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Altered Functional Connectivity after Epileptic Seizure
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Epileptic seizures are considered to be a brain network dysfunction, and chronic recurrent seizures can cause severe brain damage.
However, the functional brain network underlying recurrent epileptic seizures is still left unveiled. This study is aimed at exploring
the differences in a related brain activity before and after chronic repetitive seizures by investigating the power spectral density
(PSD), fuzzy entropy, and functional connectivity in epileptic patients. The PSD analysis revealed differences between the two
states at local area, showing postseizure energy accumulation. Besides, the fuzzy entropies of preseizure in the frontal, central,
and temporal regions are higher than that of postseizure. Additionally, attenuated long-range connectivity and enhanced local
connectivity were also found. Moreover, significant correlations were found between network metrics (i.e., characteristic path
length and clustering coefficient) and individual seizure number. The PSD, fuzzy entropy, and network analysis may indicate
that the brain is gradually impaired along with the occurrence of epilepsy, and the accumulated effect of brain impairment is
observed in individuals with consecutive epileptic bursts. The findings of this study may provide helpful insights into
understanding the network mechanism underlying chronic recurrent epilepsy.

1. Introduction

Highly synchronized paroxysmal discharge in the brain
causes epileptic seizures, along with loss of consciousness
and movement dysfunction [1–3]. Previous studies focusing
on epileptic seizures found increased synchronization [4–6]
and increased energy of brain waves [7] occur before the
onset of epileptic seizure. The power spectral density (PSD)
has been widely used to measure the fluctuating power of
related epileptic activity [8, 9]; for example, Bettus et al. esti-
mated the PSD difference between drug-resistant and drug-
sensitive mesial temporal lobe epilepsy patients and found
significantly decreased subtheta PSD in the drug-resistant
group [10]. Additionally, nonlinear analyses have been
widely used to uncover the dynamic information of the brain
activity in epileptic patients (EPs) [11]. For example, Li et al.

proposed an automatic epilepsy detection approach, includ-
ing entropy [12]. Entropy is a nonlinear index that reflects
the degree of chaos within a system [13]. It is often used to
analyze epileptic electroencephalogram (EEG) signals to
detect whether there is an epileptic attack or to inspect the
state of epileptic seizures [14]. At present, fuzzy entropy, an
improvement of sample entropy, is widely used to measure
the complexity of EEG signals [15] and to study epileptic sei-
zures [16].

The brain works as a large-scale network [17], and effi-
cient transmission and processing of related information
depend on the efficient brain network [18, 19]. However,
the deficits of certain regions disturb the processing of
upcoming information in the brain, especially long-range
couplings, consequently leading to network failure [20, 21].
In fact, epilepsy is described as a network disorder [22].
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Network neuroscience [23] thus raises a ‘bridge’ between epi-
lepsy and brain network analysis [24–26]. Multiple neuroim-
aging techniques, including intracranial [27, 28] and scalp
EEG [29, 30], as well as functional magnetic resonance imag-
ing [31, 32], have been applied to investigate the mechanisms
leading to epileptic seizures [6]. For example, Li et al. identi-
fied the transition of functional connectivity from inter- to
preictal states and found that the preictal state caused fluctu-
ations in related network properties, including decreased
characteristic path length, increased clustering coefficient,
and global and local efficiency [33].

Chronic recurrent seizures usually cause severe brain
damage [34–36]. As illustrated, chronic recurring seizures
cause continuing neural reorganization and progressive
excitability of the brain. Epilepsy is self-perpetuating with
each attack facilitating the occurrence of another by increas-
ing the instability of neural elements [37]. Vlooswijk et al.
found that patients with chronic epilepsy, compared to nor-
mal controls, experienced a disruption of both local segrega-
tion and global integration in the brain; and, they also found
an association between pronounced intellectual decline and
disturbed local segregation [38].

Although previous studies have investigated the cumula-
tive brain damage after long-term epileptic seizures, few
studies have further explored the mechanism of recurrent
epileptic bursts (gradual process of an epileptic seizure),
especially potential brain network mechanism. In this study,
we thus hypothesized that seizures beget seizures, that is,
every single epileptic seizure may cause slow alteration in
the brain activity and such alteration may lead to the accu-
mulation of seizures over time. To validate our hypothesis,
corresponding functional networks, as well as the PSD and
fuzzy entropy, of pre- and postseizure were constructed and
then investigated in a group of ten EPs to uncover the mech-
anism underlying chronic recurrent epilepsy. Moreover, to
validate our assumption, a correlation between network met-
rics and seizure number was further performed for one EP
who experienced seizures during a 24 h hospital monitoring.

