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Abstract

Jarid1c, an X-linked gene coding for a histone demethylase, plays an important role in brain development and function.
Notably, JARID1C mutations cause mental retardation and increased aggression in humans. These phenotypes are
consistent with the expression patterns we have identified in mouse brain where Jarid1c mRNA was detected in
hippocampus, hypothalamus, and cerebellum. Jarid1c expression and associated active histone marks at its 59end are high
in P19 neurons, indicating that JARID1C demethylase plays an important role in differentiated neuronal cells. We found that
XX mice expressed Jarid1c more highly than XY mice, independent of their gonadal types (testes versus ovaries). This
increased expression in XX mice is consistent with Jarid1c escape from X inactivation and is not compensated by expression
from the Y-linked paralogue Jarid1d, which is expressed at a very low level compared to the X paralogue in P19 cells. Our
observations suggest that sex-specific expression of Jarid1c may contribute to sex differences in brain function.
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Introduction

Mutations in JARID1C are one of the leading causes of X-linked

mental retardation [1,2]. Mouse Jarid1c and human JARID1C

encode a highly conserved JmjC-domain protein that catalyzes the

removal of methyl groups from tri- or di-methylated lysine 4 on

histone H3 [3–5]. Since this histone modification is associated with

enhanced gene activity, demethylation of H3 lysine 4 by JARID1C

leads to transcriptional repression [6]. In particular, neuronal

specific genes are repressed in stem cells and non-neural tissues in

part due to JARID1C-mediated H3K4 demethylation at promoter

sequences of these genes [7]. Besides its role in neuronal

differentiation, JARID1C is involved in neuronal cell death and

dendritic growth [3]. To better understand the pathophysiology of

mental retardation and increased aggression caused by JARID1C

mutations [1,2,8], it is important to determine where JARID1C

accumulates in the brain. In the present study we determined the

pattern of expression of Jarid1c in mouse brain sections by in situ

hybridization.

In human and in mouse, the JARID1C/Jarid1c gene escapes X

inactivation, i.e. it is expressed from both alleles in females [9,10].

Thus, it is not surprising that Jarid1c expression is higher in brains

from adult females compared to males [11]. However, the role of

sex hormones such as testosterone and estrogens, which could

dramatically affect gene expression, was not investigated in our

previous study. To simultaneously examine the effects of sex

hormones (male versus female) and of the sex chromosome

complement (XY versus XX), we have now used a transgenic

mouse model, which consists of four genetically distinct types of

mice: XX normal females, XY2 females (XY mice sex-reversed by

deletion of Sry), XY2Sry males (XY2 mice with an Sry transgene to

restore the male sex), and XXSry males (XX mice sex-reversed by

insertion of an Sry transgene) [12,13].

An important question is whether the sex difference in Jarid1c

expression is present in all tissues and developmental stages. The

reported expression of Jarid1c from the inactive X ranges between

20% and 100% of that from the active X chromosome, depending

on the tissue [14–16]. Furthermore, we have previously shown that

Jarid1c is transiently silenced on the inactive X chromosome in

early development, suggesting that Jarid1c may have a similar

expression level between the sexes at certain developmental stages

[16]. Therefore, we compared Jarid1c expression in neonates and

adult mice. Since the higher expression of Jarid1c in females could

theoretically be compensated for in males by expression from the

Y-linked paralogue, Jarid1d, we also examined expression of this

gene. The two paralogues are highly similar in nucleotide and

amino acid sequence and both function as histone demethylases

[5,10]. However, it is plausible that the two paralogues differ in

their expression patterns across tissues as a result of differences in

their developmental regulation. For instance, Utx and Uty, another

X–Y paralogous gene pair, appear to be differentially regulated

and expressed in the brain [17]. We tested this possibility by in situ

hybridization to brain sections. In addition, quantitative RT-PCR

was done in male P19 embryonic carcinoma (EC) cells (hereafter

P19 stem cells) that can be differentiated into neurons. This study

was extended to four additional X/Y gene pairs. Transcriptional

regulation of genes is modulated by histone modifications, DNA

methylation, and non-coding RNA binding [18]. Active histone
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marks include histone H3 and H4 acetylation at lysine residues

(H3ac and H4ac), and H3 di- or tri-methylation at lysine 4

(H3K4me2 or H3K4me3; [6,19]). Using chromatin immunopre-

cipitation (ChIP), we tested three active chromatin modifications

at the 59end of Jarid1c and Jarid1d in both P19 stem cells and P19

neurons.

