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As urban traffic pollution continues to increase, there is an urgent need to build traffic

emission monitoring and forecasting system for the urban traffic construction. The traffic

emission monitoring and forecasting system’s core is the prediction of traffic emission’s

evolution. And the traffic flow prediction on the urban road network contributes greatly

to the prediction of traffic emission’s evolution. Due to the complex non-Euclidean

topological structure of traffic networks and dynamic heterogeneous spatial-temporal

correlations of traffic conditions, it is difficult to obtain satisfactory prediction results with

less computation cost. To figure these issues out, a novel deep learning traffic flow

forecasting framework is proposed in this paper, termed as Ensemble Attention based

Graph Time Convolutional Networks (EAGTCN). More specifically, each component

of our model contains two major blocks: (1) the global spatial patterns are captured

by the spatial blocks which are fused by the Graph Convolution Network (GCN) and

spatial ensemble attention layer; (2) the temporal patterns are captured by the temporal

blocks which are composed by the Time Convolution Net (TCN) and temporal ensemble

attention layers. Experiments on two real-world datasets demonstrate that our model

obtains more accurate prediction results than the state-of-the-art baselines at less

computation expense especially in the long-term prediction situation.

Keywords: urban traffic construction, traffic flow analysis, deep learning, graph, prediction model

INTRODUCTION

With the rapid development of urban traffic construction, traffic emission has attracted more and
more attention from public. The traffic emission contains carbon monoxide, nitrogen oxides and
particulate matter, which are the main causes of smog and photochemical smog pollution (1, 2).
Public’s health pays much price for the traffic emission (2–5).

As a result, there is a need for urban traffic construction to establish an effective environmental
monitoring and early warning system (2), whose core is the accurate prediction of the evolution
of traffic emission. The trend of traffic emission evolution is mainly affected by traffic conditions
including traffic flow, traffic velocity and road occupancy (6). Predicting the emission of traffic road
networks means predicting trends of those traffic condition variables (7). Therefore, the accurate
and efficient predictions of traffic condition variables’ trends can provide scientific foundation for
predicting the evolution of urban traffic emission. The task of traffic condition variables’ predictions
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is to provide punctual, continuous and precise traffic condition
variables prediction information based on the past measurements
of traffic and the underlying road networks. Among those traffic
condition variables, traffic flow is harder to predict (8). The
challenges of traffic flow prediction can be summarized into the
following two parts: accuracy and efficiency (9).

First, the accuracy problem origins from non-Euclidean
topological structure of traffic networks, the stochastic
characteristics of the non-stationary traffic patterns and inherent
difficulties in multiple steps ahead prediction (10). The key to
improve the accuracy of prediction is to capture simultaneously
the dynamic heterogeneous spatial-temporal correlations of
traffic conditions. On the one hand, the spatial correlations
can not only be found at a local scale but also in a wide range
of the traffic networks. Two distant roads in a traffic network
might have high correlations, too (11). And different locations
have different impacts on the study location (12). Moreover,
since traffic is constantly evolving, the spatial correlations are
dynamic (10). For instance, in the morning, the correlations
between a residential area and a business center could be strong;
whereas in late evening, the correlations between those might be
very weak (13). On the other hand, traffic observations exhibit
autocorrelations at the adjacent time intervals and show cyclical
patterns. Traffic observation variations are affected by vehicular
traffic lights, changes in weather, and other factors (9). Some of
these factors play a long-term decisive role, making the variations
show specific trends and certain regularities, while others play
a short-term role, introducing some uncertainty into the
variations. And the temporal correlations and periodicity vary
in different time-of-day (10), which brings great difficulties to
the prediction of traffic flow. Secondly, The efficiency problems
of predictions origin from the scale of traffic flow predictions.
On the spatial parts, the large size of traffic networks requires
more sensors to detect traffic status. On the temporal parts, the
application of traffic flow predictions needs longer forecasting
steps. Both two parts increase the scale of predictions, which will
cost more time.

