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Abstract: Autophagy, an intracellular degradation mechanism, has many immunological functions
and is a constitutive process necessary for maintaining cellular homeostasis and organ structure. One
of the functions of autophagy is to control the innate immune response. Many studies conducted
in recent years have revealed the contribution of autophagy to the innate immune response, and
relationships between this process and various diseases have been reported. Inflammatory bowel
disease is an intractable disorder with unknown etiology; however, immunological abnormalities
in the intestines are known to be involved in the pathology of inflammatory bowel disease, as is
dysfunction of autophagy. In Crohn’s disease, many associations with autophagy-related genes, such
as ATG16L1, IRGM, NOD2, and others, have been reported. Abnormalities in the ATG16L1 gene, in
particular, have been reported to cause autophagic dysfunction, resulting in enhanced production
of inflammatory cytokines by macrophages as well as abnormal function of Paneth cells, which are
important in intestinal innate immunity. In this review, we provide an overview of the autophagy
mechanism in innate immune cells in inflammatory bowel disease.

Keywords: autophagy; innate immunity; immune cell; inflammasome; Paneth cell; inflammatory
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1. Introduction

The gastrointestinal tract is continuously involved in regulating the gut flora, modulating immune
responses to food antigens and other substances, and maintaining homeostasis. Inflammatory
bowel disease (IBD) occurs when this homeostasis is disrupted. The innate immune response is
indispensable for maintaining homeostasis, and abnormal innate immune activity is deeply involved in
the pathogenesis of IBD; research in this field has made substantial advancements in recent years [1–3].
To date, more than 200 IBD disease susceptibility loci have been identified by genome wide association
studies (GWASs) [4,5]. Within these 200 loci, based upon single nucleotide polymorphism frequencies
in patients with IBD versus controls, are approximately 1500 potential associated genes [6,7]. Numerous
molecules involved in producing innate immune responses are also included among these loci.

Cells closely involved in the innate immune response with respect to IBD include blood cells,
macrophages, dendritic cells, Paneth cells, and goblet cells, which are also involved in the pathology of
IBD [8–10]. These cells have been found to play important roles in the development of abnormalities,
including maintaining homeostasis against stress at the cellular level and modulating autophagy.

In this review, we outline the mechanism of autophagy in innate immune cells in IBD.
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2. Pathology and Pathogenesis of IBD

IBD is a chronic inflammatory disease involving idiopathic inflammation, primarily in the
gastrointestinal tract; when defined more specifically, this condition encompasses ulcerative colitis
(UC) and Crohn’s disease (CD). Both are characterized by onset at a young age and the number
of affected patients has risen sharply in recent years in Europe, the United States of America, and
Japan [11]. Genetic predisposition (innate and acquired immunity, cytokine, and racial difference) and
environmental factors (meal, drug, smoking, and infection) are greatly involved in the onset of IBD,
and intestinal immune abnormalities are caused by the involvement of the state of dysbiosis, which is
believed to cause IBD [11–15] (Figure 1).
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Figure 1. Pathology and pathogenesis of inflammatory bowel disease (IBD). Genetic predisposition and
environmental factors are greatly involved in the onset of IBD, and intestinal immune abnormalities
are caused by the involvement of the state of dysbiosis, which is believed to cause IBD.

Abnormalities related to genetic predisposition and autophagy are deeply involved in dysbiosis.
Representative autophagy-related genes include nucleotide-binding oligomerization domain containing 2
(NOD2), autophagy-related 16 like 1 (ATG16L1), and immunity-related GTPase family M (IRGM) [16–18].
Autophagy has been linked to a variety of diseases; however, its link to IBD is currently the subject of
much debate.

3. Autophagy

Autophagy is a term derived from a Greek word meaning “self-eating” and is a process that
together with the ubiquitin-proteasome system, governs the degradation of intracellular proteins. In
addition to immunological functions, such as antigen presentation and protection against infection,
autophagy is also involved in the starvation response, carcinogenesis, and quality control of
intracellular proteins and is a constitutive process necessary for maintaining proper cell homeostasis
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and organ health [19–21]. In addition to IBD, autophagy has been shown to be associated with other
diseases, such as asthma [22–25], systemic lupus erythematosus [26,27], and Parkinson’s disease [28,29].

