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Akkermansia muciniphila is a Gram-negative anaerobic mucus-layer-degrading bacterium
that colonizes the intestinal mucosa of humans and rodents. Metagenomic data have
shown an inverse correlation between the abundance of A. muciniphila and diseases such
as inflammatory bowel disease (IBD), obesity, and diabetes. Thus, in recent decades, the
potential of this bacterium as an immunomodulatory probiotic for autoimmune and chronic
inflammatory diseases has been explored in experimental models. Corroborating these
human correlation data, it has been reported that A. muciniphila slows down the
development and progression of diabetes, obesity, and IBD in mice. Consequently,
clinical studies with obese and diabetic patients are being performed, and the preliminary
results are very promising. Therefore, this mini review highlights the main findings regarding
the beneficial roles of A. muciniphila and its action mechanisms in autoimmune and chronic
inflammatory diseases.
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INTRODUCTION

The intestine is mainly colonized by four phyla of bacteria: Firmicutes, Bacteroidetes,
Proteobacteria, and Actinobacteria (1). Several factors, such as the use of antibiotics, diet, and
pH can interfere with the gut microbiota. It is known that alterations in the gut microbiota
(dysbiosis) are capable of inducing abnormal immune responses in the gut-associated lymphatic
tissue and that these alterations can compromise the systemic immune response (2). The gut
microbiota regulates the host immune response through two main mechanisms: activating the
innate immune response via the Toll-like receptor (TLR) (3) and/or activating free fatty acid
receptors (FFAR) via microbial metabolites such as short-chain fatty acids (SCFAs), including
acetate, propionate, and butyrate. In addition, these metabolites can induce the differentiation of
naive T cells into regulatory T cells (Tregs) or their migration into the intestine (4). Intestinal
dysbiosis can lead to excessive activation of TLRs and a low production of SCFAs, contributing to
the development of a number of gastrointestinal diseases, obesity, and diabetes (5–7). Because some
probiotic bacteria in the gut can suppress chronic inflammatory and autoimmune diseases, the use
of probiotics, like Bifidobacteria, Lactobacilli, Lactococci, and Streptococci, as prophylactics and/or
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therapeutic tools for these diseases has been investigated (8).
More recently, Akkermansia muciniphila has been shown to be a
promising probiotic (9).

A. muciniphila is a Gram-negative, anaerobic, oval-shaped
bacterium that degrades the mucus layer. The analysis of the 16S
rRNA gene sequence showed that this species belongs to the
Verrucomicrobia phylum (10). A. muciniphila colonizes the
intestinal tract early in life and comprises approximately 3% of
the total microbiota in healthy adults (11). Upon degrading
mucin, A. muciniphila produces acetate and propionate, which
serve as substrates for other bacteria and the host (10, 12). SCFAs
have also been linked to the regulation of body weight gain
through their anorexic, anti-inflammatory, and metabolic effects
(13, 14). As A. muciniphila is lower in the gut of humans and
mice with autoimmune and metabolic diseases (15–17), this
review highlights the immunomodulatory potential of A.
muciniphila in these diseases.
ROLE OF A. muciniphila IN
PROTECTING AGAINST INFLAMMATORY
BOWEL DISEASE

