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Abstract

While traditional theories of sensorimotor processing have often assumed a serial decision-

making pipeline, more recent approaches have suggested that multiple actions may be

planned concurrently and vie for execution. Evidence for the latter almost exclusively stems

from electrophysiological studies in posterior parietal and premotor cortex of monkeys. Here

we study concurrent prospective motor planning in humans by recording functional mag-

netic resonance imaging (fMRI) during a delayed response task engaging movement

sequences towards multiple potential targets. We find that also in human posterior parietal

and premotor cortex delay activity modulates both with sequence complexity and the num-

ber of potential targets. We tested the hypothesis that this modulation is best explained by

concurrent prospective planning as opposed to the mere maintenance of potential targets in

memory. We devise a bounded rationality model with information constraints that optimally

assigns information resources for planning and memory for this task and determine pre-

dicted information profiles according to the two hypotheses. When regressing delay activity

on these model predictions, we find that the concurrent prospective planning strategy pro-

vides a significantly better explanation of the fMRI-signal modulations. Moreover, we find

that concurrent prospective planning is more costly and thus limited for most subjects, as

expressed by the best fitting information capacities. We conclude that bounded rational

decision-making models allow relating both behavior and neural representations to utilitarian

task descriptions based on bounded optimal information-processing assumptions.

Author summary

When the future is uncertain, it can be beneficial to concurrently plan several action possi-

bilities in advance. Electrophysiological research found evidence in monkeys that brain

regions in posterior parietal and promotor cortex are indeed capable of planning several
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actions in parallel. We now used fMRI to study brain activity in these brain regions in

humans. For our analyses we applied bounded rationality models that optimally assign

information resources to fMRI activity in a complex motor planning task. We find that

theoretical information costs of concurrent prospective planning explained fMRI activity

profiles significantly better than assuming alternative memory-based strategies. Moreover,

exploiting the model allowed us to quantify the individual capacity limit for concurrent

planning and to relate these individual limits to both subjects’ behavior and to their neural

representations of planning.

Introduction

Traditional theories of sensorimotor processing often consider a sequential pipeline from per-

ception to action, where in between the cognitive system makes a decision that is subsequently

implemented by the motor system that plans and executes the corresponding action [1–6]. In

this view perceptual, cognitive, and motor representations do not overlap and are separated in

time. Thus, it is often assumed that the value of different alternatives is computed and used for

decision-making in prefrontal regions, which is then subsequently translated into action plan-

ning in premotor regions, including parietal, precentral, and subcortical regions [1]. In con-

trast, more recent frameworks, like the affordance competition hypothesis [7–9], have put

forward the notion that actions might be planned simultaneously in several frontoparietal

brain areas and vie for execution, whenever opportunities for multiple potential actions arise

at any one time.

In line with these more recent frameworks, neurophysiological studies in monkeys have

found increasing evidence, that multiple potential actions are planned in parallel and that

competitive potential plans are simultaneously represented in posterior parietal cortex (PPC)

[10] and dorsal premotor cortex (PMd) [8, 11], although some studies have also credibly

argued against such evidence [12, 13]. Moreover, it has been suggested that neurons that are

involved in motor planning are often also involved in the decision-making process [8, 14]. In

how far particular decisions are accompanied by more integrated or more serial processing

may also depend on the task specification, as shown by Cui et al. [2] for spatial and non-spatial

decisions. In particular, their results show that different areas in the posterior parietal cortex

encode both potential and selected reach plans (parietal reach region) or encode only selected

reach plans (dorsal area 5), suggesting a parallel visuomotor cortical circuitry for spatial effec-

tor decisions. Some studies have even suggested that parallel planning can take place after

movement onset in a way that is effecting movement kinematics and variability during reach-

ing [15–17].

While most evidence for parallel prospective planning towards alternative targets has been

acquired in electrophysiological studies of monkey posterior parietal and premotor cortex,

fMRI-studies in humans so far have mostly revealed a contribution of these areas to prospec-

tive planning of movements towards single targets (e.g. [18]). A particular challenge when

studying parallel processing in fMRI is its limited temporal resolution, so what might seem

like parallel multi-target planning on the coarse timescale of fMRI might, in fact, be realized

either through serial or parallel processes on a finer timescale. We therefore use the term con-
current processing in the present study to loosely denote processes that run together and to

leave open the different possibilities of their fine-grained implementation. We develop a novel

methodology to ask whether 1) we can find evidence for concurrent prospective action plan-

ning in human posterior parietal and premotor cortex by means of fMRI, and 2) if there is an
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individual capacity limit for concurrent planning due to the growing computational expense

of multiple parallel computations, and how such a capacity limit could be quantified. With our

new analytical approach, we develop task-specific optimal information-processing models

with different constraints and regress the predicted information values with the recorded neu-

roimaging data to distinguish between serial and parallel motor planning during a delayed

response task (DRT) that allows separating planning activity from sensory and motor process-

ing [18].

In particular, the experimental paradigm of the present study was designed to contrast a

serial memory-based planning strategy (null hypothesis H0: “delayed planning”) and a concur-

rent prospective planning strategy (hypothesis H1: “concurrent prospective planning”) to pre-

pare for a goal-directed action consisting of a sequence of button presses during the delayed

response phase (compare Fig 1). For example, an initial “cue” could indicate two potential tar-

get locations (e.g. either located in the left or right panel) so that during the ensuing delay

period subjects could either prepare two possible action sequences for the upcoming response

(H1) or simply remember the target locations and delay concrete action planning until the go-

signal reveals the ultimate target location (H0). By modelling the task-specific information-

processing efforts associated with each of the two respective strategies, we can then use a

model-based regression to distinguish whether planning activity during the delay phase in any

given area can be better explained by concurrent prospective planning (H1) or, alternatively,

by delayed planning (H0).

Similar to previous studies that have quantified information-processing capacity in the

context of working memory tasks [19–27], we use information theory in the model-based

regression to quantify information-processing capacity in the context of motor planning.

This can be achieved by designing optimal choice models with information constraints [28]

that trade off the minimal amount of information processing required to achieve a certain

goal, in our case planning to reach a target with a certain degree of accuracy. In previous

studies [29, 30], we have investigated such optimality models with information bounds in

purely behavioral motor planning tasks by manipulating both permissible reaction times

and prior distributions over possible world states. In these experiments reaction time was

used as a proxy for information cost underlying any process of uncertainty reduction. Here

we apply such optimal information-processing models to human fMRI activity in order to

reveal whether brain areas engaged in the planning of goal-directed actions resort to a

delayed planning strategy (H0) or, alternatively, to concurrent prospective planning (H1). In

addition we used these models to estimate planning-related capacity limits. Based on this

approach we show that brain activity in a parietal-frontal planning system and the cerebel-

lum is consistent with bounded optimal information flow implementing concurrent pro-

spective action planning.

Results

Behavioral performance analysis

In our delayed-response-task (DRT), 19 subjects (11 females, 8 males, average age = 27.5

years) were shown an initial cue stimulus with potential target locations that were

highlighted in four concentrically ordered response panels. They were verbally instructed to

plan movement sequences to potential targets during the subsequent delay phase, and to

execute one of these sequences, when shown the go-signal as a selection stimulus during the

response phase (see Fig 1A). Movement sequences could vary in sequence length (2-step,

3-step and 4-step condition) and consisted of up/down/left/right button clicks to move a

cursor on a screen. To enforce planning during the delay phase, the go-signal did not
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indicate the actual selected target directly, but only indicated the relevant (part of the)

response panel. In other words, subjects could uniquely identify the selected target only if

they remembered the information provided by the initial cue stimulus. In total, our task

design contrasted 3x4 DRT conditions, that did not only vary in the movement sequence

length (2, 3, or 4), but also in the number of potential targets (1, 2 or 4 targets in distinct

response panels or condition ‘11’ with 2 targets in the same panel). Consequently, the 12

DRT conditions were distinguished by different information costs due to multiplicity of

potential panels, potential targets and sequence lengths.

Fig 1. Experimental task design. (A) Trials of the motor planning conditions in the delayed response task (DRT) and control condition (CT) were

randomized and had a similar timeline. Each trial started with a fixation period (FIX) of random duration, a cue phase (CUE), where a cue-stimulus s1
was presented, followed by a random dot pattern to mask afterimages of the CUE (MASK), a delay phase (DEL) of random duration for planning, and a

response phase (RES). In the response phase (RES) the ultimate target location was revealed by a go-signal s2, namely a single grey frame around the

relevant (part of the) respective response panel. Response trajectories were generated by subjects’ button presses on the illustrated input device. In the

control task, no potential target cues were presented during the cue phase and therefore no goal-directed actions could be planned during the delay

phase. In the response phase of the CT subjects were finally informed about the target location (single grey box). (B) The four target planning

conditions differed in the number of potential target locations initially cued. Subjects could see possible target positions highlighted (grey boxes).

Potential targets to consider for planning were indicated by a grey frame around the field areas encompassing the relevant possible targets. Subjects

were instructed to plan a single movement sequence towards one target (‘1’), two partially overlapping sequences towards two potential targets (‘11’),

two distinct movement sequences towards two potential targets in different panels (‘2’), or four distinct movement sequences towards four potential

targets (‘4’) respectively and to execute the planned goal-directed movement as sequential button presses with the right thumb in the following phase,

after the ultimate target was revealed by the go-signal. During the DEL phase, preparation for a goal-directed action could follow a serial memory-based

planning strategy (null hypothesis H0: “delayed planning”), or a concurrent prospective planning strategy (hypothesis H1: “concurrent prospective

planning”) where possible planning of actions as movement paths to each of the potential target locations could be anticipated.

https://doi.org/10.1371/journal.pcbi.1010585.g001
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We assessed subjects’ behavioral performance in terms of reaction times, movement times

and error rates and compared it to a control condition (CT), where the initial cue stimulus did

not contain any information about the target location but the relevant target location was

explicitly cued during the response phase. Therefore subjects did not need to memorize or

plan during the delay phase of the control condition.