During the autophagy process, the endoplasmic reticulum or other membranous cellular
structures respond to stimuli by generating a double-membrane structure called a phagophore. The
ATG16L1/ATG5/ATG12 complex multimerizes and then lipidates light chain 3 (LC3)-II on this
phagophore. Concurrently, the phagophore elongates to envelop the cytoplasm or organelle to be
degraded, forming an autophagosome, which is a unique double-membrane organelle. The outer
membrane of the autophagosome then integrates with a lysosome and forms an autolysosome. Finally,
the inner membrane degrades and absorbs its contents [30] (Figure 2).
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Figure 2. Autophagy mechanism. The endoplasmic reticulum or other membranous cellular
structures respond to stimuli by generating a double-membrane structure called a phagophore.
ATG16L1-ATG5-ATG12 complex multimerizes and then lipidates light chain 3 (LC3)-II on this
phagophore. Concurrently, the phagophore elongates to envelop the cytoplasm or organelle to be
degraded, forming an autophagosome. The outer membrane of the autophagosome then integrates
with a lysosome and forms an autolysosome. Finally, the inner membrane degrades and absorbs
its contents.

4. Role of Autophagy in Innate Immunity

One of the functions of autophagy is control of the innate immune response. Many studies have
revealed the involvement of autophagy in innate immune reactions, and extremely precise control
mechanisms and pathophysiological roles are becoming more clearly understood and have begun to
be elucidated [31,32].

4.1. Xenophagy, Mitophagy

Innate immunity is a mechanism through which almost all multicellular organisms protect
themselves from pathogens. This pathway is activated when the constructive patterns of pathogen’s
components are recognized (i.e., the cell wall components of a bacterial cell or the genome of a
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virus). Autophagy was initially thought to be a nonspecific mechanism for degrading substances
by incorporating them into a membrane structure; however, recent studies have shown that
autophagosomes selectively isolate a variety of substrates through sequestosome 1-like receptors,
as is observed in autophagy of pathogens (xenophagy) [33–35]. Although the ubiquitin-proteasome
system is a well-known selective intracellular degradation system, autophagy can selectively engulf
and decompose small substances, such as mitochondria, which are larger than the targets of the
ubiquitin-proteasome system, indicating characteristics similar to that of mitophagy [36,37]. The major
difference between autophagosomes and other membranous organelles is that autophagosomes have a
dynamic structure in which necessary fractions are newly created and disappear with the digestion of
contents by fusion with lysosomes; as the necessity increases, as in the starvation state, its production
efficiency dramatically increases. These features are convenient for quickly carrying out quantitative
control, and even when functioning to control the immune response, autophagy is more suitable
than degradation by the proteasome system, and it is believed to be essential for the resolution of
quantitative problems. However, when autophagy works in connection with innate immunity, the
substrates to be decomposed are rarely clear except in the cases of xenophagy and mitophagy.

4.2. The Role of Autophagy in Inflammasomal and Type I Interferon Response

A controllable receptor tripartite motif (TRIM) protein that facilitates autophagy by recruiting
autophagy-regulating factors and recognizing the target of autophagy has recently been reported
as a receptor for autophagy in a new process called precision autophagy [38]. Inflammasomal and
type I interferon (IFN) responses are representative components of the precision autophagic processes
involved in innate immunity.

The Nod-like receptor (NLR) family of proteins, including NLRP1, NLRP3, and NLRC4, together
with the apoptosis-associated speck-like protein containing a caspase recruitment domain and
the protease caspase-1, functions as downstream innate inflammasomes [39] that are activated
in phagocytic cells, such as macrophages, and are induced by caspase-1 via maturation of the
inflammatory cytokines interleukin (IL)-1β and IL-18 and their subsequent production [40]. NLRP3
inflammasomes have attracted much attention in recent years with respect to various diseases [41–44],
and numerous relationships between the state and severity of NLRP3 gene polymorphism and IBD
presentation have also been reported [45–50].

The type I IFN response plays an essential role in the innate immune response to viral infection,
and RNA derived from RNA viruses invading cells can be recognized by the helicase retinoic acid
inducible gene 1/melanoma differentiation-associated protein 5 and type I IFN [51]. Because signaling
from type I IFN follows the Janus kinase/signal transducer and activator of transcription pathway,
this cytokine has also been reported to be associated with IBD [52].

