy support
for conservation tillage, and the degree of smallholders’ access to conservation tillageinformation
are conducive to improving smallholders’ agricultural production efficiency. Therefore, first of
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all, rural basic education should be strengthened to improve the scientific and cultural quality of
smallholders. Second, the agricultural technology service system needs to be promoted—relevant
technical training should be actively carried out and the organic combination of smallholders’ planting
experience and advanced technology should be promoted. Third, targeted agricultural subsidy policies
should be designed to support the smallholders who actively adopt them. (3) Last, but not least, it is
necessary to avoid the dissipation phenomenon of continuous advancement of conservation tillage
and continuous reduction of technical efficiency. Finally, the adoption of conservation agricultural
technology should draw extensively on the experiences of the developed countriesand be combined
with the specific conditions of various parts of China.
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