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Abstract

Species that display temperature-dependent sex determination are at risk as a result of

increasing global temperatures. For marine turtles, high incubation temperatures can skew

sex ratios towards females. There are concerns that temperature increases may result in

highly female-biased offspring sex ratios, which would drive a future sex ratio skew. Study-

ing the sex ratios of adults in the ocean is logistically very difficult because individuals are

widely distributed and males are inaccessible because they remain in the ocean. Breeding

sex ratios (BSR) are sought as a functional alternative to study adult sex ratios. One way to

examine BSR is to determine the number of males that contribute to nests. Our goal was to

evaluate the BSR for loggerhead turtles (Caretta caretta) nesting along the eastern Gulf of

Mexico in Florida, from 2013–2015, encompassing three nesting seasons. We genotyped

64 nesting females (approximately 28% of all turtles nesting at that time) and up to 20 hatch-

lings from their nests (n = 989) using 7 polymorphic microsatellite markers. We identified

multiple paternal contributions in 70% of the nests analyzed and 126 individual males. The

breeding sex ratio was approximately 1 female for every 2.5 males. We did not find repeat

males in any of our nests. The sex ratio and lack of repeating males was surprising because

of female-biased primary sex ratios. We hypothesize that females mate offshore of their

nesting beaches as well as en route. We recommend further comparisons of subsequent

nesting events and of other beaches as it is imperative to establish baseline breeding sex

ratios to understand how growing populations behave before extreme environmental effects

are evident.

Introduction

Increasing global temperatures threaten marine turtle populations [1–4]. Most authors’ con-

cerns grow from consideration of temperature-dependent sex determination (TSD), the mech-

anism by which incubation temperature of the nest directly impacts the sex of the embryo

[5,6]. In marine turtles, warmer incubation temperatures tend to produce females, whereas

cooler temperatures tend to produce males [7, 8]. Authors are concerned that higher tempera-

tures will cause such a female bias in sex ratios that populations will face extinction [9,10]. Cur-

rently however, the magnitude of the sex ratio skew in adults is unknown due to our limited
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understanding of the proportion of adult males (and males approaching sexual maturity) [11].

Marine turtle individuals are often widely distributed geographically, outside of the nesting

season. Dispersed members of populations make detecting sex ratio issues across populations

challenging. In addition, adult males are very difficult to access because they rarely come to

land. While a determination of adult sex ratio is beyond reach, a functional alternative, breed-

ing sex ratios (BSR: the proportion of males and females that successfully mate at any time)

[12] can be used to identify the minimum number of males and females contributing to popu-

lations. By estimating BSR at small, growing nesting aggregations a more thorough proportion

of the nesting beach can be assessed than at large nesting beaches, and inferences can be made

about the impact of climate change on the population as a whole [13, 14].

The loggerhead sea turtle (Caretta caretta) is listed globally as vulnerable by the Interna-

tional Union for the Conservation of Nature (IUCN) [15]. However, along the continental US

and adjacent waters in the Northwest Atlantic Ocean, it is listed as threatened [16]. The North-

west Atlantic contains one of only two marine turtle nesting aggregations of greater than

10,000 individuals nesting annually [15, 17]. Florida nesting loggerheads make up approxi-

mately 90% of that aggregation [18–20]. Florida Fish and Wildlife Conservation Commission

(FWC) estimated that 184,064 loggerhead nests were laid in the 2016 nesting season and the

overall nesting trend is an increasing one across the state [21].

Due to their accessibility, nesting females, nest success, and hatchlings are frequently exam-

ined and used for demographic studies and population models [22–24]. Data on nesting

females and hatchlings are supplemented with in-water capture/recapture and satellite tag

studies, which provide additional information on the number of turtles [25,26]. The Turtle

Expert Working Group estimated that the female loggerheads return to nest every 2.5 years on

average [19]; however, using mark-recapture data over a 20-year data set, Phillips et al. esti-

mated it at an average of 3.2 years for turtles nesting in Southwestern Florida [27]. From tag-

ging and resighting data, it has been estimated that loggerheads lay on average from 3–4.1

nests per season [22, 28, 29] while satellite tagging suggests that within the Gulf of Mexico, the

average is closer to 5.4 nests per season [30]. Nest frequency is an important metric because it

can be used to calculate how many females nest each year. Unfortunately, information regard-

ing adult male behavior and number is lacking. Many in-water capture studies do not identify

the sex of the turtles [31]. Studies that do identify the sex of captured individuals tend to exam-

ine juvenile sex ratios [32–35]; or are focused on migration or distribution [36,37]. Conse-

quently, male sea turtles’ reproductive behavior is poorly understood and sex ratio cannot be

estimated directly.