It is known that the impairment of homeostasis and the integrity of
the intestinal barrier result in the development of metabolic and
gastrointestinal disorders (18, 19). The intestinal mucosal barrier
has evolved to maintain a balance between the absorption of
essential nutrients and the prevention of pathogen translocation
(20). The integrity of the intestinal epithelium is maintained by tight
junctions (TJs), adherens junctions (AJs), and desmosome
complexes of the epithelium, whose expression can be increased
by probiotics or compounds produced by them, such as
extracellular vesicles (EVs) or outer membrane microvesicles
(OMVs) in the case of Gram-negative bacteria (21–23). The
disruption of the integrity of the intestinal mucosa drives the
development of inflammatory bowel disease (IBD), such as
ulcerative colitis (UC) and Crohn’s disease (CD), which are
chronic idiopathic inflammatory diseases characterized by an
exaggerated immune response to gut microbiota, resulting in
tissue damage (24, 25). It has been reported that antibiotic use
during childhood alters the gut microbiota and increases
susceptibility to IBD, suggesting an important role of gut
microbiota in the maintenance of intestinal homeostasis (26).
Several studies have found differences in the composition of the
gut microbiota between healthy people and patients with IBD, with
a remarkable reduction in A. muciniphila in patients with UC (16,
27). Furthermore, it has been reported that A. muciniphila or
Amuc_1100 (an outer membrane protein of A. muciniphila) can
attenuate DSS-induced colitis in mice. The modulating effect of A.
muciniphila-derived Amuc_1100 in colitis was associated with a
reduction in infiltrating macrophages, CD8+ cytotoxic T
lymphocytes, and pro-inflammatory cytokines, such as tumor
necrosis factor-a (TNF-a), interleukin (IL)-1a, IL-6, IL-12,
macrophage inflammatory protein-1 (MIP-1) a, granulocyte
colony-stimulating factor, and chemokine (C-X-C motif) ligand 1
(CXCL1) in the colon. In addition, A. muciniphila administration
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reduced CD16/32+ macrophages in the spleen and mesenteric
lymph nodes (MLNs) of mice with colitis (28, 29).

A recent study has shown that Amuc_2109, an enzyme secreted
by A. muciniphila, also attenuated DSS-induced colitis in mice,
increasing the expression of TJs and reducing the expression of the
NLRP3 inflammasome (30). However, the protective effect of viable
A. muciniphila against DSS-induced colitis was shown to be
dependent of NLRP3 activation (27). Indeed, the role of NLRP3
in the regulation of intestinal homeostasis was previously elucidated,
since NLRP3-/- mice are more susceptible to the development of
experimentally induced colitis (31).Additionally, it was
demonstrated that the administration of A. muciniphila induced
the proliferation of intestinal stem cells and boosted the
differentiation of Paneth and goblet cells in the small intestine
and colon of healthy mice or mice with gut damage caused by
radiation and methotrexate. In the same study, the beneficial effect
of A. muciniphila in the intestinal tract was associated with a greater
amount of acetic and propionic acids in the cecal content of mice
treated with A. muciniphila (32), thus demonstrating that this
bacterium contributes to the tissue repair of the intestinal mucosa
and that the production of SCFAs is involved in this process.
Although A. muciniphila is a common component of the human
and murine gastrointestinal tracts and has a beneficial role for the
integrity of the intestinal mucosa, when intestinal dysbiosis occurs,
the colonization by A. muciniphila can exacerbate the inflammation
(11, 33). A previous study reported that treatment with A.
muciniphila led to the worsening of intestinal inflammation
caused by Salmonella enterica Typhimurium infection in
gnotobiotic mice, which was related to a decrease in goblet cells
and an increase in the expression of pro-inflammatory cytokines in
the cecum (34). However, recently, Ring et al. (2019) demonstrated
that in IL-10-deficient (IL-10-/-) mice, which spontaneously develop
colitis, colonization by A. muciniphila had no effect on intestinal
inflammation (35).