Historically, related field researchers have exploited statistical
methods, machine learning and deep learning approaches for
modeling the complex temporal-spatial patterns of traffic flow
forecasting problems. The widely used statistical methods include
autoregressive integrated moving average (ARIMA) (14–16),
Kalman filtering (17), Markov chain (18), and exponential
smoothing methods (19–21). Those classical statistical models
were purely inductive methods, which placed strong stationary
assumptions on the traffic flow sequence. However, it was difficult
to satisfy these assumptions in the real world due to the inherent
complexity of traffic data. Therefore, those classical statistical
methods did not have enough capability to capture dynamic
patterns of traffic flow. And each step prediction was based on the
prior predictions, which led to the propagation and accumulation
of errors.

Along with the development of the computing device and
information explosion, machine learning models have caused
wide public concerns, including k-nearest neighbors (22),
support vector regression (23) and random forest (24). Complex
nonlinear traffic data can be regressed by those ML methods,

but the premises were to conduct detailed feature engineering,
which was critical but difficult. Furthermore, the power of
capturing the complex non-stationary temporal patterns was
limited by ML models’ shallow architectures, especially for long-
term forecasting (10).

Deep Learning (DL) network is an effective tool for regression
problems like the traffic flow forecasting. This method aims to
automatically identify patterns and extract features from the
historical information by constructing an appropriate parameter
space. The DL models have made breakthroughs in many
domains, such as speech recognition and image processing.
Those progress made by DL has drawn substantial interests
among transportation researchers and they have been trying to
apply deep learning models in many traffic prediction problems.
Initially, the traffic status data was simply treated as normal
temporal sequence and was predicted by classical Recurrent
Neural Networks (RNNs) like Long Short TermMemory (LSTM)
andGated Recurrent Unit neural networks (GRU) (25, 26). Those
networks neglected themodeling of traffic data’s spatial attributes.
Subsequently, some related researchers began to take both
the spatial patterns and temporal patterns into consideration.
Convolutional Neural Networks (CNN) which took charge of
extracting spatial dependencies from traffic data was introduced
into RNNs. Du et al. proposed a hybrid deep learning framework
which consists of CNN and RNNs for short-term traffic flow
forecasting (27). The Fusion Convolutional Long Short Term
Memory Network (FCL-Net) (28) proposed by Ke et al. stacked
and fused multiple LSTM layers, standard LSTM layers and
CNN layers to capture the spatial-temporal characteristics of
explanatory variables. Shi et al. constructed the convolutional
LSTM model by combining the normal fully-connected LSTM
and convolutional layers (29). Those models just treated the
traffic status data at a certain time slice as an image. CNN
as a typical deep neural network can effectively capture the
spatial features of grid data. However, due to the non-Euclidean
topology of the traffic networks, CNN actually does not have
enough ability to extract the spatial patterns of the road networks.
Recently, the Graph Convolution Network (GCN) has been
widely used because this network can generalize the traditional
convolution operations to non-Euclidean graph structure data
(30). Many forecasting models based on GCN were proposed.
Li et al. proposed graph and attention-based long short-term
memory network (GLA) which was composed of GCN and
LSTM (31). Zhu et al. proposed a new traffic flow prediction
method based on RNN-GCN and the Belief Rule Base (BRB)
(32). Spatial Temporal Graph Convolutional Networks (STGCN)
was proposed by Yu et al., which combined GCN and 1D-CNN
to capture spatial-temporal patterns (5). Attention Based Spatial
Temporal Graph Convolutional Networks (ASTGCN) (12)
presented by Guo et al. confused STGCN with attention layers
which were used to capture the dynamic spatial correlations
among nodes relying only on traffic flow data. However, these
GCN based methods still have many problems. On the one
hand, those methods could not comprehensively capture spatial-
temporal dynamic heterogeneous features of traffic data which
have significant influence on the traffic forecasting issues. On the
other hand, the parts of those models which were responsible
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FIGURE 1 | An example of topology graph of traffic network.

FIGURE 2 | Traffic temporal-spatial graph sequence.

to capture temporal patterns were constructed by either RNNs
or normal 1D CNN. The models constructed by RNNs did
well in long-term dependencies’ capturing but required too
much computing time and suffered from gradient exploding

or vanishing (33). The models constructed by 1D CNN were
able to decrease the computation expense but needed more
stacked layers to capture long-term temporal dependencies. DL
models with too deep convolution layers might lose some key
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FIGURE 3 | The framework of our model.

information in long-term forecasting, which results in the decline
of forecasting accuracy.