We found that reaction times increased with the number of potential targets (p< 0.0001,

2-way rmANOVA with factors condition [‘1’,‘11’,‘2’,‘4’,‘CT’] and sequence length: linear effect

of condition—see Methods section for details on the statistical analysis), suggesting that sub-

jects engaged in more complex planning as the number of potential targets increased (see Fig

2A). In contrast, sequence length had no significant effect on reaction times (p = 0.441).

Compared to the DRT conditions, the control condition CT did not allow for any planning

during delay. In case of concurrent prospective planning (but not for delayed planning), we

therefore expected to reveal reaction time benefits in DRT as compared to CT. Indeed, a priori

one-sided pairwise t-tests of reaction times averaged over the sequence length reveal behav-

ioral benefits in planning conditions compared to CT. Reaction times in the less costly plan-

ning conditions ‘1’ ‘11’ and ‘2’ were significantly reduced as compared to CT (‘1’ vs. CT,

p< 0.0001; ‘11’ vs. CT, p = 0.0002; ‘2’ vs. CT, p = 0.0167, one-sided pairwise t-test). For the

Fig 2. Behavioral performance. Results are reported as the mean over subjects’ individual task performance and normalized standard error

(according to [31] to eliminate the between-subject variance, which does not contribute to the within-subject effect of the study). Results of the

one-sided pairwise post-hoc comparisons of the respective marginal means are indicated with ��� for p< = 0.001, �� for 0.001< p< = 0.01, and

ns for non-significant results (p> 0.05). (A) Reaction times (RT) and (B) movement times (MT) were calculated as averages across individual

subjects’ means ± SEM. Reaction times were significantly decreased for easy planning conditions (‘1’, ‘11’ and ‘2’) compared to the control

condition CT, which indicates a benefit due to planning (‘1’ vs. CT, p< 0.0001; ‘11’ vs. CT, p = 0.0002; ‘2’ vs. CT, p = 0.0167). RT were higher in

the more complex planning condition (‘4’) and did not significantly differ compared to CT (‘4’ vs. CT, p = 0.933). Differences for varying

sequence length were found for MT but not for RT. (C) Error rates averaged across subjects indicated varying task difficulty over conditions

revealed by an increase of target misses for conditions with higher task uncertainty (p = 0.024 for 11 vs. CT; p = 0.005 for 2 vs. CT; p< 0.001 for 4

vs. CT) and between 2- and 3-step conditions and 2- and 4-step conditions (p< 0.0001 for 2 vs. 3; p< 0.0001 for 2 vs. 4). (D) During the delay

phase there was no significant difference between the average number of eye saccades and therefore saccades cannot explain benefit in reaction

times or fMRI activity in planning-related areas.

https://doi.org/10.1371/journal.pcbi.1010585.g002
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more complex planning conditions ‘4’ no such reaction time advantage was found (‘4’ vs. CT,

p = 0.933, one-sided pairwise t-test) (see Fig 2A). These results also hold up when conducted

as a post hoc test with a Bonferroni-Holm correction for multiple comparisons (4 comparisons

with a family-wise error rate of α� 0.05), where again conditions ‘1’ ‘11’ and ‘2’ show a signifi-

cant reaction time benefit (‘1’ vs. CT, p< 0.0125; ‘11’ vs. CT, p< 0.0167; ‘2’ vs. CT, p< 0.025),

but not condition ‘4’ (‘4’ vs. CT, p> 0.05).

As to be expected, there was a significant effect of sequence lengths on movement times as

shown in Fig 2B (p< 0.0001, 2-way rmANOVA with factors condition [‘1’,‘11’,‘2’,‘4’,‘CT’] and

sequence length: linear effect of sequence length). There was no linear effect of condition on

movement time (p = 0.449).

Subjects’ error rates are shown in Fig 2C. There was a significant influence of the factor

condition [‘1’,‘11’,‘2’,‘4’,‘CT’] (p< 0.0001, 2-way rmANOVA) and sequence length

(p = 0.018). In the CT, the target was explicitly shown after the delay, which perhaps explains

the lowest error rates in this condition. In contrast, the DRT conditions required memoriza-

tion of the cue stimulus, which allowed for additional errors and thus led to higher error rates

in the more complex DRT conditions. Finally, during the delay phase the number of saccades

per second did not significantly differ between the different planning conditions and control

conditions (see Fig 2D). This absence of difference in eye movements during the delay phase

will be important in the next section, where we study fMRI activity during the planning delay

period and need to exclude additional effects on fMRI from eye movements.

fMRI analysis

Brain activity during task performance was measured by means of fMRI in a 3T MRI scanner.

We fitted a general linear model (GLM) to the activity time series data measured in each subject

and in each voxel of the brain. In this GLM we modeled each of our 3x4 conditions and sepa-

rately for cue, delay and response phase (for details see Methods). We used the resulting regres-

sion models to determine regions of interest that show significant functional delay-related

activity on the group level. To this end, the delay-related signal estimates of all 12 DRT condi-

tions were contrasted against the control condition CT in each individual subject. The resulting

group map is depicted in Fig 3C. Our second-level group analysis showed significant differences

across subjects in the planning-related areas of the left and right (l/r) posterior parietal and pre-

motor cortex that we hypothesize to be engaged in prospective parallel planning, namely supe-

rior parietal lobule (SPLl, SPLr), anterior intraparietal sulcus (antIPSl, antIPSr), and dorsal

premotor cortex (PMdl, PMdr). In addition, delay activity was exhibited in dorsolateral pre-

frontal cortex (DLPFCr), the anterior insular cortex (AICl, AICr), supplementary motor area

(SMA), as well as the lobules 6 and 8 of the cerebellar hemispheres (cer6l, cer6r, and cer8r).

While we centered our analyses on the earlier areas in posterior parietal and premotor cortex as

they have been previously shown to contribute to concurrent prospective planning in monkeys

(compare the Introduction section), we also performed explanatory analyses of all other afore-

mentioned areas. For further details on how these regions of interest (ROIs) were selected in

individuals, please see the Methods section. For each of our predefined ROI areas, we extracted

GLM parameter estimates reflecting delay-related changes in fMRI BOLD signal amplitudes in

different task conditions of varying planning complexity. In the following we chiefly focus on

area SPLl, as an exemplary target ROI. For results of different ROIs—left cerebro-cortical ROIs

contralateral to the effector and ipsilateral cerebellar ROIs in the right hemisphere—please refer

to Supplementary S1 Fig. In area SPLl, delay-related GLM parameter estimates differed signifi-

cantly between individual planning conditions, distinguishing both the number of potential tar-

gets (p< 0.0001, 2-way rmANOVA with factors condition and sequence length) and sequence
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length (p = 0.001) but there was no significant interaction of the two factors. The relative

changes of the fMRI signal over time due to planning during the delay phase compared to a

pre-stimulus baseline can be seen for the different conditions in Fig 3A. As expected, the activity

in SPLl was lowest during the control condition CT that does not provide any information for

planning. The activity increased with the complexity of the planning problem with the highest

activity for the target condition ‘4’ with sequence length 4. As a control ROI, primary visual cor-

tex V1l—that is supposedly not involved with motor planning—showed no such modulation

(see Fig 3B). Note that due to the slow BOLD haemodynamic response function (HRF), visual

processes and eye movement related activity during cue presentation could influence the time

courses of fMRI-activity in the early delay phase of planning. Differences in pure planning

activity for different task conditions in isolation are thus only reflected by the time courses in

the late delay phase. Hence, at first glance, planning related activity in SPL and in all other plan-

ning-related ROIs (compare Supplementary S1 Fig with PMdl, antIPSl, DLPFCl, AICl, cer6r,

cer8r, SMA) seemed compatible with concurrent prospective planning.

Model analysis

In our delayed-response task, information about the ultimate target location (the hidden

world state w 2W) is revealed successively by the two stimuli s1 and s2: the initial cue stimulus

s1 2 S1 indicates all potential target locations; the second go-signal s2 resolves the remaining

Fig 3. fMRI activity related to motor planning. (A) Time course of fMRI activity as percentage of signal change normalized to pre-stimulus baseline

and delay-activity estimates (beta parameter from GLM) in each planning condition in planning related area SPLl show increasing planning-related

BOLD amplitudes with increasing task complexity. We report across-subjects averages and within-subjects variance as the normalized standard error

(according to [31]). Time course activity and GLM estimates of further ROIs—contralateral cortical ROIs (left) and ipsilateral cerebellar ROIs (right)—

are provided in Supplementary S1 Fig. Average MNI-coordinates (x, y, z in mm) are provided for each ROI. Statistical results are indicated with ��� for

p< = 0.001, �� for 0.001< p< = 0.01, � for 0.01< p< 0.05, and ns for non-significant results (p> 0.05). (B) In a ‘non-planning ROI’ (V1l) BOLD

signal changes were not significantly different between conditions. (C) Second-level activation map shows significant delay-related fMRI activity across

subjects in planning related areas (see Results for details) when contrasting DRT conditions vs. the control condition CT (p< 0.05 family-wise error

(FWE)-corrected for multiple comparisons).

https://doi.org/10.1371/journal.pcbi.1010585.g003
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uncertainty about the actual hidden target w (see Fig 4). Accordingly, the overall process can

be described with two information quantities (I1 and I2), that are dependent on the respective

task condition (e.g. the number of potential targets and the length of the action sequence that

leads to these targets). In a first step, the information I1 is needed to form and maintain a

Fig 4. Information theoretic model of planning with information constraints. (A) Information about the hidden world state w 2W
(the exact target location) is revealed in two steps during the experimental trial. The initial cue stimulus s1 2 S1 indicates potential

target locations while the later go-signal s2 resolves any remaining uncertainty about the actual hidden target w. (B) When seeing s1, the

decision-maker can in a first step form a memory m 2M which is required to infer the world state when seeing s2 after the delay and,

therefore, is then able to appropriately plan and finally select an action a 2 A that corresponds to a movement path representation.