Our results demonstrate that higher expression of Jarid1c in adult

mouse brain is associated with the presence of two X chromosomes,

regardless of phenotypic sex. We showed that the female bias in

Jarid1c expression was apparently not present in neonatal brain and

adult liver, suggesting that it may be tissue- and developmental

stage-specific. We determined that expression from the Y-linked

paralogue Jarid1d is very low in P19 stem cells and in differentiated

neurons, suggesting that it does not compensate for the difference in

Jarid1c levels between males and females in these cell types. The two

paralogous sequences were occupied by differently modified

histones, consistent with their transcription level.

Results

Jarid1c is expressed in specific brain regions
Using in situ hybridization with an antisense riboprobe, Jarid1c

mRNA was detected throughout brain sections from male and

female adult mice. Higher expression levels relative to surrounding

areas were found in the olfactory bulb, piriform cortex, habenula,

hypothalamus (such as paraventricular nucleus [PVN], suprachi-

asmatic nucleus [SCN], ventromedial nucleus [VMH] and arcuate

nucleus), hippocampus, and cerebellum (Fig. 1), all of which are

brain regions with high cell densities. In addition, Jarid1c mRNA

was detected in the triangular septal nucleus, anterior paraven-

tricular thalamic nucleus, bed nucleus of the stria terminalis (BST),

anteroventral thalamic nucleus, interstitial nucleus of Cajal,

mammallary nuclei, and pontine nuclei. In males, the Y-linked

paralogue Jarid1d was transcribed in similar brain regions as

Jarid1c, but at relatively lower levels, as revealed with in situ

hybridization (data not shown), implying that the two paralogous

genes may be similarly regulated across brain regions.

The female bias in Jarid1c expression in brain depends
on the sex chromosome complement

We have previously shown that Jarid1c is expressed more highly

in brains of female mice compared to male mice [11]. To test

whether this difference was influenced by the sex chromosomes,

sex hormones, or both, we compared Jarid1c expression in brains

from adult XX females, XY2 females, XXSry males and XY2Sry

males by Northern blot analyses. Three independent samples,

each from two pooled adult brain samples were analyzed for each

genotype. Jarid1c expression was normalized against that of Actb

(b-actin gene) A two-way ANOVA revealed a main effect of the

sex chromosome complement, with XX mice having higher levels

than XY mice (Fig. 2; F[1,8] = 7.038; p,.05). There was no main

effect of gonadal sex (male versus female) and no significant

interaction. We conclude that the higher level of Jarid1c expression

in females is mainly due to the presence of two active copies of the

gene, consistent with escape from X inactivation.

We also tested Jarid1c expression in neonatal brains and adult

livers, but found no significant sex difference in either tissue

(p..05 in both cases), suggesting the sex difference in Jarid1c

expression found in adult brain might be tissue- and age-specific

(Fig. 3). There were, however, noticeable variations among

females in both neonatal brains and adult livers and some females

did show a higher level of Jarid1c mRNA than males (Fig. 3). This

is possibly caused by individual difference in transcription of

escapee genes from the inactive X chromosome. Similar

observations have shown that in women the level of expression

of escape genes from the inactive X chromosome varies between

individuals and between tissues of the same individual [20].

Jarid1c expression is higher than that of Jarid1d in P19
neurons

Using quantitative RT-PCR, expression levels of Jarid1c and

Jarid1d were measured in P19 stem cells and differentiated

neurons. Three samples of each type were measured in duplicate.

