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Abstract

Background: Mowing is a widely adopted management practice for the semiarid steppe in China and affects CH4 exchange.
However, the magnitude and the underlying mechanisms for CH4 uptake in response to mowing remain uncertain.

Methodology/Principal Findings: In two consecutive growing seasons, we measured the effect of mowing on CH4 uptake
in a steppe community. Vegetation was mowed to 2 cm (M2), 5 cm (M5), 10 cm (M10), 15 cm (M15) above soil surface,
respectively, and control was set as non-mowing (NM). Compared with control, CH4 uptake was substantially enhanced at
almost all the mowing treatments except for M15 plots of 2009. CH4 uptake was significantly correlated with soil microbial
biomass carbon, microbial biomass nitrogen, and soil moisture. Mowing affects CH4 uptake primarily through its effect on
some biotic factors, such as net primary productivity, soil microbial C\N supply and soil microbial activities, while soil
temperature and moisture were less important.

Conclusions/Significance: This study found that mowing affects the fluxes of CH4 in the semiarid temperate steppe of
north China.
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Introduction

Methane (CH4) is an important greenhouse gas and plays an

important role in the global carbon (C) cycle [1]. It has a potent

global warming potential (i.e. 25-fold higher than carbon dioxide

in mass at a 100-year time horizon [2]) and is increasing at an

annual rate of 1% in the atmosphere due to anthropogenic

activities [3].

Arid and semiarid grasslands have been considered to be sinks

for atmospheric CH4 [4,5]. Recent studies demonstrated that

human activities have greatly altered the strength of CH4 uptake

in grasslands and may affect the global CH4 budget [6–9].

Mowing, an important human practice in the Eurasian steppe

management, has various effects on this semiarid grassland

ecosystem [10–13], including changes to CH4 uptake. Discerning

the effect of mowing on CH4 fluxes is especially important because

mowing is increasingly being used as a method to collect forage

and feed livestock relative to traditional grazing practices [14].

Removal of biomass by mowing may affect CH4 uptake due to

concurrent changes in nutrients for soil microbial growth [15–17].

In addition, mowing can alter availability of light to plants [18],

soil surface temperature, and moisture [19] that affect CH4

production and consumption. However, the magnitude and

underlying mechanisms of CH4 uptake in response to mowing

remain uncertain.

In semiarid grasslands of Inner Mongolia, grazing is another

important management practice. Previous studies report that

grazing tended to reduce CH4 uptake in some grassland

ecosystems [20–27]. It is further predicted that if the effect of

grazing is taken into account, the steppe ecosystem would become

a CH4 source [28,29]. In contrast to grazing, mowing has the

potential to increase the capacity of the system to function as a

CH4 sink. We hypothesize that mowing tends to facilitate CH4

uptake in grassland ecosystems, because diminished soil inorganic

N caused by mowing would result in CH4 oxidation [10].

However, there is no direct experimental evidence to support this

hypothesis. In addition, it is not clear whether soil feedbacks,

especially those in combination with aboveground or abiotic

mechanisms, contribute to the changes in CH4 uptake in mowed

grasslands. Therefore, a better understanding of the magnitude

and the underlying mechanisms for CH4 exchanges in response to

mowing is essential to accurately assess the CH4 sink-source

functions of Eurasian grasslands in the global carbon budget [1].

The objectives of this study were: (1) to examine the effects of

mowing on CH4 fluxes in a steppe habitat; (2) to study the effects

of mowing on soil chemical and microbial properties; and (3) to

determine the optimal mowing height (a surrogate for mowing

intensity) that maximizes CH4 sink function of the grassland

ecosystem.
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Methods

Site description
The field experiment was conducted in a typical temperate

steppe in Duolun County (116u179E, 42u029N, 1324 m asl), Inner

Mongolia, North China. This area has a continental monsoon

climate, being semiarid and temperate in summer. Mean annual

temperature is about 2.1uC with monthly mean extreme

temperatures of 18.9uC in July and 217.5uC in January. Mean

annual precipitation is approximately 385 mm with about 80%

occurring from mid-June to late September. The study site’s soil is

chestnut soil (Chinese classification) or Haplic Calcisols according

to the FAO classification, with sand, silt and clay being 62.8%,

20.3% and 16.9% respectively. Mean soil bulk density is

1.31 g cm23 and pH is 7.12 [30]. The dominant plant species

are Artemisia frigida Willda, Stipa krylovii Roshev., Potentilla acaulis L.,

Cleistogenes squarrosa (Trin.) Keng., Allium bidentatum Fisch. Ex

Prokh., and Agropyron cristatum (L.) Gaertn.