Both hypothesis (H0 and H1) contrast the predicted information I1 and I2 in all 12 DRT conditions for a delayed planning strategy and

concurrent prospective planning strategy during the delay (DEL). H0: During the delay phase only memory m is used to reduce

uncertainty about actions. H1: Concurrent prospective planning of actions during delay phase requires the anticipation of all possible

selection stimuli s2 and planning movement sequences concurrently. I2 therefore is higher in H1 than in H0 and, moreover, varies more

strongly with movement sequence length. (C) Model Comparison. We regressed theoretical memory and prospective planning

information with measured fMRI activity in relevant brain areas during the delay phase and tested two hypotheses: H0, where

information-processing merely requires uncertainty reduction based on memory formation m and H1 with higher information-

processing effort required for prospective planning to anticipate possible future movements. Theoretical information values I1 and I2 for

different memory and planning capacities, defined by model parameters β1 and β2, were regressed (using regression coefficients α1 and

α2) with the measured fMRI BOLD activity. For lower β1 and β2, memory and planning capacity accordingly is more limited. We

regressed the information values for different degrees of boundedness and compared the best model fits with the maximal information

values in the case without bounds, where β1 and β2 were chosen maximally (β1 = 500, β2 = 500).

https://doi.org/10.1371/journal.pcbi.1010585.g004
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memory m 2M of the initial cue, which is needed to infer the world state when seeing s2 after

the delay. The process of memory formation therefore partially resolves some uncertainty

about w given the amount of information that s1 provides. This process and its associated

information I1 is identical in both planning strategies, delayed planning (H0) and concurrent

prospective planning (H1).

In the second processing step, uncertainty about actions gets reduced. This is quantified by

additional information I2, that, however, differs for the delayed planning and the concurrent

prospective planning strategy. In the delayed planning scenario (H0), only memory m is used

to reduce uncertainty about actions and further information processing is suspended until the

go-signal s2 gives the final information indicating the hidden world state. For concurrent pro-

spective planning (H1), however, all potential target locations are considered and information

costs are added up for planning all respective action sequences towards these targets. I2 there-

fore is generally much higher for concurrent planning and is also increasing more strongly

with the number of potential targets and movement sequence length for a concurrent prospec-

tive planning strategy as compared to a delayed planning strategy (see Fig 4C). This difference

in integrated information costs I1 and I2 allows us to probe whether fMRI activity in the delay

period does reflect concurrent prospective planning (hypothesis H1) or serial delayed planning

(hypothesis H0). Moreover, while prospective concurrent planning brings essential benefits by

enabling subjects to react more quickly to an upcoming scenario [32], it is immediately clear

that this type of concurrent planning cannot be scaled up indefinitely and that there must be

bounds on the amount of information processing. For this reason we also assess these capacity

limits of information processing.

In order to formally compare the two planning hypotheses—concurrent prospective plan-

ning (H1) against the null hypothesis of delayed planning with uncertainty reduction only

based on past sensory information (H0)—we compared the fMRI activity modulation during

the delay phase over different experimental conditions to the expected information modula-

tion determined for both hypotheses from an optimal decision-making model with informa-

tion constraints (see Fig 4). For a detailed description of both hypothesis please see the

Methods section. Assuming motor planning during the delay phase only in terms of uncer-

tainty reduction based on memorized information of the perceived cue stimulus, the decision-

maker requires information cost I1 to first update the internal memory. Correspondingly the

action uncertainty gets reduced from a prior over all actions to a posterior over potential

actions given the memory, which requires an additional information cost I2. We contrasted

this null hypothesis H0 with the assumption of concurrent prospective planning, where sepa-

rate action plans are made for all potential targets. In this alternative hypothesis H1, the mem-

ory update is identical to H0 (same information cost I1), but the information cost required for

the reduction of uncertainty over actions is now composed of the sum of information costs to

form each possible motor plan (I2). The exact amounts of information (I1 and I2) depend on

the capacity of the information channels defined by model parameters β1 and β2 for the mem-

ory and the action process. Three example profiles of information modulation with different

capacities are shown in Fig 4C.

Model comparison

To find out which hypothesis explains our data best, we established (non-negative) multilinear

regressions between the fMRI activity modulation during the delay period and the two infor-

mation modulations predicted by each of the two hypotheses. For both hypotheses, we first cal-

culated the expected information costs for possible settings of information capacities and we

regressed these theoretical information modulations with the respective subject-specific GLM
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activity estimates over the 12 DRT conditions for all ROIs separately. Fig 5A shows, exemplar-

ily for brain area SPLl, the R2-values of the regressions for the best fitting information capaci-

ties for each subject under the two hypotheses (which we refer to as “bounded” in the Figs 4

and 5). A within-subject comparison of the R2-values for the two hypotheses showed that the

information profiles under the prospective planning hypothesis H1 provide a significantly bet-

ter explanation of the fMRI modulation than the delayed planning hypothesis H0 in SPLl

(SPLl: p< 0.0001 rmANOVA) as well as in all other planning related ROIs, but not in control

ROI V1l (compare Supplementary S2 Fig and Supplementary S2 Table). The superiority of

hypothesis H1 can also be confirmed by leave-one out cross-validation, as it allows for signifi-

cantly better predictions of fMRI activity in all relevant brain areas, except V1l and M1l (com-

pare Supplementary S10 Table). For further details on the statistical analysis see the Methods

section. Moreover, we applied a nested model F-test statistic to both hypotheses to find out

whether the predicted planning-specific information I2 contributed significantly to the multi-

linear regression of the fMRI signal. We found that for most of the subjects (16 from 19 for

SPLl) under the prospective planning hypothesis H1 the planning information I2 improved the

regression of the signal modulation significantly (see Fig 5). In contrast, the nested model tests

for H0 revealed that model regressions did not improve significantly by taking I2 into account.

To address the question in how far concurrent planning is limited in its capacity, we com-

pared the R2-values of the regression with an optimal decision-making model without capacity

bounds that we obtain as a limit case of maximum capacity (which we refer to as not-bounded

in Figs 4 and 5). We found that the proportion of explained variance of measured brain

Fig 5. H0 and H1 model comparison. (A) R2-values of the regressions for the best fitting information capacities for individual subjects for H0 and H1

are compared to not-bounded models. Statistical results of rmANOVAs are indicated with ��� for p< = 0.001. (B) Resulting theoretical quantitative

predictions of the expected information costs and expected utility over all task conditions are plotted for individual subjects. Expected values of

information costs E½I1� and E½I2� of subjects’ bounded model fits to the fMRI correlates was lower than for not-bounded model (blue lines). This hints

at prospective planning activity with subject-individual planning capacities.

https://doi.org/10.1371/journal.pcbi.1010585.g005
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activities in SPLl as well as in all other planning related ROIs was significantly increased for

model predictions with subject-individual bounds (SPLl: p< 0.0001 rmANOVA, compare

Supplementary S2 Fig for all other ROIs) compared to an unbounded maximum capacity

model. This suggests that judging from the modulation of the fMRI signal alone, it seems that

subjects were limited in their information processing. As a control, the R2-value of the infor-

mation modulation in primary visual area V1l was close to zero (see Supplementary S2 Fig).

Note that our within-subject comparisons of the R2-values for the two hypotheses H0 and H1

remain stable also for assuming a non-linear relation (quadratic, sigmoidal, logarithmic)

between fMRI correlates and predicted information values. Regressions produced similar

results (see Supplementary S4 Fig and Supplementary S1 Table for p-values of rmANOVAs).

Similarly, under the prospective planning hypothesis H1, the planning information I2
improved the regression of the signal modulation significantly (nested model F-test statistic

significant for 15 of 19 subjects for SPLl) and R2 values regressing model predictions with sub-

ject-individual bounds were significantly higher compared to an unbounded maximum capac-

ity model. Again this result can be confirmed by leave-one out cross-validation comparing

prediction errors of fMRI activity with and without information bounds (compare Supple-

mentary S10 Table).