Interestingly, several studies have indicated that the outer
membrane compounds of A. muciniphila, or pasteurized
bacteria, have greater therapeutic potential for metabolic,
inflammatory, and autoimmune diseases than live A.
muciniphila (36–38). Notably, Kang et al. (2013) reported a
change in the composition of EVs in the feces of mice with
DSS-induced UC, such as a decrease in the EVs of A. muciniphila
and Bacteroides acidifaciens. In the same study, OMVs from A.
muciniphila (AmOMV) suppressed the production of IL-6 in
colonic epithelial cells (CT26 cell line) stimulated with OMVs
from Escherichia coli in vitro, and oral administration of AmOMV,
but not viable bacteria, attenuated DSS-induced colitis in vivo (36).
Additionally, in a murine model of high-fat diet (HFD)–induced
intestinal dysbiosis, AmOMVs improved the intestinal mucosal
barrier function, increased the expression of TJs and IL-10, and
inhibited inflammatory markers in the colon. AmOMVs are also
able to reduce intestinal permeability, increase the expression of
TJs via AMP-activated protein kinase (AMPK), inhibit TLR-4 and
interferon-alpha (IFN-a) expression, and increase TLR-2
expression and IL-4 production in Caco-2 cell lines in vitro (39,
40). These data indicate that A. muciniphila components and their
OMVs may be potential therapeutic targets for IBD.
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ROLE OF A. muciniphila IN
PROTECTING AGAINST OBESITY AND
METABOLIC SYNDROME

The obesity is related to gut dysbiosis as an imbalance between energy
consumption and expenditure favors the prevalence of pathobiont
bacteria (41–43). Metagenomic studies have shown that the
abundance of A. muciniphila is negatively correlated with body
weight in humans (15, 44, 45). The analysis of gut microbiota in
feces showed that obese and overweight children had reduced A.
muciniphila concentrations compared with lean children (44).
Significant multivariate linear associations using microbiome
multivariable association with linear models revealed that the
abundance of A. muciniphila was negatively correlated with fasting
blood glucose levels and the body mass index (BMI), suggesting that
these bacteria can act in the control of obesity and diabetes (46).
Similarly, the experimental obesity model like mice fed an HFD or
high-sucrose diet (HSD) and genetically obese mice (ob/ob) showed a
negative correlation with the abundance of the Akkermansia genera
and adiposity, body weight, liver and adipose tissue inflammation,
blood glucose serum, insulin, and triglyceride levels (47–49).

Since there is an inverse correlation between the abundance of A.
muciniphila andmetabolic diseases, several experimental studies have
used it as a potential probiotic for therapeutic tools for these diseases
(15, 45–47). Similarly, some findings indicate that A. muciniphila
adheres to the intestinal epithelium and strengthens the integrity of
the enterocyte monolayer in vitro, suggesting its ability to contribute
to the integrity of the intestinal barrier in obese individuals (50). In a
murine model of obesity induced by HFD, it was demonstrated that
treatment with A. muciniphila 108–109 Colony-forming unit (CFU)/
mL was able to reduce body weight gain, the accumulation of white
adipose tissue (WAT), and energy efficiency and improve liver
function impaired by HFD in mice (Figure 1) (51, 52).
Furthermore, it was reported in the HFD-induced obesity model
that the pasteurized form or AmOMV has been successful in
reducing or preventing hepatic steatosis and adipogenesis/
lipogenesis (38, 53). In addition, the increase in Akkermansia ssp.
abundance contributed to the antidiabetic effects of metformin in
mice fed with HFD, improving glucose tolerance and increasing the
population of goblet cells and Treg cells in adipose tissue (54). Kong
et al. (2019) reported that intestinal dysbiosis triggered by high-calorie
diets in mice can be alleviated by the administration of probiotics that
restore proportions and increase the abundance of beneficial bacteria,
including Akkermansia ssp (55).

The mechanisms by which A. muciniphila regulates obesity and
glucose levels have not yet been completely elucidated. A previous
study showed that A. muciniphila was able to increase
thermogenesis and the secretion of glucagon-like peptide-1 (GLP-
1) and reduce the expression of proteins involved in adipose cell
differentiation, and the gene expression of glucose and fructose
transporters in the jejunum, suggesting that A. muciniphila reduces
carbohydrate absorption (Figure 1) (52, 56, 57) Similarly, a clinical
trial observed that patients who underwent Roux-en-Y gastric
bypass surgery showed an increase in the Akkermansia
population together with an improvement in anthropometric and
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clinical aspects, such as a reduction in BMI and glycated
hemoglobin (HbA1c), as well as an increase in GLP-1 levels (58).