Jarid1c expression was about 280-fold higher than that of Jarid1d

both in undifferentiated and neuron-differentiated P19 cells

(Table 1). Four other X–Y gene pairs, Ddx3x/y, Eif2s3x/y,

Usp9x/y, and Utx/y were also tested for comparison. Interestingly,

Figure 1. Expression of Jarid1c in adult mouse brain using in situ
hybridization with riboprobes. Examples of sections from an adult
female brain are shown. Specific brain regions with higher expression
levels are the olfactory bulb (OB), piriform cortex (Pir), habenula (H),
hypothalamus such as suprachiasmatic nucleus (SCN), ventromedial
hypothalamic nucleus (VMH) and arcuate nucleus (Arc), hippocampus
(CA), and cerebellum (Cb). ac: anterior commissure; Arc: arcuate
nucleus; AV: anteroventral thalamic nucleus; BST: bed nucleus of the
stria terminalis; C: cortex; CA: CA1 and CA3 subfields of hippocampus;
DG: dentate gyrus; EPI: external plexiform layer of olfactory bulb; InC:
interstitial nucleus Cajal; M: mammillary nucleus; MPOA: medial preoptic
area; Pir: piriform cortex; Pn: pontine nuclei; PVA: paraventricular
thalamic nucleus; PVN: paraventricular nucleus; St: striatum; TS:
Triangular septal nucleus.
doi:10.1371/journal.pone.0002553.g001

Jarid1c Brain Expression
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all five X-linked genes, Jarid1c, Ddx3x, Eif2s3x, Usp9x, and Utx,

were expressed consistently higher than their Y-linked paralogues,

both in P19 stem cells and neurons (Table 1). Ratios between X-

linked and Y-linked gene expression levels ranged between 150

and 1000 (Table 1).

Figure 2. Jarid1c expression level depends on the number of X chromosomes, not on gonadal sex. Example of a northern blot
containing mRNA from brains of XX females, XY2 females, XXSry males and XY2Sry males hybridized to a Jarid1c probe. Hybridization to a probe for
Actb (Actin) was used as a loading control. The graph below shows the relative expression of Jarid1c versus Actb (b-actin) quantified by densitometry.
XXSry males and XX females had significantly higher Jarid1c expression than XY2Sry males and XY2 females, with no difference between mice
possessing testes or ovaries.
doi:10.1371/journal.pone.0002553.g002

Figure 3. Expression of Jarid1c in adult liver and neonatal brain
is similar between males and females. Example of a northern blot
containing mRNA from four neonatal brain samples and four liver
samples from males and females hybridized to a probe for Jarid1c.
Hybridization to a probe for Gapdh was used as a loading control.
doi:10.1371/journal.pone.0002553.g003

Table 1. Expression (mean6SEM) of X- and Y-linked
paralogues in P19 stem cells and neurons.

Gene Cell type
X-linked
paralogue

Y-linked
paralogue

X / Y expression
ratio

Jarid1c – Jarid1d stem 2863 0.160.006 280

neuron 83615 0.360.06 277

Ddx3x – Ddx3y stem 8266134 2.060.2 413

neuron 19076262 3.560.5 545

Eif2s3x – Eif2s3y stem 676667 4.560.1 150

neuron 13496242 9.161.1 148

Usp9x – Usp9y stem 3062 0.0960.01 333

neuron 137623 0.360.09 457

Utx – Uty stem 4.160.1 0.00460.001 1025

neuron 9.762.2 0.0160.004 970

doi:10.1371/journal.pone.0002553.t001
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Chromatin remodeling at Jarid1c in P19 neural
differentiation.

To examine the chromatin structure of Jarid1c/Jarid1d in P19

cells before and after differentiation, three sites located at the 59

end of Jarid1c (nt 2657 to 2465, nt67 to 195, and nt602 to 702)

were examined for H3 acetylation, H3 di-methylation at lysine 4,

and H4 acetylation at lysine 16 by ChIP. Each of these histone

modifications, known to be associated with gene activation, was

analyzed with two-way ANOVAs to test the effects of cell types

and DNA sites. One site at the 59end of Jarid1d (nt 2790 to 2594)

was examined for these three histone marks. For Jarid1c all three

histone marks showed a significant enrichment in P19 neurons

relative to stem cells (p,0.05) (Fig. 4). We were unable to detect

any enrichment in these three histone marks on Jarid1d sequences,

indicating the absence of these modifications on the Y-linked

sequence. We further performed a ChIP-on-chip analysis by

hybridization of the ChIP fraction from P19 neurons bound to an

antibody to histone H4 acetylated at lysine 16 to a mouse tiling

array (MM8_tiling set38) representing the second half of the

mouse X and the entire Y chromosome. The array data showed a

significantly higher accumulation of H4K16ac along Jarid1c gene

body compared to Jarid1d, the latter showing signals no higher

than background (data not shown).