The individually fitted information bounds under the two hypotheses H0 and H1 can be

seen in the 3d graphs shown in Fig 5B. The expected information costs over all conditions

E½I1� and E½I2� of subject-individual best model fits were lower compared to the predicted

information boundaries E½I1� and E½I2� when assuming no bounded information capacities for

I1 and I2 (blue lines). Our comparison of the expected information values for the bounded and

not-bounded model indicated, that for all subjects mainly information capacity for prospective

planning I2 was reduced whereas information for memory I1 was reduced but still closer to the

predictions of the model with the not-bounded assumption. Expected information values for

subject-specific model fits to activity in all other ROIs can be found in the Supplementary

Material (S3–S6 Tables). Assuming a simple 0/1-utility function U for our task, that assigns a

utility value of 1 to actions a that reflect a target hit the value 0 otherwise (see Methods sec-

tion), the expected utility E½U�, shown on the z-axis, was individually different for the deci-

sion-making models (see Supplementary S7 and S8 Tables) and is higher for subjects with

higher capacity limits for I1 and I2.

Fig 6A shows a comparison of R2-values as the average proportion of explained variance of

measured fMRI signals in different ROIs resulting from the regressions for the best fitting

information capacities for individual subjects for H1. For each individual ROI, we compared

R2-values using one-sided non-parametric permutation statistics. For all planning related

areas we found R2-values to be significantly lower than for control areas M1l and V1l

(p< 0.0001). Further, only for fMRI modulations in SPll, the model fits could provide signifi-

cantly better explanations compared to antIPSl (p = 0.0013), PMdl (p = 0.0172), DLPFCl

(p = 0.0036), cer8r (p = 0.0094), and AICl (p = 0.0051).

To investigate the impact of limited information processing for concurrent prospective

planning in individual task conditions with different complexity (i.e. number of potential tar-

gets and sequence length), we illustrated frequencies of information costs I1 and I2 for subjects’

best model fits in a histogram representation for each condition (see Fig 6B; for comparison of

H0 hypothesis please refer to Supplementary S3 Fig). We contrasted the frequency distribu-

tions with the information predictions for a perfect decision-maker without information pro-

cessing bounds (blue line). Deviations from the information with maximal capacities show

evidence for bounded planning. It can be seen that subjects generally lie below the information

bound of the perfect decision-maker.

PLOS COMPUTATIONAL BIOLOGY Bounded rational decision-making models suggest capacity-limited concurrent motor planning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010585 October 13, 2022 11 / 31

https://doi.org/10.1371/journal.pcbi.1010585


Finally, we test the models’ predictive power for behavioral performance from fits to fMRI

activity during the planning phase. Naturally, one may not expect a perfect prediction, since

ultimate behavioral performance depends on many other factors, both detrimental ones like

motor execution noise and imperfect planning as well as beneficial ones like additional plan-

ning following the final cue. To obtain a prediction for subjects’ behavior from individual

fMRI activity, we compute the predicted expected utilities according to Eq (4) based on the

probabilities we obtained from the optimal information-fMRI fit in Fig 5 under both hypothe-

sis H0 and H1. These predicted planning performances were then compared to subjects’ actual

behavioral performances across the experiment in terms of error rates (see Fig 7). Correlation

of the experimental utilities (1− error rate) and the theoretical E½U� values were analysed by

Fig 6. Bounded prospective planning (H1) regression. (A) ROI comparison ranked by R2-values of the regressions for

the best fitting information capacities for individual subjects for H1. Results are reported as the mean over R2-values for

subjects’ individual best model fit for H1 and normalized standard error (according to [31] to eliminate the between-

subject variance, which does not contribute to the within-subject effect of the study). (B) Theoretical expected

information costs I1 (left) and I2 (right) of prospective planning is based on model parameters determining memory and

planning capacities fitted for all individual subjects (hypothesis H1 “bounded”). Histograms represent the frequency

distributions of the information costs, dependent on task conditions. Information values varied between bounded model

predictions regressed to subjects fMRI data compared to the model predictions in the not-bounded case (in blue). Note

that generally subjects lie below the information cost of the not-bounded decision-maker and only for the most simple

2-step conditions subjects’ information costs for memory (I1) deviate in the different direction from the predictions in

the not-bounded case. This results from the specific task design and the fact, that bounds are provided on the total

expected information. Decision-makers with not-bounded planning capacities can optimally assign resources to more

difficult conditions and save memory costs for 2-step conditions, because no uncertainty about the target location will

remain when s2 is revealed given that all actions are planned prospectively under a high information resource for I2.

https://doi.org/10.1371/journal.pcbi.1010585.g006
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linear regression. Only for the concurrent planning hypothesis H1, we found a significant cor-

relation (p = 0.0238) between measured data and predicted outcome of the model. For the null

hypothesis H0, subjects’ expected utility estimates were not significantly correlated with the

measured behavioral performance. Thus, we may conclude that our optimal information

model has significant predictive power with respect to subjects’ behavioral performance from

fMRI activity recorded during the planning phase in our delayed-response task.

Discussion

Using fMRI and information-theoretic modeling, we have investigated neural correlates of

information processing costs during concurrent motor planning in the human motor system

[18]. We manipulated informational complexity of movement planning by varying both the

temporal extension of the movement sequence length as well as the degree of concurrency (the

number of potential targets). We compared how much of the variance of the fMRI signal in

specific brain areas (i.a. in PPC and PMd) could be explained when assuming concurrent pro-

spective planning for multiple potential targets (hypothesis H1) and when assuming no pro-

spective planning, but only uncertainty reduction based on past sensory information

(hypothesis H0). We found that the theoretical information costs of concurrent prospective

planning explained fMRI profiles across conditions significantly better than assuming a mem-

ory-based strategy (hypothesis H0) that delays all anticipatory planning activity into the future

until a second sensory stimuli (the go-signal) resolves the remaining uncertainty. Finally, we

found that the bounded optimal planning performance error predicted for individual subjects

by our concurrent model from fMRI data, correlated significantly with subjects’ actual

Fig 7. Comparison of experimental and theoretical performance. Linear regression analysis of theoretical E½U� averaged across model

predictions over all planning related ROIs (DLPFC, PMd, SPLl, antIPS, AIC, cer6, cer8; compare Fig 6A) under both model hypothesis H0

(left) and H1 (right) and experimental utility (1—error rate) for the group of subjects. Whereas under model hypothesis H0, individual E½U�
resulting from model fits and subjects fMRI data was not significantly correlated to measured experimental utility (linear regression with

p = 0.555, correlation coefficient ρ = −0.145 and regression slope m = −0.535), under H1 a significant correlation between measured data and

estimated data was found (p = 0.0238) with correlation coefficient ρ = 0.516 and regression slope m = 1.171. Better experimental performance

in individual subjects than theoretically optimal performance can be plausibly explained by the fact that after the delay phase subjects could

still improve their behavior through additional planning following the second cue, whereas the theoretical optimum is computed for planning

only with the first cue. Linear regression with shuffled experimental data was repeated for result validation. For shuffled data, only 3.5% of

correlations were significant with correlation coefficients ρ in the range of [-0.671, 0.608] and regression slopes m in the range of [-1.524,

1.380].

https://doi.org/10.1371/journal.pcbi.1010585.g007
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performance error during movement execution. Our results therefore add to a growing body

of evidence that suggests the use of concurrent prospective planning in the parietal-frontal

planning system when faced with multiple potential futures [2, 7, 8, 10, 33–37].

While the concurrent planning of multiple potential futures comes with a reaction time

advantage whose behavioral consequences could be positively selected by evolution, it is also

immediately clear that it cannot scale to scenarios with arbitrarily large amounts of uncertainty

due to an excessive computational burden. Therefore, one would naturally expect a trade-off

between the degree of concurrency in motor planning and the amount of information process-

ing required. Evidence for such a trade-off has been previously reported in behavioral studies

[38], where it has been shown that competition between movement plans increases motor vari-

ability, thus suggesting a shared resource for movement planning. In our experiment, this

could be seen both in the behavior and the fMRI BOLD signals. Behaviorally, we noted an

increased error rate for conditions with high degree of concurrency, suggesting a limitation in

precision for concurrent planning. Neurally, we found that the best model correlates are char-

acterized both by the assumptions of concurrent planning and limited information capacity.

In particular, we found in our nested model analysis for the two information profiles regarding

memory and planning that adding the planning information significantly improved the vari-

ance explained in the fMRI signal.

Serial vs. parallel processing. In our study the null hypothesis H0 has been aligned with

more traditional theories of sensorimotor processing whose point of view is that perceptual,

cognitive and motor processes take place successively and only a single motor program is pre-

pared in the end [5, 6]. It should be noted that recent experimental evidence supports this view

regarding both behavioral and neural data in monkeys and humans performing reaching

movements towards spatial targets [12, 13]. However, their experimental paradigm differs

from ours where motor planning relates to target-directed cursor movements controlled by

sequential button presses.

Neural correlates of planning in MEG for sequential finger movements (yet without spatial

targets) have previously been studied for example in the context of “competitive queuing” [39]

and found evidence for parallel representations of sequence positions. Our study results add to

these findings, in that it demonstrates neural correlates of multi-target planning in a target-

directed movement sequence task in humans. Our model approach thereby can be seen as first

evidence for concurrent prospective planning of sequential target-directed actions in human

posterior parietal and premotor cortex based on an optimal information processing model

that allows to distinguish between different hypotheses of serial and concurrent planning. Our

results suggest that multiple plans are formed during the delay phase, as fMRI activity corre-

lates with planning costs summed over potential actions. However, ultimately it remains open

whether these plans are formed simultaneously or whether they are rehearsed one-by-one on a

finer timescale. Moreover, it might be difficult to generalize our results to determine whether

parallel plans are formed in more natural contexts. Whether or not there is a representation of

alternative action plans might ultimately depend on individual task requirements [40], and—

as we show in our study—on individual information capacities.