Interestingly, it has been reported that the pasteurization of A.
muciniphila attenuates metabolic syndrome by reducing body
weight, glucose intolerance, insulin resistance, the adipocyte
diameter, and the serum levels of leptin and triglycerides (51, 59).
In mice fed with HFD, it was also seen that AmOMV showed more
suppressive effects, when compared with viable A. muciniphila, on
lipid metabolism and the expression of inflammatory markers such
as TNF-a and IL-6 in adipose tissues (40). Treatment with this
probiotic or AmOMV increased the number of goblet cells and TJs
in the colon and restored the gut bacterial diversity that has been
affected by HFD (40, 51, 59), indicating that A. muciniphila can
preserve gut homeostasis, which can impact the development of
obesity and diabetes. Furthermore,A. muciniphila–derived proteins,
Amuc_1100 (membrane protein) and P9 (secreted protein), have
been reported to reduce obesity-related metabolic syndrome
induced by HFD in mice (51, 56). In the case of P9, glucose
homeostasis and obesity reduction are related to the interaction of
P9 with intercellular adhesionmolecule 2 (ICAM-2) and an increase
in type 2 macrophages (M2) in an IL-6 dependent pathway (56).

Considering the promising effect ofA. muciniphila as a therapeutic
tool for metabolic syndrome in mice, some clinical studies have been
conducted (60–63). In these clinical studies, obese and/or type 2
diabetes (T2D) patients supplemented withA.muciniphila, alone or in
conjunction with other probiotics, showed improvement in the clinical
and metabolic status (Table 1). Indeed, a positive effect was also
observed in humans, since obese patients who underwent 3 months of
treatment with 1 × 1010 CFU of pasteurized A. muciniphila showed a
reduction in weight, fat mass, hip circumference, insulin resistance,
plasma cholesterol levels, the markers of liver dysfunction, and
systemic inflammation; these patients did not experience any side
effects (60). It is important to mention that in addition to the two
clinical trials already completed and published (Table 1), there are
currently two other clinical trials in the recruitment phase, which aim
to evaluate the effects of A. muciniphila in obesity and T2D (NCT:
NCT04797442) and insulin resistance in healthy individuals with
dysglycemia (NCT: NCT05114018).

Furthermore, obese patients with a higher abundance of A.
muciniphila showed an improvement in metabolic profiles, such
as total cholesterol levels and insulin sensitivity after caloric
restriction, compared with patients with a low abundance of this
bacterium (64). Another clinical trial with overweight and obese
diabetic patients showed that inulin and butyrate administration
decreased the diastolic blood pressure and the expression of
TNF-a levels at the same time exerted bifidogenic effects and
increased A. muciniphila abundance in these patients (65).
Rodriguez et al. (2020) demonstrated that the transplantation
of feces from different obese patients to mice with microbiota
depleted by antibiotics and fed with HFD differentially
responded to inulin supplementation, which was related to the
initial gut microbiota composition. In the same study, a positive
relationship was observed between an increase in the
Akkermansia population and weight reduction, increased
insulin production, and reduced hepatic and muscle fat in
mice supplemented with inulin (66).
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The accumulation of visceral fat that occurs in obesity is a risk
factor for the development of T2D as its lipolytic activity and
greater recruitment of macrophages with a pro-inflammatory
phenotype favor insulin resistance (67, 68). In this regard, A.
muciniphila has been shown to control fat accumulation and
Frontiers in Immunology | www.frontiersin.org 4
adipose tissue metabolism, as well as improve glucose
homeostasis by reducing adiposity, fasting glucose, and insulin
resistance caused by HFD (15). Studies in diet-induced obese
mice have shown that a greater abundance of A. muciniphila
promoted by the consumption of polyphenols is associated with
TABLE 1 | Recorded and complete clinical trials using A. muciniphila administration.