A variety of methods have been used to infer aspects of male reproductive behavior. In all

seven-extant species of marine turtles, it has been shown that sperm from more than one male

can fertilize a single clutch (multiple paternity) [12, 38–43]. Furthermore, in at least one spe-

cies, a single male may mate with more than one female [44]. Little is known about mate

choice, and while direct observations of multiple matings occur [45, 46], assigning which male

(s) successfully father young from observed copulations may not be accurate. Hormonal stud-

ies suggest that loggerhead males could mate annually [47] and satellite tracking of adult males

suggests that about 40% remain close to nesting beaches during a breeding season and may

therefore mate more than once [11, 37]. Together, these findings suggest that males contribute

to multiple nests during a nesting season and might breed more frequently than females. The

number of males fathering each clutch can be determined genetically and used to estimate the

minimum BSR [12, 48]. Whether the BSR or reproductive behavior vary among populations is

unknown.

The primary goal of this study was to estimate the breeding sex ratio for the loggerhead tur-

tle nesting on a small nesting beach on the southwestern coast of Florida. To this end, paternal
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genotypes were identified through exclusion analysis and were used to estimate the number of

males contributing to this population.

Materials and methods

All marine turtle sampling techniques were reviewed and approved by the Florida Fish and

Wildlife Conservation Commission (Marine Turtle Permits 13-073A, 14-073D and 15–216)

and by the Florida Atlantic University’s Institutional Animal Care and Use Committee

(IACUC A13-04). All efforts were made to minimize pain. Nesting loggerhead turtles and

their offspring were sampled over three consecutive nesting seasons (late May through July:

2013–2015) on Sanibel Island, in Lee County, Florida. The areas sampled include 10.3 km of

beach from J.N. Ding Darling National Wildlife Refuge (26.46719, -82.17030) to Tarpon Bay

Road (26.42215, -82.08013) (Fig 1). All nests were monitored by the Sanibel Captiva Conserva-

tion Foundation (SCCF) and nesting females were found with their assistance.

Nesting females were identified, measured and tagged during night patrols. To ensure unbi-

ased sample collection from females, nesting turtles were sampled only once. Sampling loca-

tions were disinfected with 0.02% chlorohexidine gluconate solution. Blood samples (1 mL per

adult turtle) were taken from the external jugular vein [48–50] using a 21G x 1½ inch (3.8 cm)

needle and drawn into 4 mL sodium heparin vacutainers (BD Vacutainer Blood Collection

Needles/Vacutainers, Franklin Lakes, NJ USA). Skin biopsies, as a backup source of DNA,

were taken from the soft tissue along the trailing edge of the pectoral limbs, using either a dis-

posable 6mm biopsy punch (Integra1 Miltex1, York, Pennsylvania USA) or a sterile one-use

razor blade and forceps to collect approximately 6mm2 of skin. Skin samples were stored in

70% ethanol until needed for analysis. In rare instances, the female was found returning to the

ocean and a blood or skin sample could not be taken. In these cases, one viable egg was col-

lected from her nest immediately. The yolk and albumin were discarded and the eggshell and

its eggshell membrane (which are maternally derived) were stored in 70% ethanol (extraction

based upon protocols established by [51]).

Nest locations of the sampled females were recorded via GPS and marked following SCCF’s

protocols. Screens were placed over research nests to deter predators. Restraining cages were

placed over the nest chamber approximately 45 days after oviposition. These cages were used

to further prevent predation and ensure an adequate sample of the hatchlings could be

obtained upon emergence. Hatchling samples were collected from July through September.

Up to twenty hatchlings per nest were collected indiscriminately upon emergence. Blood sam-

ples (up to 100 μL per turtle) were taken from the external jugular vein using heparinized

syringes (Allergy Syringe with PrecisionGlide™ Needle [26G ½ inch] Becton Dickinson, Frank-

lin Lakes, NJ, USA). Skin samples of approximately 1 mm x 3 mm were taken from the trailing

edge of one of the flippers using a sterilized scalpel blade. Blood and skin were treated as for

nesting females.