In the paper, a novel deep learning model named
Ensemble Attention Graph Time Convolutional Networks
(EAGTCN) is proposed to predict traffic flow in the
road network dimension. This model can capture
more comprehensive dynamic heterogeneous spatial-
temporal features of traffic data effectively and efficiently.
Significantly, the model is applicable to the other traffic
condition variables’ forecasting and provides the solid
foundation for traffic emission’s prediction and monitoring.
The main contributions of this paper are summarized
as follows:

(1) We propose an ensemble attention mechanism which is
able to dig out the global dynamic heterogeneous spatial-
temporal correlations from traffic sequence.

(2) TCN is applied to capture basic temporal dependencies.
The TCN has much longer effective memory while can be
trained fast.

(3) Our model is evaluated with the real-world traffic data,
showing that our model outperforms than the state-of-art,
especially in the long-term prediction situation.

PROBLEM DESCRIPTION

Traffic Network Based on Graph
Normally, a spatial-temporal graph is composed of nodes
and edges which connect those nodes. Spatial-temporal

graph is defined as G(τ) =
(

V(τ), E(τ), V
(τ)
attr, E

(τ)
attr

)

, where

τ denotes the time slice τ. V(τ) =
{

V1, V2, V3, · · · , Vj

}

represents all the nodes of the graph at time slice τ.
E(τ) = {(e1, r1, s1) , (e2, r2, s2) , · · · , (ek, rk, sk)} denotes the
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FIGURE 4 | The structure of spatial ensemble attention layer.

whole edges of the graph at time slice τ. ek = vij represents
the edge k between node i and node j. rk, sk denote the edge

k’s receiving node and sending node respectively. V
(τ)
attr ∈ Rn×c

represents the features of all nodes at time slice τ, where
n =

∣

∣V(τ)
∣

∣ denotes the number of nodes and c denotes the

dimension of a node feature vector. E
(τ)
attr ∈ Ru×d represents the

features of all edges at time sliceτ, where u =
∣

∣E(τ)
∣

∣ denotes

the number of edges, and d denotes the dimension of a edge

feature vector. The structure of graph G(τ) can be represented

by
(

V(τ), E(τ)
)

. The adjacency matrix A =
(

Aij

)

∈ Rn×n can be

transferred from
(

V(τ), E(τ)
)

, in which Aij = 1 if there is an edge
between node i and node j and Aij = 0 otherwise (Aii = 0 ).
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FIGURE 5 | Time convolution net with kernel size three and dilation factor d = 1, 2, 4.

As is shown by (Figure 1), the sensors deployed on the traffic
network which collected traffic data at fixed time intervals form a
non-Euclidean topological graph naturally (34). We use nodes to
represent the locations of traffic sensors, and the road segments
connecting traffic sensors are treated as edges in graph. After
that, the traffic network can be abstracted into a topology graph.
Due to the traffic network structure’s stability (35), we can keep
the structure of its topology graph fixed, which means that
V(τ) and E(τ) do not change over time. We define the traffic
network at time slice τ as an undirected spatial-temporal graph
G(τ) =

(

X(τ), V, E
)

. Then the traffic spatial-temporal sequence

G can be defined as
{

X(1), X(2), X(3), · · · , X(τ), · · · , X(t);V, E
}

,

where X(τ) ∈ Rn×c denotes the values of all the features of traffic
sensors at time slice τ.

Traffic Flow Forecasting Problem
Based on the above analysis, the traffic flow forecasting problem
can be defined as a temporal-spatial sequence prediction problem
based on graphs, which is shown by (Figure 2).

Given the previous t time slices traffic status
X =

(

X(1), X(2), X(3), · · · , X(τ), · · · , X(t)
)

∈ Rn×c×t and the
graph structure V, E, our task is to predict the future q time slices
which can be denoted as:

{

X(1), X(2), · · · , X(τ), · · · , X(t);V, E
}

MAP→
(

X(t+1), X(t+2), · · · , X(t+q)
)

(1)

METHODOLOGY

In this section, we elaborate the framework of our model and
its basic modules (the spatial patterns modeling part and the
temporal patterns modeling part).