4.2.1. Modulation of NLRP3 Inflammasome Suppression via Autophagy

Gram-negative bacterial lipopolysaccharides (LPSs) stimulate toll-like receptor (TLR) 4 and
induce the activation of NLRP3 inflammasomes in a TIR-domain-containing adapter-inducing IFN-β
(TRIF)-dependent manner with the information transfer factor. Active oxygen species derived from
mitochondria are involved in the activation of NLRP3 inflammasomes. In the TRIF downstream
pathway, evolutionarily conserved signaling intermediate in the Toll pathway has been reported
as a factor that induces the production of reactive oxygen species (ROS) from mitochondria. This
pathway is only slightly activated in wild-type macrophages. In addition, when phagolysosomes are
damaged during gram-negative bacterial infection and LPS leaks into cells, NLRP3 inflammasomes
are activated via a noncanonical pathway. Activation of the noncanonical pathway is thought to
be induced by an unknown LPS sensor present in the cell. In addition, metabolites, such as urate
crystals, cholesterol crystals, and free fatty acids, cause damage to phagolysosomes when taken up
by macrophages, causing further mitochondrial damage. Adenosine triphosphate, which is known
to activate surrounding cells after being released from dead cells, induces mitochondrial damage
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via the Purinergic 2X7 receptor (P2X7R). Influenza viral infection can cause damage to organelles,
such as mitochondria and the Golgi apparatus. When damaged mitochondria produce ROS, NLRP3
inflammasomes become activated. By suppressing this series of pathways, autophagy suppresses the
activation of excessive inflammasomes [53–56] (Figure 3).
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Figure 3. Modulation of NLRP3 inflammasome suppression via autophagy, ATP; adenosine
triphosphate, GNR; gram negative rods, IL; interleukin, LPS; lipopolysaccharide, P2X7R; Purinergic
2X7 receptor, ROS; reactive oxygen species, TLR4; Toll-like receptor 4, TRIF; TIR-domain-containing
adapter-inducing interferon-β, Ub; ubiquitin.

Autophagy is also believed to cause the decomposition of NLRP3 and AIM2, which are constituent
factors of inflammasomes [57,58], and pro-IL-1β has been reported to be degraded by autophagy [59].
Furthermore, as described above, precision autophagy via TRIM protein is also involved in the
decomposition of this inflammasome constituent factor by autophagy. TRIM20 binds to NLRP3 and
pro-caspase 1, recruits autophagic regulatory factors (e.g., ULK1 and Beclin1), and is degraded by
autophagy [38,60,61].

Conversely, autophagy also positively regulates NLRP3 inflammasomes and is involved in both
decomposition and secretion. Autophagy is involved in the secretion of cytokines, such as IL-1β, IL-18,
and high mobility group box 1 protein, and when inflammasomes become activated [62], folding of
IL-1β by heat shock protein 90 is necessary; the IL-1β is then secreted after being transported to the
lumen of LC3-II-positive autophagy-related structures [63].

Thus, autophagy plays an important role in the innate immune response by controlling NLRP3
inflammasomes. both positively and negatively.

4.2.2. Modulation of Type I IFN Responses via Autophagy

The TRIM protein regulates type I IFN responses via precision autophagy. TRIM21 binds to
the IRF3 dimer, recruits autophagic regulators (e.g., ULK1 and Beclin1), and suppresses type I IFN
responses by degrading this dimer via autophagy [61]. Moreover, autophagy also positively controls
type I IFN responses. Intracellular viral replication intermediates on endosomes are recognized by
TLR7 and cause a type I IFN response, but autophagy promotes type I IFN responses by this TLR7 via
viral recognition [64]. As such, autophagy also positively and negatively controls type I IFN responses.
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5. Role of Autophagy of Innate Immune Cells in IBD