All blood samples were stored at -80˚C until preparation for DNA extraction. DNA

extraction method depended on type of tissue. Blood: 5 μL of whole blood was added to

50 μL of lysis buffer (10mM TRIS, pH8.3, 40mM KCl, 0.5% Tween20 and 200 μg/mL Pro-

teinase K) and incubated at 65˚C for 1 h, followed by 100˚C for 15 min. Skin/eggshell: a

DNEasy blood and tissue kit (Qiagen, Valencia, CA USA) was used following manufacturer0s

protocol (for eggshell, incubation was longer than manufacturer’s instructions per [51]).

Samples were genotyped with 7 microsatellite loci following published protocols: CcP7E05,

CcP2F11, CcP7D04, CcP5H07, CcP7C06, CcP7B07 and CcP8D06 [52]. PCR products were

multiplexed together and analyzed with GeneScan500 fluorescent size standard (Applied

Biosystems, Foster City, CA USA) using an ABI 3730 DNA Analyzer. Positive and negative
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controls were run with every PCR plate to identify if there was contamination. Geneious R10

(Biomatters Inc., Newark, NJ, USA) was used to identify alleles. A subset of samples was re-

run to identify genotyping error rate. Loci were checked for allelic dropout, stutter and null

alleles using MicroChecker 2.2.3 [53].

We assigned paternity through exclusion analysis. Known maternal alleles are “subtracted”

from hatchling genotypes and the remaining alleles are assigned to the most likely paternal

genotypes. Each female’s alleles and those of her hatchlings were analyzed using COLONY 2.0

[54], a maximum likelihood-based program that determines the maximum number of fathers

per clutch based on the genotypes available. Multiple paternity was identified from the pres-

ence of three or more paternal alleles identified at each of two or more loci. This approach

allows for the possibility of a mutation at one locus [55].

We used GenAlEx [56] to quantify: (1) the observed and expected heterozygosity of alleles

and deviations from Hardy-Weinberg Equilibrium (HWE) of the maternal genotypes for each

locus, (2) the probability of identity (PI), (3) the probability of exclusion (PE) and (4) F-statis-

tics (FIS and FST). The PI provides the likelihood that two samples will have the exact same

genotype given the estimated allelic frequencies at that locus and when all loci are combined in

a mixed profile. The PE is the proportion of the population, which has a genotype that contains

at least one allele not observed in the mixed profile. The PE value depends on the number of

parental genotypes that are known, if only one parent is known (PE1), if both parents are

known (PE2), or if no parents are known (PE3). All nests had maternal samples, so we provide

PE1 for all primers. FIS is equal to the reduction in heterozygosity due to non-random mating

within its local population (inbreeding). A positive FIS indicates inbreeding and a negative

indicates outbreeding. FST provides a series of values to identify the genetic structure of a pop-

ulation. Briefly, a value of 0 suggests that the subpopulations are interbreeding freely (pan-

mixis), whereas a value of 1 suggests that the compared subpopulations are genetically distinct.

We modify the calculation of breeding sex ratio [57] using the paternal genotypes (i.e.,

numbers of males identified = successful males) to estimate the number of breeding males dur-

ing each year (Eq 1). The equation is used for individual years to compensate for different

cohorts of mating and nesting turtles. The typical female loggerhead does not nest annually

(usually every 2–3 years), thus, each year of sampling represents a portion of the overall breed-

ing population and the equation can be used for each year separately.

Total # Breeding Malesn ¼
total # nestsn

Avg # nests per female

� �

x successful malesnð Þ

� �

ð1Þ

Eq 1. Equation to determine the minimum number of breeding males. Where n is the

year sampled, using the total number (#) of nests, literature values for average number nests/

female, and data from this study for the number of males per clutch.

Fig 1. Sanibel Island, Florida. The yellow line notes the 10.3 km (6.4 miles) of beach that is covered in the sampling.

https://doi.org/10.1371/journal.pone.0191615.g001
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The total number of nests per year is the total number of loggerhead nests laid on Sanibel

Island in that year. We include two estimations of the average number of nests per female. The

minimum value (3.9) is based off of tagging returns on Keewaydin, a nesting beach south of

Sanibel Island [22]. The maximum value (5.4) is based on satellite tag tracking of turtles who

returned to nest on beaches north of Sanibel; that value suggests that night patrols are missing

re-nesters and underestimate nests/female[30]. Finally, both the estimated number of males

and females was rounded to the nearest whole number.