Field experimental design
The study site has been fenced to exclude grazing since 2001.

From 2003, a 10-ha area in the Stipa krylovii community was

enclosed, in which mowing (including collection of the hay) plots

were established. We used a Latin square design with control and

four levels of mowing treatments. Each treatment had five

replicates. Twenty-five 10620 m plots were arranged in a 565

matrix. The buffer distance between plots was 4 m. We used

mowing height as a surrogate for mowing intensity. Vegetation

was mowed at heights of 2 cm (M2), 5 cm (M5), 10 cm

(M10),15 cm (M15) above soil surface and the control had non-

mowing (NM, about 30 cm). A machine was used to mow the plots

once annually in late August since 2003.

Measurements of CH4 flux and above ground plant
biomass

The static opaque chamber method [31–33] was used to

measure CH4 flux. One stainless steel base (50650 cm) was

installed into the soil of each plot. The steel base had a groove on

top to ensure airtight connection with the chamber

(50650650 cm) [34]. Two electric fans were installed inside the

top of the chamber to mix the air during measurement. Gas

samples of 60 mL were collected into syringes with airtight

stopcocks at a 10-min interval during the 30 minutes of chamber

closure. Simultaneously, air temperature and air pressure in the

chamber were measured. Analysis of CH4 was conducted using a

gas chromatograph (HP 5860, Agilent Technologies), which was

equipped with flame ionization detector (FID) using 60–80 mesh

13 XMS column (2 mm inner diameter and 2 m long), with an

oven temperature of 55uC. Nitrogen was used as the carrier gas

with a flow rate of 30 mL min21, and the CH4 flux was

determined from changes in the slope of the mixing ratio of four

samples taken at 0, 10, 20 and 30 min after chamber closure.

Corrections were made for air temperature and pressure. The

correlation coefficient of the regression was validated (r2$0.95,

n = 4). CH4 flux was measured weekly in 2008 from June to

September and every two weeks in 2009 from May to September.

Meanwhile soil (5 cm) temperature and moisture were measured

by the Long-Stem Thermometer 6310 (Made in US) and portable

soil moisture measuring kit ML2x (ThetaKit, Delta-T Devices,

Cambridge, UK [35]).

Aboveground plant biomass was measured using the harvest

method according to Chen [36]. We randomly selected 1 m2

square areas from every plot and clipped plant material 1 cm

above the ground level.

Soil sampling and analysis
Soil samples (0–10 cm layer) were collected using soil corers

(5 cm diameter) every month during the growing season in 2009.

Three soil samples were taken randomly in each plot and mixed

evenly. The mixed sample was then divided into two sub-samples,

one stored at 4uC for microbial analysis and the other air-dried for

soil total C, N and phosphorus (P) analyses. We collected a total of

250 soil samples (5 treatments65 replicates62 sub-samples65

months). Soil microbial biomass carbon (MBC) and nitrogen

(MBN) were determined using the chloroform fumigation–

extraction method [37] following the protocols described by Liu

et al. (2007) [38].

Statistical analysis
Seasonal mean CH4 uptake was calculated from the monthly

mean values which were averaged by month. Seasonal cumulative

CH4 uptake was calculated using a simple linear interpolation, by

which the arithmetical mean of the two temporally closest

observations was extrapolated to represent the flux of each

duration. Differences in seasonal cumulative CH4 uptake, average

ST, SM, soil MBC, and MBN among treatments were determined

by analysis of variance (ANOVA) followed by multiple compar-

isons (Duncan test). Because the effect of mowing was different

between 2008 and 2009, repeated-measures ANOVAs were

applied to determine the main and interactive effects of

measurement time and mowing treatment on CH4 uptake rate,

ST, SM, soil MBC and MBN in the two growing seasons,

respectively. The linear regression was used to determine the

seasonal variation of CH4 uptake responses to ST, SM, soil MBC

and MBN. Stepwise multiple linear analyses were used to examine

post-mowing ecosystem CH4 uptake as a function of ST, SM, soil

MBC, and MBN. All statistical analyses were conducted with SAS

software (SAS Institute Inc., Cary, NC, USA).