Network Architecture
The model presented here is an end-to-end framework which is
showed by (Figure 3). It has N units and a final-output layer.
The final-output layer can generate the final prediction results by
integrating comprehensive features. Each unit consists of a spatial
block, a temporal block, a fully connected layer and a confuse
layer. There is a GCN module and a spatial ensemble attention
module in the spatial block. Each temporal block contains two
temporal ensemble attention modules and a TCN module in the
middle. In the confuse layer, residual connection is applied to
optimize the training efficiency and reshape the output of this
unit. The dynamic heterogeneous spatial-temporal patterns of
the traffic flow are going to be captured elaborately by the overall
framework. The main parts of this architecture will be described
in details as following sections.

Spatial Patterns Modeling
Graph Convolution

Traffic prediction is a typical task where data are generated
from non-Euclidean domains, and the traffic network can be
represented as graphs naturally where nodes have complex spatial

correlations. Those frequently-used deep learning methods such
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FIGURE 6 | The structure of temporal ensemble attention layer.

TABLE 1 | Traffic flow forecasting comparison in the next 15, 30 and 60min on PeMSD08.

Models MAE RMSE

15 min 30 min 60 min 15 min 30 min 60 min

SVR 18.98 19.34 23.96 30.25 27.80 34.17

RF 19.52 20.02 24.26 30.34 28.25 33.97

GRU 21.51 23.70 26.14 31.66 34.51 37.39

LSTM 20.20 20.75 23.14 29.40 30.28 34.28

Seq2Seq 22.12 22.81 24.72 34.96 35.93 38.38

ASTGCN 17.32 18.65 21.77 25.30 27.52 31.68

Ours 16.59 17.58 18.96 24.28 26.89 28.72

Improvement 2.14% 5.74% 12.91% 4.03% 5.19% 9.34%

as CNNs which are born to deal with Euclidean data cannot solve

graph-based problems nicely. Hence, in order to model basic
spatial dependencies between nodes per time slice of the sequence

better, we apply the GCN method.
The GCN method applied here defines convolution

filters from the view of signal processing (36) where the
convolution operation is treated as removing noises from graph

signals. We use the normalized graph Laplacian matrix to

represent the graph (36, 37), defined as L = In − D− 1
2AD− 1

2 ,
where In is a n-dimension identity matrix, A ∈ Rn×n is
the adjacent matrix and D is a diagonal matrix of node
degrees (Dii =

∑

j Aij). Due to normalized graph Laplacian
matrix’s real symmetric positive semidefinite property, it could
be decomposed asL = U3UT, where eigenvectors matrix
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U = [u0, u1, u2, · · · , un−1] ∈ Rn×n forms an orthonormal space
and 3is the matrix of eigenvalues (3ii = λi). On the other hand,
X:,:,τ : τ+1 =

[

x(0), x(1), x(2), · · · , x(i), · · · , x(N−1)
]

∈ Rn×3×1

represents all the signals of the graph in time slice τ, where x(i) is
the signal value of ith node. Based on U from the decomposition
of L, we can define the graph Fourier transformation to

X:,:,τ : τ+1 as ̂X:,:,τ : τ+1 = F
(

X:,:,τ : τ+1

)

= UTX:,:,τ : τ+1 and
the inverse graph Fourier transformation can be defined

as F−1
(

̂X:,:,τ : τ+1

)

= U ̂X:,:,τ : τ+1, where ̂X:,:,τ : τ+1 is the

signal after graph Fourier transformation. The graph Fourier
transformation is able to reflect the graph signal X:,:,τ : τ+1 to an
orthonormal space built by eigenvectors matrix U.

Based on this, we can define the graph convolution
operation as:

X:,:,τ : τ+1 ∗G g = F−1
(

F
(

X:,:,τ : τ+1

)

⊙ F
(

g
))

= U
(

UTX:,:,τ : τ+1 ⊙ UTg
)

(2)

where ∗
G is the graph convolution operation, and ⊙ denotes

the element-wise product. We usually treat diag
(

UTg
)

as the
graph convolution filter gθ which is made up of some learnable
parameters. Then the formula (1) could be simplified as below:

X:,:,τ : τ+1 ∗G g = UgθU
TX:,:,τ : τ+1 (3)

However, the eigen-decomposition of the Laplacian matrix
requires O

(

n3
)

computational complexity, which brings too
much computation cost. Therefore, Chebyshev polynomials
are applied to reduce the computation expense of the graph
convolution operations (38). We use the Chebyshev polynomials
of the diagonal matrix of eigenvalues (30) to approximate the

filter gθ =
∑k

i=0 θiTi

(

3̃

)