Results

Over three nesting seasons, 64 females were sampled (2013: 25; 204:16; 2015:23). Thirteen

nests were lost due to flooding, predation or did not develop. In those cases, we included the

nesting female’s genotype in the allelic frequencies but not in the resulting breeding sex ratios

bringing our total to 51 females. In total, 989 hatchlings were sampled: 350 in 2013, 276 in

2014 and 363 in 2015. Of those 51 females, two had been tagged elsewhere (Casey Key and

Manasota Key) and four were tagged in Sanibel and returned but we did not resample them.

When the three years were compared, the FIS value was -0.051 (SE: 0.026) and the FST value

was 0.031 (SE: 0.007). These values suggest that there is no evidence of genetic differentiation

among yearly cohorts, and therefore they can be considered a single population.

Combining all seven loci resulted in a PI of 7.3 x 10−13 and a PE of 1.0. Micro-Checker

detected no evidence of scoring error due to stutter, allele dropout, or null alleles. The number

of alleles present ranged from 12–24 and there were no deviations from Hardy-Weinberg

(p> 0.05). (Table 1).

In 70% of the clutches, more than one male fertilized the clutch (one father per egg so no

polyspermy was detected). We identified the genotypes of 126 distinct males. No male fertil-

ized eggs in more than one nest. The maximum number of fathers per nest was 7,

mean = 2.51. In 2013, 17 nests were analyzed and 44 fathers were found; in 2014, 14 nests were

analyzed and 37 fathers were found and in 2015, 20 nests were analyzed and 45 fathers were

found.

Using total numbers of nests (Table 2) and estimates of 3.9–5.4 clutches/female/season [22,

30], we estimate that there were at least 230–318 females nesting on Sanibel from 2013–2015.

Based upon these estimates we sampled 20.1–27.8% of the nesting population. Further, our

model estimates that there were between 571–829 males mating during that time period. We

identified genotypes of 15.2–22.1% of the likely mating males, as male genotypes were unique

Table 1. Descriptive statistics for each locus.

Locus NA HO HE PI PE1

P7E 17 0.893 0.913 0.014 0.785

P2F 13 0.889 0.885 0.024 0.726

P7D 14 0.905 0.900 0.018 0.744

P5H 12 0.841 0.858 0.036 0.707

P7C 13 0.952 0.896 0.020 0.726

P7B 18 0.841 0.887 0.021 0.796

P8D 24 0.921 0.943 0.008 0.844

Data from nesting females only. NA is the number of alleles per locus, HO and HE are observed and expected

heterozygosities respectively. PI is the probability of identity for each locus, and PE1 is the probability of exclusion

when one parent is known at each locus.

https://doi.org/10.1371/journal.pone.0191615.t001
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to each nest analyzed. The BSR for Sanibel Island from 2013–2015 is 1 female: 2.48–2.61 males

(Table 2).

In 2015, there were more nests in which a single male fertilized all hatchlings sampled (Fig

2), but we found no statistical difference in number of fathers among years [χ2 (df = 2) = 0.905,

p = 0.636].

Discussion

This is the first evidence of multiple paternity in loggerhead sea turtle nests on the Gulf of

Mexico coastline. Such behavior is well documented for the loggerheads nesting on the eastern

coast of Florida and Georgia [48, 58, 59], as well as other ocean basins [43, 60–62]. To our sur-

prise though, we found that no male had fertilized eggs in more than one clutch within or

across years. If males move to breeding areas every year, and some remain for the season [11,

37], it is reasonable to think that a single male would have offspring in more than one female’s

Table 2. Breakdown of breeding sex ratio (BSR) calculations.

Year Total # Nests Estimated # Females Average # of Males Estimated # Males

2013 334 62–86 2.58 160–222

2014 411 76–105 3.00 204–321

2015 496 92–127 2.25 207–286

S = 230, 318 S = 571, 829

BSR = 1 Female: 2.48–2.61 Males

Total numbers of nests based upon morning turtle activity censuses, estimated number of females (the minimum values from an average of 5.4 nests per female and the

high values from 3.9 nests per female) rounded to the closest individual, average number of males per female (paternity analysis) and the estimated number of males

rounded to the closest individual. The number of females and males are summed to reach the BSR value.

https://doi.org/10.1371/journal.pone.0191615.t002

Fig 2. Multiple paternity across seasons. Mean number of fathers/nest/year is depicted by the vertical bars (±standard error of the mean). The

proportions of nests with multiple paternity are plotted by the solid dots connected by dashed lines for emphasis (scale on the secondary vertical

axis).

https://doi.org/10.1371/journal.pone.0191615.g002
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nests within a year, even across sequential years. Our result indicates that the number of males

contributing to this population of nesting females is higher than would be expected from

female-biased primary sex ratios alone [63–65].