As discussed above, autophagic abnormalities are deeply involved in the pathology of
IBD, particularly CD. Recently, GWASs identified several genetic variants, including variants of
NOD2 [53,65–68], ATG16L1 [69–77], IRGM [78–81], and XIAP [82–87] linked to the onset of CD. NOD2
is the first disease-susceptibility gene discovered for CD [16]. Abnormalities in the NOD2 gene are
found primarily in Westerners and not in Asians. NOD2 is an intracytoplasmic pattern recognition
receptor belonging to the NLR family, which recognizes and defends against pathogens and foreign
components invading the cytoplasm [88]. NOD2 is strongly expressed by macrophages and dendritic
cells (DCs), particularly Paneth cells, and functions through mechanisms involving autophagy,
intracellular bacterial sensing, modulation of the antibacterial peptide α-defensin in the Paneth cells of
the small intestine, and improvement of immune tolerance by suppressing TLR signals [89]. ATG16L1
is a homolog of ATG16, the existence of which was first reported by Mizushima et al. [69,70]. The
ATG16L1 gene is involved in host immune responses against intracellular parasitic bacteria and viruses
via autophagy. In particular, the ATG16L1 gene is closely associated with Paneth cells and plays an
important role in CD pathology. In addition, many genes are associated with various pathologies of
IBD in connection with autophagy, and these genes play important roles in immune cells, such as
macrophages and DCs, as well as intestinal epithelial cells, including Paneth cells. The relationship
between immune cells and autophagy in the IBD state is described below.

5.1. Hematopoietic Cells

5.1.1. Macrophages and DCs

Macrophages and DCs phagocytose foreign substances and bacteria in different tissues, serve as a
first line of defense, and act as antigen-presenting cells to exert the functions of the acquired immune
system [90,91]. Given the key role of the interactions between host and microbes in the intestine, it is
critical to properly regulate pattern recognition receptor (PRR) signals and cytokine secretion. The
NLRs in the cytoplasm and TLRs on the cell surface are the two main types of PRRs in innate immune
cells [92]. NLRs and TLRs in macrophages are closely associated with autophagy, and macrophage
autophagy is highly related to the mediation of innate immune responses in the intestinal wall [16,17].
Additionally, various antigens are degraded by the actions of proteasomes and lysosomes and are
then presented by macrophages and DCs via class I and class II MHCs, after which the adaptive
immune system is activated. Although it remains unclear as to how intracellular antigens are delivered
to lysosomes and decomposed, recent studies have shown that autophagy is deeply involved in
this process [93]. In the following section, we describe the relationships among macrophages, DCs,
and autophagy in the pathology of IBD with respect to three components: pathogen degradation,
suppression of inflammatory cytokine secretion, and antigen presentation.

Pathogen Degradation

NOD2 recruits the autophagy protein ATG16L1 to the plasma membrane at the bacterial entry
site; mutant NOD2 fails to recruit ATG16L1 to the plasma membrane, and the wrapping of invading
bacteria by the autophagosome is impaired. Thus, patients with CD with NOD2 variants exhibit
autophagy-related disorders [65–68]. Additionally, the capacity for autophagy and the phagocytosis
of pathogenic bacteria become impaired in macrophages harboring mutant NOD2 [94]. Furthermore,
autophagy has been reported to be impaired in macrophages transfected with siRNA targeted to
ATG16L1 or IRGM, and intracellular adherent-invasive Escherichia coli (AIEC) populations increase in
the presence of intraperitoneal macrophages in NOD2-deficient mice [95]. Moreover, death-receptor
activation or starvation-induced metabolic stress in human and murine macrophages increases the
degradation of T300A or T316A variants of ATG16L1, respectively, resulting in diminished autophagy.
In addition, knock-in mice harboring the ATG16L1 T316A variant show defective clearance of the ileal
pathogen Yersinia enterocolitica [74]. In an experiment using a cell line originating from macrophages,
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infection with CD-associated AIEC or administration of LPS or muramyl dipeptide induces IRGM
expression [81]. Macrophages and epithelial cells lacking GPR65 exhibit impaired autophagy for
clearance of intracellular bacteria [96].