2. Materials and Methods

2.1. Participants. The protocols of this study was approved by
the Medical Ethics Committee of Sichuan Academy of Med-
ical Sciences & Sichuan Provincial People’s Hospital, and
written informed consent was obtained from all patients.
Ten EPs were recruited in this study. Before 24 h EEG mon-
itoring, all EPs were asked to suspend their antiepileptic drug
treatment. Details of these patients were shown in Table 1.

2.2. EEG Recording. Sixteen-channel EEG (i.e., Fp1/2,
F3/4/7/8, C3/4, P3/4, O1/2, and T3/4/5/6) were recorded
by using the Australian COMPUMEDICS Greal series of
digital video EEG with a sampling rate of 256Hz. All of
the sixteen electrodes were positioned according to 10-20
international electrode system. Electrocardiograms and elec-
tromyograms were also recorded by two extra electrodes.
During the 24 h recording, single or dual cameras were also
used to monitor the patients’ behavior, and patients would
experience at least one complete sleep-wake cycle, mean-
while patients had at least one episode of epileptic seizure.
The starts and ends of each seizure episode were manually
recorded by the physicians.

2.3. EEG Data Analysis. For each patient, 10min before and
10min after epileptic seizure EEG datasets were included in
this study. For each 10min EEG segment, we first rerefer-
enced this segment to average reference. Then, to remove
low-frequency drift and high-frequency noise, the data was
bandpass filtered within a frequency range of (1, 45) Hz.
And, we further segmented the filtered data into 6 s-length
segment. Finally, a threshold of ±80μV was used to exclude
segments still contaminated by high-amplitude artifacts.

2.3.1. Linear and Nonlinear Analyses. PSD, which estimates
the distribution of power spectrum over frequency bins, is a
well-established technique for quantitative analysis of EEG
signals, as well as for epilepsy [8, 39]. In this study, we first
computed the PSD of pre- and postseizure via Welch’s
method and then statistically compared the PSD per elec-
trode between the two conditions to uncover any potential
differences using paired t-test.

Fuzzy entropy, a nonlinear measure, can describe the
complexity of EEG signals [14], which was developed by
Chen et al. in 2007 [40]. For short-time series contaminated
by noise [41], fuzzy entropy is not sensitive to interference,
but to change of information content [14]. Thus, fuzzy
entropy has been widely used to study epileptic seizures
[42, 43]. In the present study, we first calculated the fuzzy
entropy of pre- and postseizure states and then statistically
compared the fuzzy entropy per electrode between the two
conditions to investigate any alteration in the brain activity
using paired t-test.

2.3.2. Functional Networks. Epileptic seizures are usually
characterized by abnormal, high, synchronous neuronal dis-
charges, which could effectively be measured in the frequency
domain. In this study, we therefore employed coherence to
measure the cooperative, synchrony-defined neuronal

Table 1: The detailed information about the EPs.

EP1 EP2 EP3 EP4 EP5 EP6 EP7 EP8 EP9 EP10

Age (years) 61 33 56 37 19 36 48 22 30 10

Sex (M/F) M M M M M F M M F M

Seizure type Focal Focal Focal Focal Focal Focal Focal Focal Focal Focal

Duration (year) 1 16 7 10 3 1/6 1 20 26 1
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assemblies at each frequency bin. The coherence coefficient
between signal x and y was calculated as follows:

C fð Þ = Sxy fð Þ�
�

�
�
2

Sxx fð ÞSyy fð Þ , ð1Þ

where Cð f Þ denotes the coherence coefficient of signal xðtÞ
and yðtÞ, Sxyð f Þ is the cross-spectrum of signal xðtÞ and yðt
Þ; and Sxxð f Þ and Syyð f Þ are the autospectrum of signals xðt
Þ and yðtÞ, respectively.