, where 3̃ = 3/λmax − In, θi ∈ Rk

denotes the co-efficient and λmax is the maximum eigenvalue of
the Laplacian matrix. The Chebyshev polynomials are defined
recursively by Ti (ϕ) = 2ϕTi−1 (ϕ) − Ti−2 (ϕ) with T0 (ϕ) = 1
and T1 (ϕ) = ϕ. As a result, the graph convolution of signal
X:,:,τ : τ+1 with the defined filter gθ can finally be defined as:

X:,:,τ : τ+1 ∗G g = U





k
∑

i=0

θiTi

(

3̃

)



UTX:,:,τ : τ+1

=





k
∑

i=0

θiTi

(

L̃
)



X:,:,τ : τ+1 (4)

where L̃ = 2L/λmax − In.

Spatial Ensemble Attention

In the traffic networks, the traffic conditions of one node exert
significant but different influence on others’. This kind of traffic
heterogeneous spatial correlations can be reflected in the traffic
speed, the traffic flow and the traffic density. According to the
traffic flow theory, there is a complex relation among them
(39), and a multitude of models describing relationships between
traffic flow and the other two variables have been developed over

TABLE 2 | Traffic flow forecasting comparison in the next 60min on PeMSD04

and PeMSD08.

Data Models 60 min

MAE RMSE

PEMS-08 SVR 23.96 34.17

Random Forest 24.26 33.97

GRU 26.14 37.39

LSTM 23.14 34.28

Seq2Seq 24.72 38.38

ASTGCN 21.77 31.68

Ours 18.96 28.72

PEMS-04 SVR 29.49 41.49

Random Forest 29.57 41.28

GRU 28.79 44.02

LSTM 26.59 40.36

Seq2Seq 26.49 42.08

ASTGCN 26.00 41.12

Ours 25.51 37.15

TABLE 3 | Training efficiency comparison.

Model Average training time (s/epoch)

ASTGCN 329.84

Our Model 256.07

the years (40–43). We are supposed to ensemble those factors
together to get more comprehensive spatial correlations among
nodes, rather than relying solely on the traffic flow.

Considering of that, a spatial ensemble attention mechanism
is proposed which aims to dig out richer dynamic heterogeneous
relationships between nodes by packing each factor’s attention
matrix together.

Q(c) = V(c)
s σ

((

X:,c : c+1,:W
(c)
1

)

W
(c)
2 + b(c)

s

)

(5)

Q =
2
∏

c=0

Q(c) (6)

Qi,j
′ = softmax

(

Qi,j

)

(7)

where X:,c : c+1,: ∈ Rn×1×L denotes one feature slice from the
spatial ensemble attention module’s input X:,;,: ∈ Rn×3×L, where
n is the number of nodes, three is the number of input graph
signal’s features (the traffic flow, the traffic speed and the traffic

density), and L is the length of the time length. V
(c)
s ∈ Rn×n,

b
(c)
s ∈ Rn×n, W

(c)
1 ∈ RL and W

(c)
2 ∈ RL×n are the learnable

parameters. We construct the spatial ensemble attention matrix
Q ∈ Rn×n by multiplying the three factors’ attention matrix Q(c).
After the ensemble operation, the softmax function is used to
make sure the spatial ensemble attention matrix’s elements sum
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FIGURE 7 | Traffic flow prediction and the corresponding ground truth of a sensor during 2 days.

to one. The spatial ensemble attention operation is presented by
(Figure 4).

After this, we accompany the Chebyshev polynomials filters
with the spatial ensemble attentionmatrix Q′. Then the sth spatial
block’s output can be obtained by:

Vs
:,:,: = σ (





k
∑

m=0

θmTm

(

L̃
)

⊙Q′)Hs
:,0 : 1,:



 (8)

where s is the index of the spatial block and the σ function
is Rectified Linear Unit (ReLU). Hs

:,0 : 1,: ∈ Rn×1×L is the traffic

flow slice of the sth spatial block’s input H
s
:,:,: ∈ Rn×3×L, and Vs

:,:,:

denotes the sth spatial block’s output signal.