Previous neural studies that have favored the hypothesis of parallel motor planning have

been mostly conducted in monkeys. Cisek and colleagues [34] have found, for example, that

PMd activity in a two-target condition reflects presence and relative location of both targets,

and that once the right target is indicated by a nonspatial cue, the corresponding directional

signal is increased, while the other one is suppressed, thus, suggesting two concurrent motor

plans vying for execution (but see Dekleva et al. 2018 [13] for an alternative interpretation).

Similarly, Klaes and colleagues [10] have found that neurons in the frontoparietal reach areas

of monkeys simultaneously represent two different movements associated with two different
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sensor-action rules, when it was made unclear to the monkey which of the rules to apply. In a

similar vein, Cui and colleagues [2] have found in a nonspatial effector choice task (saccade vs.

reach) that the parietal reach region encodes both potential action plans, whereas the dorsal

area 5d only reflected the ultimately selected effector. A recent fMRI study [37] also reported

supportive evidence for the affordance competition hypothesis in humans, demonstrating that

task-relevant information biases activity of primary motor regions before movement onset

and that coupling with fronto-parietal regions increased when the evidence for competing

actions was similar. Other studies that have supported the affordance competition hypothesis

in humans have mostly concentrated on behavioral features suggestive of concurrent planning

[15, 41].

Other studies [1, 42, 43] have argued that decisions between different options are made

upstream in prefrontal brain areas and are independent of the particular sensorimotor contin-

gency of the task, arguing against the notion of concurrent action planning. However, deci-

sions in these tasks usually involve choices between goods (e.g. apple vs. banana), where the

effector is not directly relevant for the choice, even though different action costs can be inte-

grated within the valuation of different options [42]. This is in contrast to action-based deci-

sions like in our study, where the choice is tightly linked with the effector through the spatial

nature of the stimuli. Our study clearly falls in the latter category and fits with previous results

compatible with concurrent planning. In how far these results can be generalized to decisions

between nonspatial stimuli with different values is an open question that might require the

careful comparison of different stimulus and task designs.

In contrast to neurophysiological studies in monkeys that showed the representation of

multiple action plans in PCC and PMd [10, 34], which is compatible with our results, we addi-

tionally find neural correlates of multi-target planning costs also in other brain areas such as

the cerebellum and the AIC. A contribution of these areas in our task is not unexpected. First,

cerebellar activation related to motor control and movement sequence processing [44] is

mainly found in intermediate and lateral lobules VI and VIII [45, 46], which is consistent with

the localization of our cerebellar ROIs. More importantly, recent electrophysiological evidence

from monkeys performing a delayed-response task engaging hand movements clearly revealed

preparatory activity in the ipsilateral hemisphere of lobules V and VI, which markedly mir-

rored activity profiles found in premotor cortex [47]. Note that one reason why previous fMRI

research using comparable tasks did not report planning activity in the cerebellum is that this

structure was simply not included in the scanning volume (compare Lindner et al. 2010 [18]).

Second, the AIC is also active during delayed response tasks and for a variety of task conditions

with and without motor planning components [48, 49]. For this reason, the AIC likely does

not contribute to motor planning proper. Activity in the AIC can be more likely attributed to

metacognition and a “feeling of knowing” (e.g. of a correct decision or of a memory item) [48,

49]. Accordingly, in the context of our study insular activity could refer to a “feeling of know-

ing” the relevant targets and/or movement plans.

Importantly, while we found broad activation across multiple brain areas during multi-tar-

get planning, we show that neural correlates of prospective motor planning in humans are

concentrated in areas previously related to motor planning, but not in control areas V1l and

M1l. We compare the activity modulation in all relevant areas based on a normative informa-

tion theoretic bounded rationality model, where we find the highest explanatory power in

terms of R2 for area SPL. Hence, our results support a leading role of human SPL in prospec-

tive parallel planning of target-directed movement sequences. It would be clearly interesting to

further investigate whether or not our network of planning-ROIs would differentially contrib-

ute to delay period activity during prospective parallel planning vs. serial processing (i.e. target

memory). While our study was not designed in a way that would allow for such analyses,
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preliminary results of an earlier multivariate decoding analyses do not support such an

assumption [50].

Limitations in memory and planning. In our study we have investigated limitations of

concurrent planning in terms of the number and the sophistication of multiple plans. Limita-

tions in parallel motor performance have been previously studied in dual-task designs. Consid-

ering the cognitive costs of dual task performance, serial processing frameworks [51, 52] were

originally proposed that aim to explain delayed reaction times for secondary tasks [53].

Accordingly, the Response Selection Bottleneck (RSB) model [54] assumes that the crucial lim-

itation (or bottleneck) in dual-task performance is located in the response selection stage. In

contrast, capacity sharing models [55, 56] allow for sharing of cognitive resources in the cen-

tral processing stages of two tasks. By manipulating task features like stimulus onset asyn-

chrony and no-go trials, it has also been argued that subjects can somewhat switch between

serial and parallel processing strategies [57–61]. As demonstrated in the current study, our

information-theoretic model assumes constrained information processing for action planning

and could be adapted to either delayed planning or concurrent prospective planning scenario,

to allow for a quantitative analysis.

Another important limitation is imperfect memory of the stimulus during action planning.

The concept of working memory as a short-term active storage of information [62] relates to

the idea of a limited capacity control process involved in keeping or discarding information

[63]. Quantifying the limited information capacity of working memory has been addressed in

numerous studies, for example on visual working memory [19, 21–24, 64] and spatial working

memory [26, 27, 65, 66] with growing evidence that they share a common resource limitation

[67, 68]. In terms of neurophysiology, it has been suggested early on, that memory limitations

can be considered as the result of the limited computational capacity of single neurons [69]. In

our model, we have represented limitations of working memory more abstractly, by an inter-

nal variable that can only assume a finite amount of values and whose precision is curtailed by

a corresponding information constraint. This abstraction is based on the idea that any infor-

mation processing limitation can ultimately be thought of as a limitation in the amount of

uncertainty that can be reduced [70].

Information theory, behavior and neural signals. Our study belongs to a large family of

investigations that have used information theory to quantitatively model information process-

ing constraints in behavior and neural signals. In behavioral experiments information capacity

limits have been established for working memory, attention, perceptual identification, deci-

sion-making, motor planning and execution [19, 29, 71, 72]. Informational complexity in

behavioral tasks is often related to reaction or movement times and task accuracy. The most

well-known examples of this are Hick’s law that relates reaction time linearly to the entropy of

a choice stimulus and Fitts’ law that relates movement time to an index of difficulty measured

in bits [73, 74]. However, similar approaches have also been used to estimate the capacity for

cognitive control depending on the entropy of the stimulus [75]. In our task, reaction times

and error rates increased with higher task complexity, as expected from previous studies on

motor sequence learning [3]. However, directly relating this change in reaction time to infor-

mation complexity of our two hypotheses is confounded, because it is not clear whether the

increase in reaction time during the response phase stems from a more complex decision

between different ready-made motor plans (H1) or whether the increase results from finishing

a single motor plan based on the incomplete uncertainty reduction during the delay phase

(H0).

Importantly then, by going beyond the behavioral analysis, we could use the different infor-

mation profiles for concurrent and serial planning to regress the fMRI signal. However, simply

applying information-theoretic concepts to brain signals without taking into account the
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behavioral task, would not have been enough to distinguish between the two hypotheses. Pre-

vious neurophysiological studies have, for example, used mutual information between stimuli/

behavior and neural signals to establish a neural code either for encoding or decoding [76],

quantified the richness of conscious states within a theory of integrated information [77], or

related activity in distinct regions of the prefrontal cortex to sensorimotor and cognitive con-

trol [78, 79]. A considerable number of imaging studies have also found neural correlates of

informational surprise in sensory areas of the brain [80–82] related to prediction error in the

context of predictive coding theory, with a wide range of applications ranging from action

understanding in the mirror neuron system [83–85] and value-based decision-making [86] to

hierarchical motor control [87]. However, in order to go beyond information-theoretic quanti-

fication of neural signals we need to consider both information constraints and task-related

constraints [88].

Bounded rationality. In contrast to many previous studies that have relied on information

theory to estimate neural processing capacity, we have employed a class of bounded rationality

models that trade off both utility and information processing costs [89–93], similar to the rate

distortion trade-off in information theory [94] that defines relevant information when band-

width is limited. Such a generalized trade-off makes this class of models applicable to tasks

with arbitrary utility function. Moreover, using information constraints on multiple variables,

we can design optimality models that simultaneously explain behavior and optimal informa-

tion flow between internal variables that can be correlated with fMRI BOLD signals. In previ-

ous behavioral studies, the trade-off between utility and information has been used in the

context of rational inattention and quantal response equilibria in economic decision-making

[95, 96], perceptual representation in identification and memory tasks [72, 97], reaction time

and endpoint variability for motor planning under time constraints [29], abstraction in senso-

rimotor processing [30], decision-making by sampling [98] and planning in a Markov envi-

ronment [99, 100].