Results

Effects of mowing on soil temperature and moisture
Soil temperature (ST; Fig. 1 A, B) and soil moisture (SM; Fig. 1

C, D) varied substantially throughout the growing seasons. Soil

temperature was relatively low in May and September, while it

was higher in July (Fig. 1A, B). Soil moisture was relatively high in

July (Fig. 1C, D). Soil temperature was negatively correlated with

mowing height (r2 = 0.74, p,0.001). Only 15 cm and 2 cm

mowing height treatments significantly affected soil temperature

(Table 1), whereas no regular correlation or significant effects were

found between mowing height and soil moisture. However, there

was a significant interactive effect between sampling date and all

mowing treatments on soil temperature (p,0.0001) and soil

moisture (p,0.0001) (Table 1).

Changes in soil microbial carbon and nitrogen
Both soil microbial biomass carbon and nitrogen (MBC and

MBN) showed strong seasonal fluctuations with peak values (for no

mowing and all mowing treatments) between June and July 2009

(Fig. 2C, D). Mostly, there was no effect of mowing treatments on

MBC or MBN, except a marginally significant effect of one of the

mowing treatments (M10) on soil MBC (p = 0.085) and a

significant effect of another (M15) on soil MBN (p = 0.005). No

significant interactive effects were found between sampling date

and mowing on soil MBC and MBN for all the treatments

(Table 1). Soil MBC in all the mowing treatments and soil MBN in

M15 and M2 were strongly affected by sampling date (p,0.05).

Changes in soil MBC and MBN became more evident from May

to August; after which they remained almost unchanged (Fig. 2 C,

Long Term Field Experiment
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D). Except for M15, other mowing treatments increased the

seasonal averaged soil MBC and MBN (Fig. 2 C, D). Compared

with control, M10, M5 and M2 enhanced soil MBC by 19.1%,

20% and 12.8%, and soil MBN by 2.0%, 0.2%, 2.0%,

respectively. In contrast, the lightest level of mowing (M15)

reduced soil MBC by 13.3% and soil MBN by 18.3%, respectively.

Effects of mowing on methane uptake
There were substantial seasonal variations in CH4 uptake for

control and the mowing treatments in both 2008 and 2009

(Fig. 1E, F). The greatest CH4 emissions were in late July (Fig. 1E,

F) during which soil moisture (Fig. 1C, D) and soil temperature

(Fig. 1A, B) was also the highest. Inter-annual variations in CH4

uptake were also observed.

Figure 1. Seasonal variations in soil temperature (A, B) and volumetric soil moisture (C, D) at the soil depth of 0–10 cm, and in
fluxes of CH4 (E, F) in control and the four mowing treatments in 2008 (left) and 2009 (right); Data are mean ±SE (n = 5). The arrow
indicated the mowing date every year.
doi:10.1371/journal.pone.0035952.g001

Long Term Field Experiment
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Mowing had different effects on the CH4 uptake rate at different

temporal stages and different treatments (Fig. 2A, B). For instance,

during the dry and warm periods during the growing season CH4

uptake rates were highest at M10 plots in 2008 and 2009 (Fig. 2A,

B). When the seasonal cumulative uptake data in 2008 and 2009

were analyzed separately and collectively using ANOVA multiple

comparison analysis, only one mowing treatment (M10) increased

CH4 uptake relative to the no mowing and the M15 mowing

treatment in 2009 (Fig. 3 B) as well as during 2008–2009 (Fig. 3 C).

Moreover, there were significant interactive effects of the sampling

date and mowing on CH4 uptake rate for all treatments in 2009

(p,0.05), and for M15 and M2 in 2008 (Table 1). Generally, the

grassland was acting as a CH4 sink in the two growing seasons

(Fig. 2 A, B; Fig. 3 A–C), and mowing had positive effects on the

CH4 uptake with intermediate mowing height having the greatest

impact.

Discussion

Soil temperature and moisture related to methane
uptake

Positive correlations between CH4 uptake and soil temperature

have been reported in several studies [22,32,39–41]. However, our

results show that no significant correlations between soil

temperature and CH4 uptake were found during the growing

season, but positive correlations between soil moisture and CH4

uptake were significant (Fig. 4), which is consistent with that

reported by Livesley [42]. Other previous studies also reported

that soil moisture associated with soil diffusivity is the major factor

Table 1. Results (P values) of repeated measures ANOVAs on
the effects of mowing (M), sampling date (D), and their
interactions on soil temperature (ST), soil moisture (SM), soil
microbial biomass carbon (MBC), soil microbial biomass
nitrogen (MBN) and CH4 uptake rate in all the mowing
treatments.