Temporal Patterns Modeling
Time Convolution

In the temporal trend analysis, the RNN-based methods are
applied extensively. However, the recurrent networks are still
stuck in some problems, such as exploding/vanishing gradients
and time-consuming iterations (44). On the other hand, the
traditional 1D convolution method does not have enough ability
to memorize long historical information.

Considering the issues above, the TCN frame (45), a simple
but highly effective network, is employed to capture the
basic temporal dependencies of traffic flow. As is showed in

Figure 5, this special designed network supports parallel training
procedures to improve training efficiency.Meanwhile, this simple
but effective network has ability to look far enough into the past
to improve prediction accuracy.

The convolution operation in TCN is dilated causal
convolution, which is a variant of causal convolution. Suppose
input Xv :(v+1),:,: is a traffic flow temporal sequence at the node
v and there is a filter f :

{

0, 1, 2, · · · , k− 1
}

. The dilated causal
convolution operation on the u element of the sequence can be
defined as:

(X
v :(v+1),:,: ∗df ) (u) =

k−1
∑

i=0

f (i)Xv :(v+1),:,:

(

u− id
)

(9)

where u− id accounts for the direction of the past and d is the
dilation factor. The dilation factor d is the key parameter to
control the distance between every two adjacent filter taps. When
the dilation factor is set to one, the dilation causal convolution
reduces to the casual convolution. We increase the dilation factor
d exponentially with the depth of the network, and the receptive
field of the model grows exponentially. This ensures that the
long effective historical information can always be captured by
some filters.
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FIGURE 8 | Average performance comparison of models with or without attention mechanism on PeMSD8.

Temporal Ensemble Attention

In the temporal dimension, the previous traffic conditions have
significant but different influence on the following conditions,
too. And the correlations among different time slices are
complex. Motivated by the transformer framework’s multi-head
attention (46), we designed a temporal ensemble attention
mechanism which is showed by (Figure 6). The temporal
ensemble attention operation can capture more comprehensive
heterogeneous temporal correlations by expanding bigger feature
space at a less computation cost.

The temporal ensemble attention operation is designed based
on the self-attention mechanism.

SA = selfattention (Q,K, V) = softmax

(

QKT

√
C

)

(V) (10)

where the Q ∈ Rn×L×c is the query matrix, the K ∈ Rn×L×c is the
key matrix and the V ∈ Rn×L×c is the value matrix. The matrixes
Q, K, V correspond with the input of the temporal ensemble
attention module. The output SA is computed as a weight sum
of the value matrix, where the weight assigned to each element
is obtained by computing the compatibility of the query with the
corresponding key.

Due to the complex relationships among the time slices, there
is a need to expand the feature space to represent the traffic status.
But too many features would increase computational expense.
Learning from the multi-head attention (46), we linearly project

the query, key and value h times. On each of these projected
versions of query, key and value, the self-attention operation
is applied in parallel. We contact those outputs and project it
linearly to get the final outcome.

Qi = QW
Q
i (11)

Ki = KWK
i (12)

Vi = VWV
i (13)

SAi = selfattention (Qi, Ki, Vi)

= softmax

(

QiK
T
i√

Ck

)

(Vi) (14)

TEA (Q,K, V) = Concat (SA1, SA2, SA3 · · · , SAi, · · · , SAh)

Wo (15)

where W
Q
i ∈ Rc×Ck , WK

i ∈ Rc×Ck , WV
i ∈ Rc×Ck , CK = c/h,

Wo ∈ Rc×c. The temporal ensemble attention can not only
confuse information from subspace but also balance the conflicts
between model’s express ability and the computation cost.

EXPERIMENTS

In this section, in order to evaluate the performance of ourmodel,
we verify it on two publicly-available traffic datasets, showing that
our model outperforms the baselines, especially in the long-term
forecasting situation.
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FIGURE 9 | (A–D) The heat maps of adjacency matrixes for the first 50 sensors at four different time slices.