Discussion

The high expression of Jarid1c that we found in the mouse

hippocampus is consistent with the cognitive defects in human

patients with JARID1C mutations [1,2]. Some of these patients also

exhibit elevated aggression [2], an emotion governed by certain

brain regions including the bed nucleus of the stria terminalis (BST)

[21]. Interestingly, we detected relatively high levels of Jarid1c

mRNA in the corresponding regions of the mouse brain, including

the BST and anterior hypothalamus. These regions have also been

implicated in aggressive behavior in rodents [21]. In adult mouse

brain, the expression pattern of Jarid1c was generally in line with cell

densities, i.e. brain regions with higher cell density showed higher

levels of hybridization signals. However, some areas (including

triangular septal nucleus, anterior paraventricular thalamic nucleus,

BST, anteroventral thalamic nucleus, interstitial nucleus of Cajal,

mammallary nuclei, and pontine nuclei) showed high expression

despite low neuron densities, suggesting specifically enhanced

expression in these cell types. We are currently carrying out

detailed analyses to locate and quantify the transcripts inside specific

cellular compartments in males and females.

Jarid1c encodes a histone demethylase specific for histone H3

where it converts tri-methylated lysine 4 to di- and mono-methylated

forms [3,7]. This activity results in gene repression by removal of the

active epigenetic mark. Although the complete list of genes targeted

by JARID1C is not fully established, one group of neuronal genes that

shares similar motifs at their promoter is regulated by this

demethylase [7]. These genes are stably repressed in stem cells and

non-neural tissues following binding of the REST complex that

consists of several proteins including REST, JARID1C and other

chromatin modifying enzymes [7]. Surprisingly, we found that Jarid1c

was highly expressed in P19 differentiated neurons, a finding

seemingly contradictory to JARID1C’s role as a powerful repressor

of neuronal specific genes [7]. Our observations, which were obtained

on fully differentiated neurons, support the hypothesis that JARID1C

plays an additional role in neurite development. In a previous study a

Jarid1c knockdown in cultured cerebellar neurons led to shorter

neurites [3].

Using a mouse model to distinguish the effects of steroid

hormones from those of the sex chromosome complement [22] we

found that XX mice had a higher level of Jarid1c than XY mice,

irrespective of whether they were phenotypic males with testes or

females with ovaries. These findings are best explained by the fact

that XX mice have two actively transcribed copies of Jarid1c due

to escape from X inactivation. Although Jarid1c is transcribed from

both copies in a XX mouse, the expression from the inactive X

chromosome is often lower relative to the active X chromosome

[14–16]. Although the parsimonious explanation for the sex

difference in Jarid1c expression is that XX females have two

actively transcribed copies relative to males having one copy, it is

possible that the transcriptional activity of Jarid1c differs between

one of the two copies in females and the single copy in males. For

instance, there is a possible gonadal steroid effect on Jarid1c

expression since we have not tested by manipulating steroid

hormones’ levels in gonadectomized mice. Moreover, it is also

possible that a Y-linked factor, such as JARID1D suppresses the

expression of Jarid1c in XY mice. It is not certain whether the sex

differences we observed for Jarid1c mRNA will necessarily result in

a corresponding difference at the protein level. Indeed, Eif2s3x,

another gene that escapes X inactivation in humans and mice,

Figure 4. Expression of Jarid1c in P19 neurons is associated
with active chromatin marks. Ratios between the bound and input
chromatin fractions from P19 stem cells (solid lines) and P19 neurons
(dashed line) were measured by Q-PCR at three sites around Jarid1c
transcription start site indicated on the Y axis. Histone H3 acetylation at
lysine 9 and lysine 14 (H3ac), H3 di-methylation at lysine 4 (H3K4me2)
and to a lesser extent H4 acetylation at lysine 16 were enriched at the 59
end of Jarid1c especially in P19 neurons.
doi:10.1371/journal.pone.0002553.g004
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displays sex specific expression at the mRNA level, but not at the

protein level [23].