ST SM MBC MBN CH4

2008 2009

M15 D ,0.0001 ,0.0001 0.033 0.0015 ,0.0001 ,0.0001

M 0.0127 0.1185 0.1816 0.0051 0.2841 0.1031

D6M 0.0002 ,0.0001 0.2609 0.1322 0.0055 0.0171

M10 D ,0.0001 ,0.0001 0.0543 0.5226 0.0366 0.0015

M 0.9604 0.1231 0.0852 0.2153 0.067 0.0738

D6M 0.0082 ,0.0001 0.4644 0.3332 0.4018 0.0128

M5 D ,0.0001 ,0.0001 0.0311 0.3296 0.0306 0.0006

M 0.1366 0.1745 0.2025 0.5497 0.7462 0.2509

D6M 0.0293 ,0.0001 0.3787 0.2891 0.0984 0.0145

M2 D ,0.0001 ,0.0001 0.0221 0.001 0.002 0.0004

M 0.0033 0.1096 0.3951 0.7815 0.9513 0.1069

D6M 0.0063 0.0002 0.3019 0.6835 0.0071 0.0142

doi:10.1371/journal.pone.0035952.t001

Figure 2. Monthly average CH4 uptake in control and different mowing treatments in 2008 (A) and 2009 (B), and effects of mowing
on microbial biomass carbon (MBC) (C), microbial biomass nitrogen (MBN) (D). Vertical bars represent the standard error of the means
(n = 5). Different letters between columns mean significant difference among treatments at P,0.05.
doi:10.1371/journal.pone.0035952.g002

Long Term Field Experiment
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controlling CH4 uptake rate in the field [8,41], while soil

temperature is just a covariate [43,44].

Further analyses revealed that a combination of soil tempera-

ture (ST) and soil moisture (SM) slightly improved the correlation

between CH4 uptake rate and SM (Y = 61.8221.30ST+3.21SM,

r2 = 0.26, p = 0.04), suggesting that SM is the dominant environ-

mental factor controlling CH4 uptake in the study area. Previous

studies reported that the activity of methanotrophs can be greatly

Figure 3. Cumulative methane uptake in 2008 (A), 2009 (B) and the overall of the two growing seasons (C), and net aboveground
primary productivity (ANPP) in 2008 (D), 2009 (E) and average of the two seasons (F) in response to mowing intensity. Values
represent the mean6SE (n = 5). Different letters between columns mean significant difference among treatments at P,0.05.
doi:10.1371/journal.pone.0035952.g003

Figure 4. Dependence of seasonal variation in CH4 uptake on soil moisture (SM), microbial biomass carbon (MBC) and microbial
biomass nitrogen (MBN).
doi:10.1371/journal.pone.0035952.g004

Long Term Field Experiment
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inhibited by small variation in soil moisture [45]. Therefore, CH4

oxidation in dry soils is likely to be limited due to low microbial

activity occurring during periods of low levels of soil moisture [46].

Similiarly, we found that there were positive relationships between

SM and soil MBC\MBN (Fig. 5), and between soil MBC\MBN

and CH4 uptake rate (Fig. 4).

Soil microbial carbon and nitrogen associated with
methane

Stepwise multiple regression analyses showed that soil MBC and

MBN were positively correlated with CH4 uptake. Variations in

soil MBC and MBN explained 34.9% (p = 0.002) and 20.7%

(p = 0.022) of variations in CH4 uptake, respectively (Fig. 5). Soil

moisture was positively correlated with soil MBC and MBN,

explaining 48.4% and 68.3% of variations in soil MBC and MBN,

respectively (p,0.0001) (Fig. 5), during the 2009 growing season.

When the control and mowing treatments were considered

separately, the same correlations between soil MBC, MBN and

CH4 uptake were observed, and the best correlation was found in

M10 treatment.

Mowing-induced changes in methane uptake
Our results show that effects of mowing on CH4 uptake were

greatly dependent on the mowing height (Fig. 2 A, B). Moderate

mowing heights (M10) enhanced CH4 uptake while the tallest

mowing height (M15) resulted in less CH4 uptake than the M10

height, whereas no significant effects were found for other

treatments (Fig. 2 B). Our study helps to illustrate that the effects

of mowing on CH4 are complex and possibly mediated by: (1)

changes to soil moisture; 2) changes to soil C/N supply possibly as

a result of altered NPP; and 3) affects on soil microbial C and N.