Datasets and Preprocessing
We validate our model on two highway traffic datasets: PeMSD-
08 and PeMSD-04 (12). The datasets were collected by a system
called Caltrans Performance Measurement System (PeMS). On
the highways of major metropolitan areas in California, more
than 39,000 detectors were applied in this system to collect
geographic and traffic information about the sensor locations.
PeMSD-08 was collected in San Bernardino from July to August
in 2016. This dataset contains 170 detectors on eight roads where
the distance between any adjacent detectors is longer than 3.5
miles. The traffic data were aggregated every 5min, so each
detector contains 288 data points per day. PeMSD-04 is the traffic
dataset collected by 307 detectors on 29 roads in San Francisco
Bay Area. In this dataset, the time range is from January to
February in 2018, and the time interval between two data points
is 5min, too.

To improve the model’s efficiency and performance, it is
necessary to normalize the input data and map their attribute
values between[0, 1]. Min–max normalization was used to
preprocess the datasets.

x′ = x− xmin

xmax − xmin
(16)

where xmin denotes the minimum value of the input data, xmax

denotes the maximum value of the input data, x is the observed
data and x′ is the normalized data.
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FIGURE 10 | Temporal ensemble attention coefficients of a certain sensor are visualized as a heat map.

We build the weighted adjacency matrix by road
network distance:

Aij =















1 if dist(Vi, Vj)>E

0 otherwise

(17)

where Aij represents the edge between node i and node j,
dist

(

Vi,Vj

)

represents the distance between node i and node j,
and is the threshold to control the distribution and sparsity of
matrix A.

Settings
We split the datasets in chronological order with the first
60% for training, next 20% for testing and the remaining 20%
for validation. The proposed architecture is implemented by
PyTorch (1.3.1 version) and trained on a computer with NVIDIA
GeForce GTX 1050 GPU and Intel(R) i5-6500 CPU. The data
input length is set to 24. Adam optimizer is chosen to optimize
the parameters of our deep learning framework.

In our model, we set Chebyshev polynomial K = 3. As K
continues to increase, the model’s performance improves slightly

with a much higher computational cost. The feature of GCN
network’s output is set to 64. The number of TCN’s layers is set
to four. The kernel size in TCN is set to three. We set the dilation
d = 2l, where l ∈ {0, 1, 2} is the index number of layers in TCN.
The number of the sub-attention block in temporal ensemble
attention module is set to four. During the training phase, the
batch size is eight and the learning rate is 0.001.

Two commonly used metrics: Mean Absolute Errors (MAE)
and Root Mean Squared Errors (RMSE) were selected to evaluate
the performance of different models.

MAE
(

y, ŷ
)

= 1

Q

Q
∑

i=1

∣

∣yi − ŷi
∣

∣ (18)

RMSE
(

y, ŷ
)

=

√

√

√

√

1

Q

Q
∑

i=1

(

yi − ŷi
)2

(19)

where Q denotes the size of the testing dataset, y denotes the
ground truth and ŷ denotes the predicted value.
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FIGURE 11 | Temporal sub-attention coefficients of time slices are visualized

as heat maps.

Baselines
We compare our model with several baseline models, including
traditional machine learning methods (SVR, RF) and recently
published state-of-the-art deep learning models (GRU, LSTM,
Seq2Seq, ASTGCN) in traffic forecasting domains.

➢ SVR: Support Vector Regression, which uses support vector
machine for the regression task. The model was implemented
based on scikit-learn python package. The penalty term was
set as 0.1, kernel type was set as “rbf,” and the number of
historical observation was set as 24.

➢ RF: Random Forest, which is made of many decision trees.
The model was implemented based on scikit-learn python
package. Estimators were set as 100, random state was set as
42, and the number of max features was set as six.

➢ GRU: Gated Recurrent Unit network, which is a special RNN
model (47). The hidden size of GRU is set as 64.

➢ LSTM: Long Short TermMemory network, which is a special
RNN model (48). The hidden size of LSTM is set as 64.

➢ Seq2Seq: Sequence to Sequence model, which is composed of
the encoder and the decoder. The hidden size of both encoder
and decoder GRUs are set as 64.

➢ ASTGCN: Attention Based Spatial-Temporal Graph
Convolutional Network, which is composed of graph
convolutional layers and normal 1-D convolutional (12).

Performance Comparisons and Analysis
Table 1 shows the performance of our model and other baselines
for the traffic flow predictions in the next 15, 30, and 60min on
PeMSD-08 dataset.