Similar to these previous studies where behavioral task performance and information pro-

cessing capacities were measured, we here use a normative probabilistic optimality model for

uncertainty reduction and concurrent processing. In this study, however, we go a step further

and relate the predicted information flow with fMRI activity during motor planning. In partic-

ular, measuring the activity of premotor and parietal planning areas during the delayed

response tasks allowed us to measure planning capacity for movement preparation. As the

bounded rationality framework allows for multiple information constraints including internal

variables for memory and action planning, we could regress fMRI activity with respect to these

different information quantities and we could test the hypothesis of concurrent prospective

planning (H1) against the null hypothesis of mere uncertainty reduction (H0). This approach

rests on the assumption that brain signals reflect at least approximately an optimal information

flow—an assumption that has been applied very successfully in the past, for example in the

context of sparse coding [101, 102]. Ultimately, it is an empirical question for future studies,

how far this class of models can be developed in their explanatory power, but they open a new

exciting avenue that allows relating both behavior and neural representations to optimal infor-

mation processing assumptions.

Materials and methods

Experimental methods

Ethics statement. Participants provided written informed consent. The study was

approved by the ethics committee of the Faculty of Medicine at the University of Tübingen

(837/2019BO2).
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Subjects. Nineteen right-handed healthy subjects (11 females, 8 males) in the age range of

22 and 41 years (mean = 27.5, SD = 4.5) participated in the experiment and were included in

further data analysis. Initially, we recruited 22 subjects, but data of three subjects was excluded

because of strong movement artifacts.

Experimental paradigm. We employed a delayed response task (DRT), in which subjects

were instructed to generate sequences of key presses with four possible keys to control right,

left, up, and down of a cursor movement. Each trial started with a random fixation phase of

13.5—16 sec (FIX), where a fixation cross was presented in the middle of the four fields and

should be fixated with the eyes. This fixation period was followed by three principle task

phases: cue presentation, delay/planning and response. In the cue presentation phase, subjects

were shown one or multiple potential targets (four different target planning conditions cT 2
{‘1’, ‘11’, ‘2’, ‘4’} as detailed below) with one of three possible sequence lengths (three different

step conditions cS 2 {2, 3, 4}). The timeline of a DRT is illustrated in Fig 1.

Cue presentation phase. The display area is divided into four panels each made up of 3x5

fields as shown in Fig 1). Each field represents a target position that can be reached with a cur-

sor. Panels could be surrounded by a frame, which indicated that the highlighted target posi-

tion within the frame should be taken into consideration as a potential target for motor

planning. In all trials (including the training phase), only target positions with a sequence

length of 2, 3 or 4 were considered due to the step conditions cS 2 {2, 3, 4} of the experimental

design. The potential target positions were always shown for 3 sec (CUE). Depending on the

target planning condition, there were four different kinds of cues:

• ‘1’-Target Planning Condition: In this one-fold planning condition only one panel was

framed containing a single highlighted potential target location that always corresponded to

the actual target location in the response phase.

• ‘11’-Target Planning Condition: In this two-fold planning condition there was also a single

framed panel that contained two potential targets highlighted, only one of which was selected

as the actual target during response phase.

• ‘2’-Target Planning Condition: In this two-fold planning condition, two panels were framed,

each containing a single highlighted potential target from which one was selected for

execution.

• ‘4’-Target Planning Condition: In this four-fold planning condition all four panels were

framed, each containing a single potential target highlighted for planning, from which one

was selected in the response phase.

Cue presentation was followed by a mask of 1 sec (MASK), which was intended to “over-

write” any after-images of the cue.

Planning phase. The planning phase was a delay phase of 14—16.5 sec (DEL) following the

mask to allow subjects to plan one or multiple movement paths based on the information they

obtained from the visual target cues. During this time, only a fixation cross was displayed in

the center of the screen. From trial start to the completion of the planning phase, subjects had

to keep their finger in rest position and where therefore asked to press the central button of the

input device.

Response phase. In the response phase (RES), the actual target was determined from the set

of potential targets and a go-signal. This go-signal comprised a half-size-frame encompassing

six fields (including the actual target) was displayed around a part (3/5) of one of the four field

panels, however, the correct target itself was not highlighted in any way. Accordingly, the cor-

rect target field could only be uniquely identified through this go-signal if subjects
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remembered the appropriate information from the previously displayed target cues. Subjects

were instructed to perform the movement sequence towards the inferred target field as fast

and directly as possible within the allowed time window of 3 sec (otherwise the trial was termi-

nated with an incomplete response). Depending on the distance of the target (sequence

length), only the first 2, 3 or 4 key presses were considered before the trial was terminated.

Subjects could observe the corresponding cursor movement and got immediate visual feed-

back of their performance at the end of the trial, by highlighting the cursor position in green

(red) when the final reached position was correct (incorrect).

Besides DRT trials, we also included control trials (CT) in which no planning was possible

during the delay phase. Like the other DRT trials, control trials were comprised an initial fixa-

tion phase and the three principal task phases—cue presentation, planning and response. Dif-

ferent to the DRT, however, in the cue presentation phase, no targets were highlighted. Hence,

subjects were not informed about any potential target location and therefore could not plan

specific movements during the delay planning phase. In the response phase, the actual target

was indicated directly by highlighting the corresponding target field, so that the movement

sequence to reach the target could only be planned once the actual target location was

revealed.

Our experiment usually consisted of four blocks of 30 trials each (one subject had five

blocks, two subjects only three blocks) typically resulting in a total of 120 trials. The overall

experiment lasted* 80 min per subject. Each block consisted of 6 control trials and 6 trials

for each target planning condition. Moreover, the 6 trials had an equal share of step conditions,

i.e. 2 trials with sequence length of 2, 3, and 4, respectively. The order of the trials in any given

block was permuted randomly.

In our experimental setup we used a Windows 7 based computer with R2007b (The Math-

Works, Inc.) and the Cogent Graphics Toolbox (developed by John Romaya at the LON at the

Wellcome Department of Imaging Neuroscience) to generate the visual stimuli for the experi-

mental trial sequences and to record and store subjects’ behavioral responses and all relevant

information associated with the visual stimuli sequence. The visual stimuli were back-pro-

jected by an LCD projector (1024x768 pixels; 60 Hz refresh rate) onto a semi-transparent

screen at the end of the scanner bore behind the head coil. Subjects viewed the screen via a

mirror that was mounted on top of the head coil. Screen dimensions amounted to 28 deg x 37

deg visual angle.

Behavioral performance monitoring. The instructed finger movements were monitored

using the 5 Button Diamond Fibre Optic response device (Current Design, Philadelphia, US)

operated by repetitive thumb flexions. From this we could extract reaction and movement

times as well as error rates defined by the frequency of target misses.

For all behavioral analyses, we excluded trials, when movements were not initiated (1%) to

compute reaction times and error rates and trials, when movements were not initiated or com-

pleted (2%), to compute movement times.

Additionally, eye movements were monitored at 50 Hz sampling rate throughout the scan-

ning sessions using an MRI-compatible eye camara and infra-red illumination system (SMI

SensoMotoric Instruments) and Viewpoint Eye Tracker software (Arrington Research, Scotts-

dale, US). Eye position recordings were filtered using a 10 Hz Chebyshev Type II low-pass fil-

ter. Saccades were detected using an absolute velocity threshold of 30˚/s (for a single recording

of one subject 40˚/s). Eye data from 2 subjects were excluded from the analysis because of

incompleteness.

We performed 2-way repeated measures ANOVAs (rmANOVA) with the factor target con-

dition (‘1’, ‘11’, ‘2’, ‘4’ and CT) and factor sequence length (2, 3, or 4) for the behavioral analysis

of reaction times, movement times, error rates and saccades. In addition we applied pairwise
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post-hoc comparisons of the respective marginal means. For this and all other rmANOVAs we

tested for sphericity (Mauchly’s test) and applied the Greenhouse-Geisser correction whenever

the assumption of sphericity was violated.

MRI image acquisition and analysis. MRI images were acquired on a 3 T Siemens

PRISMA scanner (Siemens, Ellwangen, Germany). A T1-weighted magnetization prepared

rapid-acquisition gradient echo (MP-RAGE) structural scan (176 slices, 256x256 voxel resolu-

tion, 1x1 mm inplane voxel size, slice thickness = 1 mm, gap = 0 mm, repetition time = 2300

ms, echo time = 2.96 ms, field of view = 256 mm) was obtained in parallel to the task training.

Functional T2�-weighted gradient-echo planar imaging (EPI) volumes (48 sclices, 64x64 voxel

resolution, 3x3 mm inplane voxel size, slice thickness = 3 mm, gap = 0 mm, repetition

time = 2000 ms, echo time = 35 ms, field of view = 1344 mm, flip angle = 75 deg) completely

covered the cerebellar cortex as well as subcortical structures. Per subject we obtained 600 EPIs

during a single session of 19.75 min length, resulting overall in 2400 EPIs for 16 of the subjects

(1800 and 2177 for prematurely terminated recordings and 3000 for a subject with an extra-

session). Functional image processing was conducted with the SPM12 software package (Well-

come Centre for Human Neuroimaging, London, UK, Matlab 2016a Release) and included

spatial realignment of all functional images to the first EPI image as a reference, co-registration

of the anatomical T1 image and the mean functional EPI image, spatial normalization to the

Montreal Neurological Institute space (MNI-template) with voxel size of 1x1x1 mm3 for T1

and 3x3x3 mm3 for EPI images and spatial smoothing of the normalized EPIs with a Gaussian

filter (7 mm full-width at half maximum (FWHM)).