Suppressing Inflammatory Cytokine Secretion

ATG16L1-deficient macrophages are known to overproduce the inflammatory cytokine IL-1β in
response to LPS stimulation, and the importance of ATG16L1 in inflammation has been described
based on the finding that intestinal inflammation, induced by dextran sodium sulfate (DSS) intake
in bone marrow chimeric mice, results in IL-1β overproduction by hematopoietic cells, leading to
increased inflammation and cell fragility [53]. Moreover, in macrophages and DCs, autophagy controls
IL-1β secretion by mediating the degradation of pro-IL-1β [59]. Furthermore, macrophages lacking
ATG7, another autophagy-related factor, and macrophages that inhibit the activity of Vps34, which
is essential for the induction of autophagy, also produce excessive quantities of IL-1β in response to
LPS. Macrophages lacking ATG5 have also been reported to produce IL-1β in excess in response to
the presence of gram-negative bacteria [97]. These phenomena are caused by the activation of NLRP3
inflammasomes due to autophagic disorders, and in recent years, activation of NLRP3 inflammasomes
in response to various stimuli has been found to be controlled by autophagy [54–56] (Figure 3). In
another recent report, impairing autophagy using ATG5 siRNA or an autophagy inhibitor (3-MA) was
found to induce more robust initiation and activation of the NLRP3 inflammasome combined with
increased caspase-1 activation and IL-1β production in peritoneal macrophages treated with LPS/DSS.
3-MA has also been shown to aggravate symptoms of DSS-induced colitis [98].

Loss of the autophagy-related gene ATG16L1 has been shown to promote accumulation of the
adaptor TRIF and enhance production of IFN-β and IL-1β as downstream signaling molecules in
macrophages [99]. Macrophages from IBD risk carriers show increased myotubularin-related protein
3 expression and, in turn, decreased autophagy and increased cytokine secretion [100]. DSS and
Saccharomyces cerevisiae were also inoculated into mice deficient in ATG16L1, an autophagy-related
gene specific to CD11c+ DCs. Colitis has been reported to be exacerbated by elevated levels of IL-1β
and tumor necrosis factor (TNF)-α when exposed to Salmonella typhimurium [101].

Antigen Presentation

In DCs, autophagy controls how antigens are processed and presented for antigen presentation [93].
Both NOD2 1007fs and ATG16L1 T300A block muramyl dipeptide induction of autophagy, and this
process is associated with defective bacterial handling in DCs and impaired antigen presentation in
association with MHC class II at the cell surface [65]. Deletion of ATG16L1 in a mouse model resulted
in increased T-cell stimulation by DCs [102]. Additionally, ATG7-deficient mouse DCs are unable to
stimulate CD4+ T-cell activation when exposed to Toxoplasma gondii antigens [103].

5.1.2. Neutrophils

Neutrophils have strong phagocytic and bacterial killing ability against foreign materials and
bacteria, similar to macrophages, and play a central role in innate immunity [104]. Neutrophils react
sensitively to stimuli and exhibit various functions. The initial response of neutrophils is quick,
and neutrophils are subjected to sophisticated control mechanisms because they are involved in
tissue restoration and minimization of injury to surrounding tissues. When this balance is impaired,
neutrophils exhibit abnormal activation and are involved in various diseases [105]. Neutrophils are also
involved in IBD pathophysiology and have been reported to be associated with cytokines, chemokines,
ROS, and elastase [106]. Several reports have described the relationship between neutrophils and
autophagy in IBD. For example, impaired Salmonella typhimurium clearance and increased ROS
production were observed in ATG16L1-deficient murine neutrophils [107]. Thus, autophagy-related
ATG16L1 is essential for bacterial clearance and suppression of ROS production by neutrophils. In
addition, autophagy receptor optineurin-deficient mice have been shown to be more susceptible to
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Citrobacter colitis and E. coli peritonitis and showed reduced levels of TNF-α in serum and diminished
neutrophil recruitment to sites of acute inflammation compared with that in wild-type mice [108]. Thus,
the autophagy receptor optineurin plays a role in acute inflammation and neutrophil recruitment.

5.1.3. Innate Lymphoid Cells (ILCs)

ILCs are innate immunocompetent cells belonging to the lymphocyte system; some are similar to
helper T cells, although cytotoxic natural killer cells (NKs) are also considered ILCs. ILCs are classified
into groups 1–3 based on cytokine production. Group I ILCs include ILC1s and NK cells, ILC2s are
assigned to group 2 ILCs, and group 3 ILCs include ILC3s. These groups of cells have attracted much
attention from researchers interested in IBD pathology and are important for the maintenance of
homeostasis and inflammatory immune responses [109]. In addition, autophagy has been shown
to be required for ILC development and function. Atg5, an essential component of the autophagy
machinery, is required for the development of mature NKs and group 1–3 ILCs [110]. Phosphorylated
Forkhead box O (FoxO) 1 is localized in the cytoplasm of immature NKs and interacts with ATG7.
FoxO1-mediated autophagy has been shown to be required for NK development and NK-induced
innate immunity [111,112].