Any potential topological differences between the pre-
and postseizure states were investigated by using paired t
-test. Thereafter, based on the constructed coherence net-
work, we calculated the corresponding network properties,
including characteristic path length (CPL) and clustering
coefficient (CC) in different frequency bands (i.e., delta,
theta, alpha, beta, and low gamma). Theoretically, the CPL
and CC are the parameters measuring the functional integra-
tion and separation of a given network, which indexes the
‘global’ and ‘local’ information processing of the network,
respectively [44]. Both short CPL and high CC consistently

reflect the efficiency resource allocation and index the high
efficiency of information processing. Then, the any potential
difference in information processing was uncovered by com-
paring these network metrics utilizing paired t-test. The two
network properties were estimated as follows:

CPL = 1
n
〠
i∈ψ

∑ j∈Ψ,j≠idij
n − 1 ,

CC = 1
n
〠
i∈Ψ

∑ j,h∈Ψ CijCihCjh

� �1/3

∑j∈ΨCij ∑ j∈ΨCij − 1
� � :

ð2Þ

Herein, dij and Cij represent the shortest weighted path
length and coherence coefficient between the ith and jth net-
work nodes, respectively; n represents the node number; and
ψ represents the set of all network nodes.

2.3.3. Individual-Level Network Analysis. During the 24h
monitoring, only one patient experienced four episodes of
epileptic seizure. Therefore, we intended to explore the
potential correlation between the network metrics and
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Figure 1: Grand-averaged PSD of the delta band pre- and postseizure. Green and red solid lines denote pre- and postseizure, respectively, and
the thick black lines highlight significant PSD differences (p < 0:05) between the two states.
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seizure number of this subject to probe if gradual impairment
of brain functions were revealed in those consecutive epilep-
tic bursts. In specific, for the four seizure bursts, eight seg-
ments were extracted, i.e., 10min preseizure and 10min
postseizure pair for each burst, which were labeled as 1-pre,
1-post, 2-pre, 2-post, 3-pre, 3-post, 4-pre, and 4-post.

3. Results

3.1. Linear and Nonlinear Differences.We first calculated and
then compared the pre- and postseizure PSD of all channels
at five bands, i.e., delta, theta, alpha, beta, and low gamma.
As illustrated in Figure 1, six electrodes (i.e., P3, P4, F7, F8,
T5, and T6) showed significant PSD differences (p < 0:05)
in the delta band, indicating that the postseizure PSD was
higher than the preseizure.

Then, the corresponding fuzzy entropy of the two data-
sets was computed and compared. As displayed in Figure 2,
in the delta band, the fuzzy entropies of preseizure in the
frontal, central, and temporal regions are higher than that
of postseizure (p < 0:01, fdr).

3.2. Functional Network

3.2.1. Functional Connectivity.Moreover, the topological dif-
ferences in the delta band postseizure, as shown in Figure 3
(p < 0:05), exhibited decreased long-range connectivity (e.g.,
Fp1-P3/4 and F3-O1/2) but increased local connectivity
(e.g., F3-T3, F8-C4, and C3-T5). However, no significant dif-
ferences in network properties (i.e., CPL and CC) between
the pre- and postseizure were found.

3.2.2. Relationships between Network Metrics and Seizure
Number. To further validate if the deficits of the brain net-
work correlated with increasing number of epileptic bursts,
the relationship between network metrics and seizure
number of the patient who had four episodes of epileptic
seizure was investigated. As shown in Figure 4, the charac-
teristic path length in the delta band positively correlated
with seizure number (r = 0:787, p = 0:020), while the clus-
tering coefficient negatively correlated with seizure number
(r = −0:803, p = 0:016).

4. Discussion

This study investigated the mechanism underlying chronic
recurrent epilepsy by focusing on the brain networks before
and after epileptic seizure. Our results show the mediation
of regional epileptic networks in seizure episodes. Moreover,
the correlation analysis of one patient with four episodes of
recurrent seizures may indicate gradual impairment of brain
functions with increment epileptic bursts.

As shown in Figure 1, six scalp electrodes (i.e., P3, P4, F7,
F8, T5, and T6) showed increased postseizure PSD in the
delta band, compared to the preseizure PSD, which may
imply local energy accumulating after epilepsy burst. Epilep-
tic activity can be regarded as a burst event of excessive
energy resembling an earthquake or a volcanic eruption
[45]. Due to such a characteristic of epileptic seizure as recur-
rence, there may be chronic abnormal activity or energy

accumulation leading to the next seizure, which has been
widely reported in previous studies [45, 46]. Osorio’s study
[47], which compared the seismic waves in 81,977 earth-
quakes and the brain waves in 16,032 epileptic seizures,
showed that these two activities exhibited highly similar pat-
terns and suggested that epileptic seizures can be metaphor-
ically described as earthquakes of the brain. In the meantime,
epileptic seizures are characterized by highly elevated fre-
quencies and amplitudes of both electrical and magnetic sig-
nals [48, 49], and these high-frequency neural oscillations
require elevated energy [50]. Of note, previous studies have
revealed increased energy of delta waves before the onset of
epileptic seizures [7]. For example, Rektor et al. found a
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Figure 2: The topographic map of fuzzy entropy difference before
and after seizure in the delta band. The red areas indicate that the
differences are more significant.
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Figure 3: Topological differences between pre- and postseizure. The
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weakened functional connectivity postseizure, respectively.