While soil moisture was positively associated with CH4 uptake,

mowing treatments generally had no effect on soil moisture except

for two mowing treatments (M15, M2) (Table 1). This suggests

mowing is affecting CH4 by affecting factors other than soil

moisture. We observed that there were no apparent differences in

standing dead, ground litter and canopy height between mowed

and un-mowed plots in the growing seasons. However, light levels

of mowing (M15) resulted in lower soil temperature and was

associated with changes in community composition such as

reduced forbs. This might explain the reduced CH4 uptake in

M15 (Fig. 2 and 3), since CH4 oxidation is likely to be limited due

to low microbial activity with reduced soil temperature.

Figure 5. Correlations between soil temperature (ST) and
microbial biomass carbon\nitrogen (MBC\MBN), and between
soil moisture (SM) and microbial biomass carbon\nitrogen
(MBC\MBN).
doi:10.1371/journal.pone.0035952.g005

Figure 6. Dependence of seasonal cumulative CH4 uptake on
the net aboveground primary productivity (ANPP, g m22).
doi:10.1371/journal.pone.0035952.g006

Figure 7. Mowing-induced changes in seasonal mean CH4

uptake rate and seasonal mean microbial biomass carbon
(MBC).
doi:10.1371/journal.pone.0035952.g007

Long Term Field Experiment
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We found CH4 uptake was negatively correlated with net above

ground primary productivity (ANPP) (Fig. 6). This correlation may

be the result of a shift in the intensity of competition between

plants and CH4 oxidation microbes for soil nutrients, water and

other resources. Soil microorganisms are known to respond to

alterations in plant-derived C supply [47]. A number of studies

reported that changes in soil inorganic N availability [48], due to

reduced amounts of C entering into the soil, were responsible for

changes in soil CH4 oxidation microbial activities [49]. In

grassland ecosystems, long-term harvesting by mowing has been

shown to divert plant C from soils, posing negative effects on soil

microbial populations [50] and forage production (ANPP) [14].

Here light and intermediate mowing (M15, M10) had no effect on

ANPP while more intensive mowing treatments (M5, M2) reduced

ANPP (Fig. 3 D, E, F). Though mowing had subtle effects on

ANPP, these effects correspond with the direct effects of mowing

on CH4 suggesting a link between ANPP and CH4. Similar results

have been reported by Whiting and Chanton in a wetland [51].

In our study, mowing-induced increases in CH4 uptake may be

mediated by changes in MBC and MBN (Fig. 2 C, D and Fig. 7).

It has been reported that reduction in inorganic N by mowing

resulted in an increase of CH4 oxidation [52] and stimulation of

root exudation, favoring the microbial activity [53]. Other soil

physical environmental factors caused by mowing could be co-

responsible. For example, some have observed greater CH4 uptake

rates in soil cores in New Zealand where type I methanotrophs are

dominant [54]. And in our study, the increase in CH4 uptake with

mowing could also result from changes in methanotrophy

community structure and activity [55]. Finally, there are some

other factors that can affect the CH4 uptake, such as variation of

root/shoot ratios [56] and species composition [57] after mowing.

In general, our study demonstrates that moderate mowing can

substantially enhance CH4 uptake in the semiarid steppe

ecosystem. Long-term mowing increased CH4 uptake mainly

due to its effect on soil biotic factors. 10 cm appeared to be the

optimal mowing height. The substantial inter-annual variations in

CH4 uptake indicate that it is necessary to conduct long-term

observations in grasslands in the future to accurately determine the

optimal mowing height for enhancing CH4 uptake.

Acknowledgments

We thank Dr. Wenhao Zhang and Dr. Paul L. E. Bodelier for their helpful

comments on an earlier version of this manuscript.

Author Contributions

Conceived and designed the experiments: LL LZ CW. Performed the

experiments: LZ DG. Analyzed the data: LZ LL SN. Contributed

reagents/materials/analysis tools: LZ LL CS. Wrote the paper: LZ CS LL.

Obtained permission for use: LL LZ.

References

1. Li L, H X, Liu H, Chen ZZ (1998) Study on the carbon cycling of a Leymus

chinensis steppe in the Xilin River Basin, Acta Bot Sin 40: 955–961.

2. IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of

Working Group I to the Fourth Assessment Report of the Intergovernmental

Panel on Climate Change. Cambridge University Press, Cambridge, UK.