Functional fMRI analysis was first performed on an individual level (first-level analysis)

and then on the group level (second-level analysis). The subject-specific analysis of fMRI

BOLD activity is based on a general linear model (GLM). To this end for each session we speci-

fied 5 boxcar regressors for the cue phase of 3 sec (CUE) for each of the four target planning

conditions (cT) and the control condition, as well as 5x3 boxcar regressors both for the delay

phase of 14—16.5 sec (DEL) and for the response phase of 3 sec (RES), namely for each of the

four target planning conditions (cT) and the control condition and separately for each of the

three step conditions (cS). All aforementioned boxcar regressors were convolved with the

canonical hemodynamic response function in SPM12. In addition, the 6 motion parameters

from the realignment procedure were additionally included as regressors of no interest. The

fixation phase was not explicitly modeled and served as an implicit baseline. Each experimental

session therefore was modelled separately with 41 regressors for each subject (5 x CUE + (5�3)

x DEL + (5�3) x RES + 6 x motion regressors).

Regions of interest (ROIs) were selected as brain areas that exhibited significant planning-

related activity in the DRT conditions compared to the control-task across subjects. Given the

estimated regressor parameters of the GLM, in the 2nd-level analysis, we first determined sig-

nificant voxels whose t-values for the contrast of interest (DRTDelay> CTDelay) were below a

threshold of p< 0.05 (t-test across subjects’ first level contrast images for DRTDelay> CTDelay

family-wise error FWE-corrected for multiple comparisons). We found significant bilateral

activities in brain areas typically involved in motor planning and visual memory [18]: posterior

parietal cortex (superior parietal lobule (SPL) and anterior intraparietal sulcus (antIPS)), dor-

sal premotor cortex (PMd), dorsolateral prefrontal cortex (DLPFC), anterior insular cortex

(AIC), cerebellum in lobulus VI and VIII (cer6 and cer8) and supplementary motor area

(SMA). As a group coordinate of a ROI, we selected those voxel coordinates that were charac-

terized by a maximum t value in the group analysis. Accordingly, we defined 15 group coordi-

nates for the aforementioned areas (note that for the SMA, functional activity could not

reliably be associated with either left or right hemisphere and therefore we only defined a sin-

gle ROI). Also, we included left primary motor cortex (M1l) due to its contribution for our
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task related finger movements of pressing a button and therefore to control for activity related

to movement execution directly. Similarly, to control for stimulus related activity we included

left primary visual cortex (V1l). We identified the two anatomical regions of primary visual

cortex (V1l) and primary motor cortex (M1l) with the corresponding group contrasts

(CUE>0) and (RES−CUE; this was to account for the visual information present in the

response phase).

For each individual subject, we mapped group ROI coordinates to individual ROI coordi-

nates. This was done for each ROI, namely by identifying the coordinates of the local statistical

maximum in the subject-specific first-level contrast (DRTDelay> CTDelay) that was closest to

the group-coordinates.

Group MNI coordinates of all 17 defined ROIs together with the average spatial dispersion

of the ROI center on the individual subjects can be found in Supplementary S9 Table.

For each subject and ROI, we extracted the GLM mean model parameters for the regressors

of interest from a 3 mm radius sphere around each individual ROI coordinate. These beta

parameters were (session-wise) normalized to the residual beta for any given session (i.e. base-

line) to provide an estimate of the %-signal change of the fMRI signal. We computed rmANO-

VAs over fMRI beta estimates with factor target planning condition (‘1’, ‘11’, ‘2’, ‘4’) and with

factor sequence length (2, 3, 4). In addition, event-related time courses of the fMRI-signal time

courses (ERTs) of signal intensities were extracted using NERT4SPM [18].

Theoretical methods

Bounded rationality model. We applied the information-theoretic bounded rationality

framework [28, 103] to our experimental task, where information about the hidden world state

w 2W (the exact target location) is revealed in two steps, first by the initial cue stimulus s1 2

S1 indicating all possible target locations, and after a delay by the go-signal s2 2 S2 that

resolves the remaining uncertainty about the actual hidden target w. After seeing the cue stim-

ulus, the agent can form a memory m 2M during the planning delay phase, before perceiving

the cue stimulus s2 and subsequently selecting an action a 2 A that corresponds to a move-

ment sequence leading to a target location. The sets W, S1, S2, M and A are finite and dis-

crete, with jWj ¼ 40 possible target locations (in distance of 2,3 or 4 steps), jAj ¼ 80 possible

movement sequences, jS2j ¼ 8 possible half-sized frames for each panel and jS1j ¼ jMj ¼
820 possible combinations of potential targets over all conditions. For any particular target

condition cT and step condition cS, we then get a uniform distribution over stimuli

pðs1jcT; cSÞ ¼

1

NcT ;cS

if s1 2 ScT ;cS
� S1

0 otherwise

8
><

>:
ð1Þ

where ScT ;cS
is the subset of stimuli that belong to the condition (cT, sT) and NcT ;cS

¼ jScT ;cS
j is

the number of stimuli in that condition, where N1,2 = 8, N1,3 = 16, N1,4 = 16, N11,2 = 4, N11,3 =

16, N11,4 = 16, N2,2 = 24, N2,3 = 96, N2,4 = 96, N4,2 = 16, N4, 3 = 256, and N4,4 = 256. The mar-

ginal distribution over stimuli is given by pðs1Þ ¼
P

cT ;cS
pðct; cSÞpðs1jcT; cSÞ where all conditions

are equally likely with pðcT; cSÞ ¼ 1

12
. As the second stimulus s2 surrounds any potential target

from s1 with a rectangular half-frame, the distribution p(s2|s1) is a uniform with non-zero

probability over a single value of s2 when cT = ‘1’, two possible values of s2 when cT = ‘11’ or cT
= ‘2’, or four possible values of s2 when cT = ‘4’.

In the model, the agent chooses the action a to maximize the task utility U(w, a) under the

constraint that only a certain amount of information-processing can be achieved when
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forming the memory m and selecting the action a. For our task the utility function U is a sim-

ple 0/1-utility: it is 1 whenever the action a is compatible with the hidden target w and 0

otherwise.

Since information-processing can be unreliable, the agent’s memory state and action policy

are formalized by probability distributions p(m|s1) and p(a|m, s2), such that the amount of

information processing can be captured by the Kullback-Leibler divergence between the prior

distributions p(m) and p(a) and the posterior distributions p(m|s1) and p(a|m, s2), respectively.

The bounded rational decision-making problem can then be written as a constrained optimi-

zation problem

maxpðajm;s2Þ;pðmjs1Þ E½U� �
1

b1

IðM; S1Þ �
1

b2

IðA;MÞ þ IðA; S2jMÞð Þ

� �

: ð2Þ

where the expectation is taken with respect to the distribution

pðw; s1; s2;m; aÞ ¼ pðwjs1; s2Þpðs1Þpðs2js1Þpðmjs1Þpðajm; s2Þ; ð3Þ

with p(s1), p(s2|s1) and p(w|s1, s2) defined by the task, and p(m|s1) and p(a|m, s2) left for optimi-

zation. Accordingly, the expected utility is given by

E½U� ¼
X

a;s1 ;s2 ;w

pðwjs1; s2Þpðs2; s1Þpðmjs1Þpðajm; s2ÞUðw; aÞ ð4Þ

where U(w, a) = 1 if the action a leads to a target hit with target w and U(w, a) = 0 otherwise.

Thus, we have E[U] = 1 − Error Rate.
The information quantities I(M, S1) and I(A; M) + I(A; S2|M) respectively measure the aver-

age Kullback-Leibler divergence between the distributions p(m) and p(m|s1) for memory for-

mation and the average Kullback-Leibler divergence between the distributions p(a) and p(a|m,

s2) for generating a specific action given memory m and stimulus s2. The parameters β1 and β2

reflect the degree of boundedness, where β1,2!1 reproduces a Bayes-optimal maximum

expected utility decision-maker. The bounded optimal solution for Eq (2) is given by

pðmjs1Þ / pðmÞeb1DFðm;s1Þ

pðmÞ ¼
X

s1

pðs1Þpðmjs1Þ

pðajm; s2Þ / pðaÞe
b2

P

w
pðwjm;s2ÞUðw;aÞ

pðaÞ ¼
X

s1 ;s2 ;m

pðajm; s2Þpðmjs1Þpðs2js1Þpðs1Þ

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð5Þ

with

DFðm; s1Þ ¼
X

a;s2 ;w

pðajm; s2Þpðs2js1Þpðwjs1; s2ÞUðw; aÞ �
1

b2

X

a;s2

pðajm; s2Þpðs2js1Þ log
pðajm; s2Þ

pðaÞ

� �

and with p(w|m, s2) determined from Eq (3).

Modelling information-processing during delay phase. If we want to apply Eq (5) to

model planning during the delay phase, we have to be aware that the decision rule p(a|m, s2)

requires the agent to know the go-signal s2 when deciding about the action a, an information

that is not available during the delay period. We consider two hypotheses for information-pro-

cessing during the delay phase.
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• Hypothesis 0: Delayed Planning. Planning of the action a according to p(a|m, s2) is delayed

until the response phase, once s2 is known. The delay phase is only used for uncertainty

reduction, modeled by the mathematical transition from the prior p(m) to the posterior

p(m|s1) and in the space of actions from p(a) to p(a|m). In any particular condition (cT, cS),
we would then expect the information costs

I1ðcT; cSÞ ¼
X

s1

pðs1jcT; cSÞ
X

m

pðmjs1Þ log
pðmjs1Þ
pðmÞ ð6Þ

I2ðcT; cSÞ ¼
X

s1

pðs1jcT; cSÞ
X

m

pðmjs1Þ
X

a

pðajmÞ log
pðajmÞ
pðaÞ ð7Þ

for memory formation and action processing respectively, and the average over all condi-

tions given by
P

cT ;cS
pðcT; cSÞI1ðcT; cSÞ ¼ IðM; S1Þ and

P
cT ;cS

pðcT; cSÞI2ðcT; cSÞ ¼ IðA;MÞ.