4 Neural Plasticity



significant increase in PSD during epileptic seizures, espe-
cially in slow band, such as delta waves; of note, even after
seizures, there was a significant increase in PSD in all fre-
quency ranges, including delta waves [51]. Moreover, there
is evidence that the energy before and after epileptic seizures
is mainly concentrated in the delta band [52]. Besides, the
result of fuzzy epilepsy showed alteration in the brain activity
before and after seizures. In detail, in the delta band, the fuzzy
entropies of preseizure in the frontal, central, and temporal
regions are higher than that of postseizure, which indicated
that epileptic seizures cause attenuated brain flexibility, that
is, the decrease in entropy indicates reduction in information
processing at the cerebral cortex [53, 54]. In the meantime,
we found a reduction in connections between epileptogenic
zone and surrounding regions before epileptic seizure, as
shown in Figure 3, which result in the isolation of epileptic

neurons located in the epileptogenic zone [55]. The accumu-
lative energy in epileptogenic zone after seizure may have
exacerbated such isolation. This causes a reduction in the
variability of the EEG signal, and therefore, results in lower
entropy values [56]. In our present study, the increased syn-
chronization among multiple electrodes had also been dem-
onstrated before epileptic seizure; therefore, we assumed
that, on the one hand, related energy of abnormal discharge
first accumulated locally near the epileptogenic zone and
then transmitted to other areas, which finally induced an epi-
leptic seizure; on the other hand, the energy accumulation
might result in the isolation of epileptic neurons near the epi-
leptogenic zone, which leads to lower entropy values.

In this study, we assumed that the malfunction of local
energy diffusion and its transmission to global areas not only
resulted in the energy accumulation on local electrodes but
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also led to decreased functional network efficiency in the
delta band. We further unveiled potential topological differ-
ences between pre- and postseizure states to validate network
dysfunction. Actually, numerous studies have revealed
abnormalities in brain networks. Our scalp EEG brain net-
work exhibited attenuated long-range connectivity but
enhanced local connectivity, as shown in Figure 3. Of note,
results of our present study were consistent with previous
studies that reported abnormalities in long-range connectiv-
ity also among the frontal, parietal, occipital lobes [57, 58].
For example, Luo et al. found decreased connectivity between
the frontal and parietal lobes in absence epilepsy, when com-
pared with healthy controls [59]. Meanwhile, the enhanced
local connectivity coupled frontal and temporal lobes that
had been diagnosed as the origin where abnormal discharge
occurs. In fact, Bettus et al. have also reported the enhanced
EEG connectivity in the epileptogenic zone [10]. To sum-
marize, the decreased long-range connectivity among the
frontal, parietal, and occipital lobes while enhanced local
connectivity among the frontal and temporal lobes may
reflect the impaired brain functions and abnormal synchro-
nization among certain brain regions, which may result in
another epileptic seizure.

Thereafter, to further validate our current results, the
relationship between the network metrics and seizure num-
ber of the patient having four seizure bursts was investi-
gated. And higher CPL and lower CC corresponding to the
postseizure, compared to that of preseizure, were found
(Figure 4). CPL is inversely related to the level of network
integration, whereas CC is positively correlated with the
level of network segregation, the decreased CC and pro-
longed CPL of postseizure might index the more severe
brain dysconnectivity after epileptic seizure; additionally,
both the positive relationship of CPL versus seizure number
and the negative one between CC and seizure number might
further conclude that the brain is gradually disrupted and
impaired with consecutive epilepsy bursts, which could be
also validated by the disrupted small-world organization in
epileptic patients [25, 38, 60].

In summary, our present study demonstrated local
energy accumulation and altered functional connectivity
after epileptic seizure, as well. And gradual increment in
brain deficits is also found to significantly correlate with
patients’ multiple consecutive epileptic bursts. These results
help uncover potential mechanism accounting for the
chronic recurrent epilepsy. However, since a relatively small
patient size is included in our present study, to facilitate the
clinical treatment and effective intervention of epilepsy, more
patients will be recruited in the future. Meanwhile, another
limitation of this study is that the impact of patient age is
not taken into consideration. In our future work, when
recruiting more epilepsy patients, their age range will be con-
trolled to further validate our findings.
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