3. Dlugokencky EJ, Houweling S, Bruhwiler L, Masarie KA, Lang PM, et al.

(2003) Atmospheric methane levels off: temporary pause or a new steady-state?

Geophysical Research Letters 30: 1–48.

4. Potter CS, Davidson EA, Verchot LV (1996) Estimation of global biogeochem-

ical controls and seasonality in soil methane consumption. Chemosphere 32:

2219–2246.

5. Dalal R, Allen D, Livesley S, Richards G (2008) Magnitude and biophysical

regulators of methane emission and consumption in the Australian agricultural,

forest, and submerged land scapes: a review. Plant and Soil 309: 89–103.

6. Mosier AR, Schimel D, Valentine D, Bronson K, Parton W (1991) Methane and

nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature 360:

330–332.

7. Mosier AR, Parton WJ, Valentine DW, Ojima DS, Schimel DS, et al. (1997)

CH4 and N2O fluxes in Colorado short-grass steppe. 2. Long-term impact of

land use change. Global Biogeochem Cycles 11: 29–42.

8. Smith KA, Dobbie KE, Ball BC, Bakken LR, Sitaula BK, et al. (2000) Oxidation

of atmospheric methane in Northern European soils, comparison with other

ecosystems, and uncertainties in the global terrestrial sink. Global Change Biolo

6: 791–803.

9. Merino A, Perez-Batallon P, Macıas F (2004) Responses of soil organic matter

and greenhouse gas fluxes to soil management and landuse changes in a humid

temperature region of southern Europe. Soil Biology and Biogeoch 36: 917–925.

10. Robson TM, Lavorel S, Clement JC, Rouxc XL (2007) Neglect of mowing and

manuring leads to slower nitrogen cycling in subalpine grasslands. Soil Biol &

Biochem 39: 930–941.

11. Ilmarinen K, Mikola J (2009) Soil feedback does not explain mowing effects on

vegetation structure in a semi-natural grassland. Acta Oecolog 35: 838–848.

12. Ilmarinen K, Mikola J, Nissinen K, Vestberg M (2009) Role of Soil Organisms

in the Maintenance of Species-Rich Seminatural Grasslands through Mowing.

Restoration Ecology 17: 78–88.

13. Luo Y, Sherry R, Zhou X, Wan S (2009) Terrestrial carbon-cycle feedback to

climate warming: experimental evidence on plant regulation and impacts of

biofuel feedstock harvest. Global Change Biolo 1: 62–74.

14. Foster BL, Kindscher K, Houseman GR, Murphy CA (2009) Effects of hay

management and native species sowing on grassland community structure,

biomass, and restoration. Ecolog Applications 19: 1884–1896.

15. Zhou Z, Wan S, Luo Y (2007) Source components and interannual variability of

soil CO2 efflux under experimental warming and clipping in a grassland

ecosystem. Globale Change Biol 13: 761–775.

16. Bahn M, Knapp M, Garajova Z, Pfahringer N (2006) Root respiration in

temperate mountain grasslands differing in land use. Global Change Biol 12:

995–1006.

17. Gavrichkova O, Moscatelli MC, Kuzyakov Y, Grego S, Valentini R (2010)

Influence of defoliation on CO2 efflux from soil and microbial activity in a

Mediterranean grassland. Agriculture, Ecosystems and Environ 136: 87–96.

18. Parr TW, Way JM (1988) Management of roadside vegetation: The long-term

effects of cutting. J Applied Ecol 25: 1073–1087.

19. Wan S, Luo Y, Wallace LL (2002) Changes in microclimate induced by

experimental warming and clipping in tallgrass prairie. Global Change Biol 8:

754–768.

20. Allard V, Soussana JF, Falcimagne R, Berbigier P, Bonnefond JM, et al. (2007)

The role of grazing management for the net biome productivity and greenhouse

gas budget (CO2, N2O and CH4) of semi-natural grassland. Agriculture,

Ecosystems and Environ 121: 47–58.

21. Pinares-Patino CS, D’Hour P, Jouany JP, Martin C (2007) Effects of stocking

rate on methane and carbon dioxide emissions from grazing cattle, Agriculture,

Ecosystems and Environ 121: 30–46.

22. Liu C, Holst J, Bruggemann N, Butterbach-Bahl K, Yao Z, et al. (2007) Winter-

grazing reduces methane uptake by soils of a typical semi-arid steppe in Inner

Mongolia, China. Atmospheric Environ 41: 5948–5958.