The current hypothesis of marine turtle breeding behavior is that females travel to their

natal region to mate [66, 67]. Male loggerheads are thought to move close to nesting beaches

and compete there to mate with females [68]. Following breeding, males return to foraging

grounds and the females remain in the region to nest [69]. In this hypothesis, nesting popula-

tion structure is driven by natal philopatry of females and gene flow occurs from males that

travel along the coast to and from breeding areas [11, 33, 70]. This hypothesis assumes there are

female “mating windows” during which males search and compete for females [71] and longer

male mating windows. A male that mates earlier therefore, can mate again as soon as opportu-

nity, sperm load, and energy resources allow. If males and female hatchlings and juveniles sur-

vive equally, and females return every 2–3 years while males return annually, over a three-year

study, at minimum the BSR should approach 1 female for every one male (1:1). Our data do

not support this hypothesis because of the numbers of individual males found. By sampling tur-

tles over three years, we were able to estimate the population BSR independent of the complica-

tions created by females nesting every second or third year, and males breeding every year.

Here we propose an alternative hypothesis of loggerhead breeding. Female turtles can store

sperm after mating events but prior to ovulation; sperm are sequestered in specialized sperm

storage tubules [72, 73]. The literature for marine turtles suggests that sperm can be stored for

over 3 months [74, 75]. If females mate as they travel from their feeding grounds to their natal

regions, they could increase the number of potential mates that they could encounter. In the-

ory, females can be more choosy, without decreasing the likelihood of successful fertilization

[76] and the breeding sex ratio will rise as the total number of matings increases. For example,

if a female had access to 2 males along the way from her forging area to her nesting grounds, as

well as 2 more males in the natal region, the BSR would be 4:1 instead of 2:1. This hypothesis is

supported by (i) the large numbers of distinct males found in our study, and (ii) that each

males’ genotype occurred just once with and across years. If the pool of available breeding

males includes all those that a female encounters along her route to her nesting ground, there

is a much-diminished chance of finding one male’s offspring in multiple nests.

Two other kinds of behavior could lead to a larger number of individual males contributing

to the population than expected. It is possible that males, like females, do not mate annually

[70]; metabolic factors (foraging quality, number of competing individuals, etc.) may make

annual breeding impossible. If so, each year’s samples would be a new set of males. Determin-

ing whether male behavior changes among years, however, requires formidable efforts beyond

the scope of this study (such as coordinated satellite tagging of reproductively active males and

subsequent determination of paternity in the offspring of their mates). Alternatively, females

may mate throughout their nesting season with a succession of males that arrive at different

times. If such were the case, we would not detect that as we did not look at consecutive nests

for this study. Future studies will be needed to identify if paternal contributions differ in subse-

quent nests.

In Florida, the primary sex ratio is already highly female biased, with over 90% female

hatchlings produced in some highly productive areas [63, 65, 77], though the effect on adult

sex ratio is difficult to predict. As temperatures rise we expect to see more female hatchlings

leaving the beach. If those hatchlings survive to adulthood in equal proportions, then the adult

sex ratio will skew [23, 78]. It is possible however, that there is differential survival between

sexes. One study examined hatchlings that died en route to the ocean from the nest and found

that females were four times more likely to perish than their male siblings [79]. Another study

examined in-water juvenile sex ratios of loggerheads and found a 2:1 female to male ratio,

Breeding sex ratio of loggerheads nesting in Southwestern Florida
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which was lower than the expected hatchling sex ratio [80]. Further, warmer temperatures pro-

duce females, but high temperatures can be fatal to developing embryos and hatching eggs. If

temperatures continue to increase, feminized turtles may not survive to leave the nest [4]. Sea

turtles are late maturing organisms, so it will take 20 or 30 years of observations to see how

breeding sex ratios are affected by current skewed hatchling sex ratios, embryo mortality, and

differential hatchling mortality. This study presents results against which those future sex

ratios can be compared. If loggerhead hatchling sex ratios have skewed the adult sex ratios, we

are not yet seeing the effects in the breeding sex ratio for the Gulf of Mexico. Rather, it seems

that females have access to a large number of males, perhaps as they migrate from feeding

grounds to the nesting beaches. There is no indication from our data that sex ratio bias has

become so severe that extinction risk is elevated.
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