5.1.4. NKT Cells (NKTs)

NKTs are immunocompetent cells that recognize antigens presented mainly on CDld molecules of
antigen-presenting cells and produce cytokines. Because CD1d-restricted NKTs have an invariant T-cell
receptor α chain, these cells are expressed as intramucosal NKTs (iNKTs). Mice with oxazolone-induced
enteritis are considered a Th2-dominant ulcerative colitis model, and IL-13 produced from iNKTs is an
associated cytokine [113]. It has been reported that the number of NKTs is increased in the intestinal
mucosa of patients with ulcerative colitis, and IL-13 production is enhanced [114]. Thus, NKTs are
thought to be involved in the pathogenesis of IBD, and autophagy is important for the development
and differentiation of iNKTs [115,116]. Recent reports have demonstrated that IL-15 induces autophagy
of NKTs via TBK-binding protein 1 [117].

5.2. Intestinal Epithelial Cells

5.2.1. Paneth Cells

Paneth cells are found at the base of small intestinal crypts and were first reported in 1888 as
epithelial cells with dense coarse granules. Subsequently, α-defensin, an antimicrobial peptide and
an innate immune effector, was discovered within Paneth cell granules [118]. Paneth cells play an
important role as intestinal epithelial cells responsible for innate immunity [119–121]. In Caucasians,
abnormalities in the NOD2 gene, which was first identified as a CD susceptibility gene, inhibit
α-defensin secretion by Paneth cells [122,123]. In addition, in mice with low ATG16L1 expression,
significant abnormalities were observed in the secretory pathway of Paneth cell granules, and in
patients with CD harboring homozygous ATG16L1 T300A mutations, abnormal Paneth cells, similar
to low ATG16L1 expression mice, were reported to have been found in noninflammatory sites in the
ileum [72]. In addition, as described above, autophagic abnormalities are involved in the pathology of
CD, and abnormal control of endoplasmic reticulum stress (ERS), ROS, and gut flora by Paneth cells
each play important roles.

ER Stress (ERS)

Various intracellular proteins are synthesized in the ER, and these proteins undergo proper folding
and are transported to the Golgi apparatus. Unfolded or misfolded proteins accumulate in the ER. The
accumulation of proteins with these conformational abnormalities is called ERS, and excessive ERS
ultimately induces cell apoptosis. The homeostatic mechanism mediating excessive ERS is known as
the unfolded protein response (UPR). The UPR plays an important role in the survival and function of
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intestinal epithelial cells. In recent studies, the UPR has been shown to control abnormalities involved
in the pathogenesis of IBD, and several genes associated with ERS have been reported as disease
susceptibility genes by GWASs [12,13,21,89].

As intestinal epithelial cells, Paneth cells are closely related to ERS [12]. ERS results in
the induction of autophagy in Paneth cells through three signaling pathways: insulin response
element (IRE) 1/c-Jun N-terminal kinase/nuclear factor-κB/X-box binding protein 1 (XBP-1),
pancreatic ER kinase/eukaryotic initiation factor (eIF) 2α-activated transcription factor 4, and
GRP78-activated transcription factor 6/CCAAT-enhancer-binding protein homologous protein
signaling pathways [124–126]. In terms of genetic abnormalities, reports describing the relationships
between ERS and autophagy in Paneth cells have focused on the roles of the NOD2 and ATG16L1
genes [12,122,127–129]. Secretory autophagy, which is triggered in Paneth cells by bacteria-induced
ERS and limited bacterial dissemination, is disrupted in Paneth cells expressing ATG16L1 T300A [122].
In mice lacking ATG16L1 specifically in the epithelium, CD-like ileitis occurs spontaneously in an
age-dependent manner in Paneth cells, which are ERS sensors and causes changes in IRE1α, which is
important for Paneth cell homeostasis [129]. ER stress is induced via deletion of the UPR transcription
factor XBP-1 in the intestinal epithelium, resulting in autophagosome formation in Paneth cells via a
mechanism involving the eukaryotic translation initiation factor eIF2α [8]. Thus, the involvement of
autophagy in ERS may be a new therapeutic target for IBD in the future.