23. Zhou XQ, Wang YF, Huang XZ, Hao YB, Tian JQ, et al. (2008) Effects of

grazing by sheep on the structure of methane-oxidizing bacterial community of

steppe soil, Soil Biol & Biochem 40: 258–261.

24. Lin X, Wang S, Ma X, Xu G, Luo C, et al. (2009) Fluxes of CO2, CH4, and

N2O in an alpine meadow affected by yak excreta on the Qinghai-Tibetan

plateau during summer grazing periods, Soil Biol & Biochem 41: 718–725.

25. Qi Y, Dong Y, Yang X, Geng Y, Liu L, et al. (2005) Effects of grazing on carbon

dioxide and methane fluxes in typical temperate grassland in Inner Mongolia,

China. Resources Science 27: 103–109 (in Chinese).

26. Chen W, Wolf B, Zheng X, Yao Z, Butterbach-bahl K, et al. (2011) Annual

methane uptake by temperate semiarid steppes as regulated by stocking rates,

aboveground plant biomass and topsoil air permeability. Global Change Biol

2011doi: 10.1111/j.1365-2486.2011.02444.x.

27. Hirotaa M, Tanga Y, Hub Q, Katoc T, Hiratad S, et al. (2005) The potential

importance of grazing to the fluxes of carbon dioxide and methane in an alpine

wetland on the Qinghai-Tibetan Plateau. Atmospheric Environ 39: 5255–5259.

28. Liu C, Holst J, Yao Z, Bruggemann N, Butterbach-Bahl K, et al. (2009)

Growing season methane budget of an Inner Mongolian steppe. Atmospheric

Environ 43: 3086–3095.

29. Wang Z, Song Y, Gulledge J, Yu Q, Liu H, et al. (2009) China’s grazed

temperate grasslands are a net source of atmospheric methane. Atmospheric

Environ 43: 2148–2153.

30. Xia J, Niu S, Wan S (2009) Response of ecosystem carbon exchange to warming

and nitrogen addition during two hydrologically contrasting growing seasons in

a temperate steppe. Global Change Biol 15: 1544–1556.

31. Bubier J, Moore T, Savage K, Crill P (2005) A comparison of methane flux in a

boreal land scape between a dry and a wet year. Global Biogeochem Cycles 19:

1–11.

Long Term Field Experiment

PLoS ONE | www.plosone.org 7 April 2012 | Volume 7 | Issue 4 | e35952



32. Menyailo O, Hungate BA, Abraham W, Conrad R (2008) Changing landuse

reduces soil CH4 uptake by altering biomass and activity but not composition of
high-affinity methanotrophs. Global Change Biol 14: 2405–2419.

33. Huang Y, Sun W, Zhang W, Yu Y, Su Y, et al. (2010) Marshland conversion to

cropland in northeast China from 1950 to 2000 reduced the greenhouse effect.
Global Change Biol 16: 680–695.

34. Wang YS, Wang YH (2003) Quick measurement of CH4, CO2 and N2O
emissions from short-plant ecosystems. Advances in Atmospheric Sciences 20:

842–844.

35. Kaleita A, Heitman J, Logsdon S (2005) Field calibration of the theta probe for
des moines lobe soils. Applied Engineering in Agricul 21: 865–870.

36. Chen Q, Wang Q, Han X, Wan S, Li L (2010) Temporal and spatial variability
and controls of soil respiration in a temperate steppe in northern China. Global

Biogeochem Cycles 24: GB2010. doi:10.1029/2009GB003538.
37. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for

measuring soil microbial biomass C. Soil Biol and Biochem 19: 703–707.

38. Liu W, Xu W, Han Y, Wang C, Wan S (2007) Response of microbial biomass
and respiration of soil to topography, burning, and nitrogen fertilization in a

temperate steppe. Biol and Fertil Soils 44: 259–268.
39. Wang Y, Xue M, Zheng X, Ji B, Du R, et al. (2005) Effects of environmental

factors on N2O emission from and CH4 uptake by the typical grasslands in the

Inner Mongolia. Chemosphere 58: 205–215.
40. Peichl M, Altafarain M, Lah S, Moore T (2010) Carbon dioxide, methane, and

nitrous oxide exchanges in an age-sequence of temperate pine forests. Global
Change Biol 16: 2198–2212.
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