• Hypothesis 1: Prospective Planning. Once the uncertainty over actions is reduced to p(a|m)

by observing s1, all possible s2 are anticipated in the delay phase, and for each s2 an action is

planned according to p(a|m, s2). Depending on available information resources, the plans

can be more or less precise. Once the actual go-signal s2 is revealed during the response

phase, one of the planned actions can be immediately carried out. During the delay phase in

any particular condition (cT, cS), we would then expect the information costs

I1ðcT; cSÞ ¼
X

s1

pðs1jcT; cSÞ
X

m

pðmjs1Þ log
pðmjs1Þ
pðmÞ ð8Þ

I2ðcT; cSÞ ¼ NT;S

X

s1

pðs1jcT; cSÞ
X

m

pðmjs1Þ
X

s2

pðs2js1Þ
X

a

pðajm; s2Þ log
pðajm; s2Þ

pðaÞ ð9Þ

for memory formation and action processing respectively, with N1,S = 12, N11,S = 22, N2,S = 22

and N4,S = 42, and the average over all conditions given by
P

cT ;cS
pðcT; cSÞI1ðcT; cSÞ ¼ IðM; S1Þ and

P
cT ;cS

1

NT;S
pðcT; cSÞI2ðcT; cSÞ ¼ IðA;MÞ þ IðA; S2jMÞ.

Assuming a linear relationship between informational surprise and brain signal fMRI(cT,

cS) for each condition (cT, cS), we get a linear regression model

fMRIðcT; cSÞ ¼ a1I1ðcT; cSÞ þ a2I2ðcT; cSÞ þ a0;

with model parameters αi, i = 0, 1, 2.

For each of the two hypothesis H0 and H1, we tested the multilinear regression between the

fMRI activity modulation and the two information modulations predicted by the models, and

with a nested model F-statistic (α = 5%), to find if I2 significantly improves the regression.

Therefore, we applied the statistical test to the models with subject’s individual best fitting

capacities and for individual fMRI activities in all relevant ROIs.

In a supplementary analysis, we repeated the regression for three different non-linearity

assumptions regarding the relation between BOLD activity and information, namely quadratic

fMRIðcT; cSÞ ¼ a1I1ðcT; cSÞ
2
þ a2I2ðcT; cSÞ

2
þ a0;
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logarithmic

fMRIðcT; cSÞ ¼ a1 log ð1þ I1ðcT; cSÞÞ þ a2 log ð1þ I2ðcT; cSÞÞ þ a0;

or sigmoidal

fMRIðcT; cSÞ ¼ a1sðI1ðcT; cSÞÞ þ a2sðI2ðcT; cSÞÞ þ a0;

where sðxÞ ¼ 1

1þexpð� xÞ. This allows to draw conclusions on the robustness of our hypothesis

test results (see Supplementary S4 Fig and Supplementary S1 Table).

Supporting information

S1 Fig. fMRI time course for different ROIs. Time course of raw activity as percentage of sig-

nal change normalized to pre-stimulus baseline and delay-activity estimates (beta parameter

from GLM) in each planning condition in planning-related areas (PMdl, antIPSl, DLPFCl,

AICl, cer6r, cer8r) show increasing BOLD amplitude with increasing task complexity. Primary

left motor cortex (M1l) as a control area shows no significant difference between conditions.

We report across-subjects averages and within-subjects variance as the normalized standard

error (according to [31]) and average MNI-coordinates (x, y, z in mm) for each ROI. Statistical

results are indicated with ��� for p< = 0.001, �� for 0.001< p< = 0.01, � for 0.01< p< 0.05,

and ns for non-significant results (p> 0.05).

(PDF)

S2 Fig. Model comparison for different ROIs. Similar to SPll, in all other planning related

ROIs (PMdl, antIPSl, DLPFCl, AICl, cer6r, cer8r), a within-subject comparison of the R2-val-

ues for the two hypotheses H0 and H1 showed that the information profiles under the prospec-

tive planning hypothesis H1 provide a significantly better explanation of the fMRI modulation

than the delayed planning hypothesis H0 (p< 0.0001 rmANOVA). The bounded rationality

model predictions explain less of the fMRI activity modulation in control areas V1l and M1l

with no significant difference between the model hypothesis (p = 0.88 and p = 0.84). We found

that the correlation of measured brain activities in all other planning related ROIs (SPLl,

PMdl, antIPSl, DLPFCl, AICl, cer6r, cer8r) and primary motor area (M1l) was significantly

increased for model predictions with subject-individual bounds (p< 0.0001 rmANOVA)

compared to an unbounded maximum capacity model. Only for control area V1l there was no

significant difference between the bounded and unbounded model (p = 0.131). Statistical

results of rmANOVAs are indicated with ��� for p< = 0.001 and ns for non-significant results

(p> 0.05).

(PDF)

S3 Fig. Expected information costs for hypothesis H0. Theoretical expected information

costs I1 (left) and I2 (right) of the delayed planning hypothesis is based on model parameters

determining memory and planning capacities fitted for all individual subjects (hypothesis H0

“bounded”). Histograms represent the frequency distributions of the information costs,

dependent on task conditions. Information values varied between bounded model predictions

regressed to subjects fMRI data compared to the model predictions in the not-bounded case

(in blue). Compared to the parallel planning hypothesis H1, information I2 for action process-

ing is lower and planning postponed until the s2-stimulus reveals the actual target location in

the response phase of the experiment.

(PDF)
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S4 Fig. Model comparison for non-linear assumptions. Comparison of different non-linear

assumptions (quadratic, sigmoidal, logarithmic) between fMRI correlates and predicted infor-

mation values for model fits of example area SPLl. Similarly to the linear assumption (compare

Fig 5), R2-values of the regression analysis of the bounded rationality model under the pro-

spective planning hypothesis H1 are significantly higher than for the delayed planning hypoth-

esis H0 for the regressions of measured brain activities in SPLl as well as in all other planning

related ROIs (also compare Supplementary S1 Table). Likewise, compared to the not-bounded

H1 model hypothesis with maximum capacities (H1 not-bounded), the bounded H1 model

hypothesis (H1 bounded) with subject individual capacity fits could significantly better predict

measured fMRI data in SPLl as well as in all other planning related ROIs (also compare Supple-

mentary S1 Table). Statistical results of rmANOVAs are indicated with ��� for p< = 0.001.

(PDF)

S1 Table. P-values for linear and non-linear assumptions. P-values of hypothesis tests H0 vs

H1 and H1 not-bounded (n-b) vs H1 bounded (b) for linear and different non-linear relation

assumptions (quadratic, sigmoidal, logarithmic) between fMRI correlates and predicted infor-

mation values.

(PDF)

S2 Table. R2-values for hypothesis H0 and H1. R2-values of the linear regression analysis of

the bounded rationality model under the hypothesis H0 and H1. Group median with lower

and upper quartiles of the bounded model assumptions (best fitting information capacities of

individual subjects) are compared to the not-bounded case.

(PDF)

S3 Table. H0 bounded hypothesis. Expected information E½I1� over all experimental condi-

tions for all 19 subjects, measured in bits. For maximal capacity, information E½I1� ¼ 4:428

bits.

(PDF)

S4 Table. H0 bounded hypothesis. Expected information E½I2� over all experimental condi-

tions for all 19 subjects, measured in bits. For maximal capacity, information E½I2� ¼ 2:994

bits.

(PDF)

S5 Table. H1 bounded hypothesis. Expected information E½I1� over all experimental condi-

tions for all 19 subjects, measured in bits. For maximal capacity, information E½I1� ¼ 4:428

bits.

(PDF)

S6 Table. H1 bounded hypothesis. Expected information E½I2� over all experimental condi-

tions for all 19 subjects, measured in bits. For maximal capacity, information E½I2� ¼ 14:109

bits.

(PDF)

S7 Table. H0 bounded hypothesis. Expected utility E½U� over all experimental conditions for

all 19 subjects.

(PDF)

S8 Table. H1 bounded hypothesis. Expected utility E½U� over all experimental conditions for

all 19 subjects.

(PDF)
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S9 Table. ROI coordinates. MNI coordinates of the group coordinates and average spatial dis-

persion of the ROI centers on individual subjects around the group ROI coordinates.

(PDF)

S10 Table. Leave-one-out-cross-validation. Predictive ability of the suggested models was

evaluated using leave-one-out cross-validation. Multi-linear regression of the measured fMRI

modulation and the predicted information values I1 and I2 was performed on data with 11 out

of 12 conditions in a repeated manner and regression parameters used to predict the fMRI

activity in the left-out condition. In all brain areas except the control areas M1l and V1l, the

prediction error under the concurrent prospective planning hypothesis H1 is significantly

lower than the prediction error under the delayed planning hypothesis H0. Similarly, under

the prospective planning hypothesis H1 the “bounded” models with subject-individual best-fit-

ting information capacities (H1 b) have a significantly lower prediction error in the cross-vali-

dation than the “not-bounded” models with maximum capacity (H1 n-b). Non-parametric

pairwise comparison was performed using Wilcoxon signrank test with an Bonferroni cor-

rected significance level (p = 0.00294), when testing for all the 17 ROIs (left and right hemi-

spheres, see Methods).

(PDF)
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