ROS

ROS have been shown to be involved in the pathogenesis of IBD, and many reports have
suggested that IBD is associated with an imbalance between ROS and antioxidant activity,
causing oxidative stress as a result of either ROS overproduction or decreased antioxidant
activity [130–132]. Although many of the details of the relationship between ROS and autophagy
have not been elucidated, accumulation of ROS has been reported to be related to induction of
autophagy [133]. Notably, mitochondrial dysfunction is known to trigger the accumulation of
ROS in Paneth cells, resulting in induction of autophagy through the p53/TP53 induced glycolysis
regulatory phosphatase/damage-regulated autophagy modulator, p62-NF-E2-related factor 2, and
BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 pathways, thus protecting against cellular
damage caused by various stresses [134,135]. Additionally, mutations in Atg promote the production of
ROS via mitochondrial insufficiency in Paneth cells [136]. Further studies are needed to fully elucidate
the relationship between ROS and autophagy in IBD.

Gut Microbiota

There are in the order of 100 trillion intestinal bacteria present in the human intestinal tract, and
these cells play important roles in maintaining host metabolism and immunological homeostasis.
Although findings suggesting the involvement of intestinal bacteria in the pathology of IBD are
accumulating, it is unclear whether changes in the composition of the gut flora are the cause of IBD.
Paneth cells are important factors influencing the gut flora [137], and autophagy abnormalities in
Paneth cells are known to be related to alterations in the gut flora [137–139]. Autophagy dysfunction
in Paneth cell disrupts the normal intestinal flora and promotes intracellular survival of AIEC and
Salmonella typhimurium [138]. Vitamin D receptors in the intestinal tract contribute to Paneth cell
function, autophagy function, and maintenance of normal intestinal microflora via ATG16L1 [139]. In
addition, the microbiota induces basal Paneth cell autophagy by IFN-γ, facilitating the maintenance
of intestinal homeostasis [140]. Dysfunction of autophagy by Paneth cells has also been reported to
cause not only changes in the gut microbiome, but also improper responses to the altered flora [141].
As described above, the gut flora is closely related to autophagic abnormalities in Paneth cells, and
many IBD treatments, particularly those utilizing probiotics, aim to correct intestinal bacterial flora
populations [142,143].
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5.2.2. Goblet Cells

Goblet cells are intestinal epithelial cells with cytoplasmic granules containing large quantities of
mucin, a glycoprotein [144,145]. In the gastrointestinal tract, Goblet cells can be found in both the small
intestine and the large intestine, and mucin secreted into the intestinal lumen is thought to contribute
to mucosal protection and repair of the intestinal epithelium [146]. Dysfunction in mucin secretion
and defects in the mucus layer allow large quantities of bacteria to reach the epithelium and trigger
excess host immune responses, which have been shown to be associated with IBD [147].

In recent studies, autophagy has been reported to affect the functions of Goblet cells. Mice or cells
lacking autophagy by depletion of autophagy-related proteins, such as ATG5, ATG7, ATG16L1,
and LC3, show altered goblet cell morphology and decreased mucin secretion [73,148,149]. In
addition, inflammasomes have been shown to be involved in mucin secretion by Goblet cells,
and NLRP6 inflammasomes have been reported to promote excocytosis of mucin by Goblet cells
through promotion of autophagy [150]. Sonic hedgehog intestinal epithelial conditional knockout
mice showed decreased numbers of ileal mucin-secreting Goblet cells accompanied by a significant
reduction in autophagy [151]. Apple polysaccharide has been shown to inhibit dysbiosis-associated
gut permeability and chronic inflammation due to the induction of autophagy in Goblet cells [152].
As described above, Goblet cells play important roles in the secretion of mucin via autophagy,
act to maintain intestinal microflora, and are attracting attention as new therapeutic targets for
IBD [149,153,154].

An overview of the autophagy mechanism of innate immunity cells in IBD is shown in Figure 4.
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6. Conclusions

In this review, we have provided an overview of the autophagy mechanism of innate immune
cells in IBD. Numerous studies have revealed that autophagy is an essential key player in controlling
inflammatory responses mediated by innate immune cells. We anticipate that in the future, and based
on further research, a therapy based on autophagic control will be established for IBD, a condition that
does not yet have a curative therapy.
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