It’s obvious that our model obtains the best results in terms

of all evaluation metrics. Specially, it is worth noting that the
improvement of our model’s performance than the second-best

model (ASTGCN) increase as the forecasting horizon grows
longer, which is shown in the last row of Table 1.

To further verify the superiority of our model in the long

horizon forecasting situation, we compared the performances of
our model and the other baselines for the next 60min traffic flow

prediction on both PeMSD-08 and PeMSD-04 datasets, which

is shown by (Table 2). Obviously in the long-term traffic flow

prediction situation, our model does perform better. We think
this is because the TCN network in our model has stronger ability

to capture long historical information. And the normal 1-D time
convolution in ASTGCN model cannot get enough information
from the past. On the other hand, Table 3 shows two models’
computation cost in the training. Our model costs less training
time than the ASTGCNmodel. Figure 7 shows the 60-min-ahead
predicted values and the ground truth of a certain sensor in
2 days.

In order to verify the effectiveness of our model’s ensemble-
attention mechanism, we construct a new model by getting
rid of the ensemble attention operation from our model. The
reconstructed version of our model can be treated as a simple
model stacked of the GCN layer and the TCN layer.We evaluated
our model and the reconstructed version for the traffic flow
predictions in the next 15, 30, 45, and 60min on PeMSD-08
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dataset. Figure 8 shows the RMSE results of the comparison, and
the model with the ensemble-attention mechanism outperforms
the reconstructed version especially in the long-term forecasting
situation. This means that the ensemble-attention mechanism
does play a role in the traffic flow prediction.

Furthermore, we plot a series of heat maps with different
color depth to visualize the learned ensemble-attention matrixes.
Both the spatial ensemble attention and the temporal ensemble
attention are obtained from the last unit of our model.

On the one hand, the first 50 nodes are picked out to show
the spatial correlations among those nodes at four different
time slices. Figure 9 shows the heat maps of spatial ensemble
attention matrixes at four different time slices. The X-axis
and Y-axis denote the 50 detectors. The value of the pixel
at point

(

x, y
)

is the coefficient of detector y to detector x.
The color depth of pixel at point

(

x, y
)

indicates the degree
of influence that the detector y exerts to the detector x. The
pixel with a deep color indicates that the detector x is affected
strongly by the detector y. From Figure 9, we can observe
that the spatial ensemble attention mechanism does capture
dynamic heterogeneous spatial correlations among nodes to a
certain extent.

On the other hand, the heat map of temporal ensemble
attention is shown by (Figure 10), and the temporal sub-
attention blocks’ heat maps are represented by (Figure 11). The
X-axis and Y-axis denote the 24 time slices at a sensor node. The
value of the pixel at point

(

x, y
)

is the coefficient of time slice y to
time slice x. The pixel with a deep color indicates that time slice
x is affected strongly by the time slice y. From Figures 10, 11, we
can observe that the temporal ensemble attention mechanism do
capture some heterogeneous temporal correlations.

Based on the above analysis, the ensemble attention
mechanism including the spatial part and temporal part do learn
some beneficial information which enables the model to exploit
the dynamic heterogeneous traffic patterns for traffic forecasting.

CONCLUSIONS AND FUTURE WORK

In this paper, a novel end-to-end deep learning framework
is proposed for traffic flow predicting. The knowledge gained
from our research can provide many valuable applications for
vehicle emission warnings, improving urban traffic construction

and studying the sources of air pollution. Each unit of the

models mainly is composed by a spatial block and a temporal
block. In the spatial block, we fuse GCN and spatial ensemble
attention mechanism to capture global dynamic heterogeneous
spatial patterns. In the temporal block, TCN and temporal
ensemble attention mechanism are combined to capture non-
stationary temporal patterns. The model is fed with a variety
of explanatory variables including the historical traffic speed,
the historical traffic density, the historical traffic flow and the
graph of sensor network. Experiment results show that the
forecasting accuracy of the proposedmodel is superior to existing
models especially in the long-term predicting situation and
the model can be trained faster than the main DL baselines.
The ensemble attention mechanism is shown to be capable
of capturing comprehensive dynamic heterogeneous spatial-
temporal correlations of traffic series.

Actually, the urban traffic flow is affected by many external
factors, such as weather and social events. In the future, we will
fuse more external factors into ourmodel tomake the predictions
of attributes related to traffic emissions more accurate.
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