Expression of Y-linked paralogues in males could theoretically

compensate for the high expression of genes that escape X

inactivation in females [24]. However, we found that expression of

all five mouse X-linked genes examined here was consistently higher

– up to a thousand fold – than that of their Y paralogues. Thus, it

appears that the Y-linked paralogues did not compensate for higher

female-specific expression in these cultured cells. This is consistent

with our previous observation in mouse brain that the summed

expression of X- and Y-linked paralogues in males is less abundant

than that of the two X paralogues in females, one escaping X

inactivation [11]. If our observations are confirmed in humans, this

could explain why males who carry JARID1C mutations are affected

in spite of having a normal copy of the Y-linked JARID1D gene.

Alternatively, JARID1D, despite an apparently similar function as a

histone demethylase [25], may have a different role from JARID1C.

Among the five mouse X–Y gene pairs compared in our study, two

(Utx/Uty, Usp9x/Usp9y) have a Y paralogue with a separate function

from the X-linked paralogue [17,26–28], which is consistent with the

differential expression of the paralogues in P19 cells. The lower

expression of all Y paralogues may be due to their location in the

generally heterochromatic Y chromosome and/or to the up-

regulation of the active X chromosome [29].

Gene expression is tightly regulated by histone modifications.

We found that three active histone marks, H3 lysine 4 di-

methylation, H3 acetylation, and H4 acetylation at lysine 16, were

enriched at the 59end of Jarid1c in P19 neurons compared to stem

cells, which suggests a different chromatin conformation in

neurons. Acetylation of histone H4 at lysine 16, which is usually

enhanced throughout the body and 39end of expressed genes [30]

was present along Jarid1c but absent on Jarid1d, as expected given

the difference in expression of the paralogues. It will be interesting

to further characterize changes in histone modifications at the

Jarid1c/Jarid1d sequence in P19 neuronal differentiation, particu-

larly in terms of repressive marks.

In summary, we found that Jarid1c was expressed in specific

brain regions in adult mice and was up-regulated in mice with two

X chromosomes versus those with one X chromosome. Expression

of the Y paralogue Jarid1d did not appear to compensate for the

female bias. The expression patterns and differences in Jarid1c

expression in brain between males and females may lead to sex

differences in specific behavior, possibly including aggression,

which will need to be further investigated.

Materials and Methods

Animals
Procedures for mouse use were approved by the UCLA

Chancellor’s Animal Research Committee. Mice were bred from

stocks obtained from Jackson Laboratories (C57BL/6J) or as a gift

(MF1 mice) from Dr. P. Burgoyne (MRC National Institute for

Medical Research, London). Conditions of mouse husbandry and

tissue collection and the breeding paradigm to generate sex-

reversed and control mice were previously described [11]. The

four core genotypes included XX normal females, XY2 females

(XY mice sex-reversed by deletion of Sry), XY2Sry males (XY2

mice with an Sry transgene to restore the male sex), and XXSry

males (XX mice sex-reversed by insertion of an Sry transgene). All

tissues were collected from BL/6 mice except in the Northern

analysis of the four core mice which were from MF1 mice. Adult

tissues were normally harvested from 8–10 months old mice, with

the exception of the four-core mouse brains, which were from 12–

14 months old animals.

Cell culture and neuronal induction
P19 EC cells were cultured in DMEM medium containing 10%

fetal bovine serum. Neural differentiation was initiated by plating

cells in medium containing 0.3 mM retinoic acid (RA; Sigma, St

Louis, MO) in non-adhesive Petri dishes to promote the formation

of aggregates. After a 4-day exposure to RA, aggregates were

dispersed with trypsin (Invitrogen, Carlsbad, CA) and re-plated on

cell culture dishes. Cytosine arabinoside (Ara-C; Sigma) was then

added to the medium to inhibit proliferation of non-neuronal cells

and to select for neurons, which were differentiated by day 6. Cells

were collected on day 10 for mRNA and histone modification

analyses. Three independent samples were tested for each cell type.

In situ hybridization
In situ hybridization of brain sections was carried out as

described in [17,23]. The riboprobes were transcribed from

linearized plasmids containing either a Jarid1c or Jarid1d cDNA

insert. The Jarid1c cDNA was an IMAGE clone (clone ID:

6841578; Invitrogen) that contained a 473 bp long insert starting

at position bp 4273 of the GenBank sequence AF127245. The

Jarid1d riboprobe was transcribed from a cDNA clone that

contained a 192bp PCR product (bp 1165–1356 of sequence

NM_011419) using a pCRScript kit (Stratagene, La Jolla, CA).

The specificity of the Jarid1c and Jarid1d antisense riboprobes was

verified with Northern blots [11]. When a sense strand riboprobe

was used, no hybridization signal was detected (data not shown).

Northern blots
Northern blot hybridization was done as described previously

[11]. The template for synthesis of the Jarid1c probe was a 234 bp

RT-PCR product (bp 1109–1342 of sequence NM_013668).

Quantification of band intensity was done using Gapdh as a control

[11]. Actb mRNA was also measured as a loading reference,

especially in cases when signals for Gapdh mRNA appeared to be

saturated (Fig. 2). The two reference genes led to similar results in

terms of expression of genes of interests between groups.

Quantitative RT-PCR
Total RNA isolated with an RNeasy kit (QIAGEN) was reverse-

transcribed using a first-strand synthesis kit (Invitrogen). Expres-

sion of X- and Y-linked paralogues in P19 stem cells and neurons

was determined on a LightCycler system (Roche, Indianapolis,

IN). Forward and reverse primer sequences were obtained from

the Primer Bank website (http://pga.mgh.harvard.edu/primer-

bank/; Supplementary Table S1). Expression of Gapdh was used as

a reference. PCR measurements were repeated at least twice.

Standard curves based on serial dilutions of samples were

established to correct for differences in efficiencies between

primers. The specificity of each primer set was confirmed by

alignment of dissociation curves. Expression was compared

between X–Y paralogues using a paired t-test in six P19 samples,

i.e. for each sample, the X and Y paralogues were compared as a

pair. For each gene pair, comparison was made across three

undifferentiated and three P19 neuron samples.

ChIP assays
Chromatin was extracted from three P19 stem cell samples and

three P19 neuron samples following the manufacturer’s instruc-

tions (EZ-ChIP kit; Upstate Biotechnology, Charlottesville, VA).

Briefly, formaldehyde-fixed chromatin was incubated for 15 hr at

4uC with 5 mg of antibody (anti-acetylated H3 at lysine 9 and

lysine 14, anti-dimethylated H3 at lysine 4, anti-acetylated H4 at

lysine 16, Upstate Biotechnology). After a second incubation with

Jarid1c Brain Expression

PLoS ONE | www.plosone.org 5 July 2008 | Volume 3 | Issue 7 | e2553



Protein-A Sepharose beads (Amersham, Piscataway, NJ), bound

DNA was eluted and purified. Real-time PCR quantification of

enrichment in histone modifications was done using a Roche

LightCycler using primers designed to test three Jarid1c sites

(Supplementary Table S1). Enrichment for each histone mark was

normalized against the input (5% of the amount of chromatin used

in each antibody-mediated selection). As a negative control,

instead of histone antibodies, normal rabbit serum was incubated

with chromatin samples which resulted in barely detectable

enrichment. Histone modifications on Jarid1c sequences were

compared between P19 stem cells and neurons by a 2-way

ANOVA with cell type and histone modification as factors. DNA

from chromatin fractions obtained for histone H4 acetylation at

lysine 16 was also submitted to Nimblegen for array analysis using

the manufacturer conditions. The mouse tiling array (2006-07-17-

MM8 tiling_set38), which covers the second half of the X

chromosome (ChrX:93,883,966- 165,556,020, UCSC mouse

genome Feb 2006 assembly) and the complete Y chromosome,

was used in this study to closely compare the H4K16 acetylation

pattern between Jarid1c and Jarid1d present on the same array.

Analysis was done using the manufacturer software.

Supporting Information

Table S1 PCR primer sequences.

Found at: doi:10.1371/journal.pone.0002553.s001 (0.04 MB

DOC)
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