Clinical trial
registry
number

Type of study Target
disease

Administered A. muciniphila prep-
aration

Protocol of admin-
istration

Main results References

NCT02637115 Randomized,
double-blind,
placebo-
controlled pilot
study

Overweight/
obese
insulin-
resistant
volunteers

1010 A. muciniphila either live or
pasteurized, frozen in glycerol

Daily oral
supplementation for
3 months

Improved insulin sensitivity and reduced
plasma total cholesterol, fat mass, plasma
GTT, AST, LPS, LDH, and creatine kinase

(48)

A. muciniphila counteracted the plasma
decrease in 1-PG and 2-PG, endogenous
activators of PPARa that may underlie
part of the beneficial metabolic effects
induced by A. muciniphila

(49)

NCT03893422 Randomized,
parallel-group,
placebo-
controlled,
double-blind
study

Adults with
T2D

WBF-011: mixed in capsules, which
contained inulin, Akkermansia
muciniphila, Clostridium beijerinckii, C.
butyricum, Bifidobacterium
infantis, and Anaerobutyricum hallii

Three capsules two
times a day within
30 min of morning
and evening meals,
for 12 weeks

Decrease in total glucose and
improvement in glycated hemoglobin

(50)

Increase in circulating butyrate or
ursodeoxycholate, evidencing the need for
strategies directed to the microbiome to
control T2D

(51)
July 2022 | Volume 13 | A
GTT, g-glutamyltransferase; AST, aspartate aminotransferase; LPS, lipopolysaccharide, LDH, lactate dehydrogenase; 1-PG, 1-palmitoyl-glycerol; 2-PG, 2-palmitoyl-glycerol; PPARa,
peroxisome proliferator–activated receptor alpha.
FIGURE 1 | Regulatory effects of A. muciniphila on obesity, T2D, and T1D. In the models of diet-induced obesity (DIO), oral treatment with A. muciniphila reduces
weight gain, controls fat accumulation, increases regulatory T cells (T regs), and decreases the production of pro-inflammatory cytokines in the adipose tissue of
mice fed with a high-fat diet (HFD). In the intestine, this probiotic increases goblet cells and mucus production, in addition to inducing a greater production of
glucagon-like peptide-1 (GLP-1), which controls glucose absorption. The administration of pasteurized A. muciniphila to obese subjects decreased body weight and
hip circumference, improved insulin sensitivity, and reduced the markers of liver damage. In NOD mice, the model of T1D (autoimmune), A. muciniphila improved
mucus production and increased the antimicrobial peptide RegIIIg, which contributes to improved intestinal barrier function and the lower translocation of LPS into
the circulation. In parallel, the probiotic increases the production of anti-inflammatory cytokines in pancreatic lymph nodes (PLNs) and potentiates the recruitment of T
regs in the pancreas, culminating in a delay in the development of T1D. Vancomycin-treated NOD mice showed an enrichment of A. muciniphila in the gut, which is
correlated with a lower degree of insulitis and glycemic control. Figure created with BioRender.com. TNF-a: tumor necrosis factor-a; IL-6: interleukin-6, GLP-1:
glucagon-like peptide-1; GLUT2, glucose transporter 2; SGLT1, sodium-glucose cotransporter 1; GLUT5, glucose transporter 5; RegIIIg: regeneration islet-derived III,
IL-10: inyerleukin-10; TGF-b, transforming growth factor beta; TLR2/4, Toll-like receptor 2/4; TJs, tight junctions.
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the prevention of weight gain, reduction of visceral adiposity,
prevention of intestinal inflammation, and reduction in
circulating liposaccharide (LPS) levels. The results also showed
that the increase in the population of Akkermansia ssp. improves
insulin sensitivity through the reduction of LPS translocation as
this bacterium reduces intestinal permeability (69, 70).

ROLE OF A. muciniphila IN
RESISTANCE AGAINST DIABETES

The ample evidence for the effect of A. muciniphila in diabetes is
controversial; a case–control two-stage metagenome broad
association study with individuals with T2D in China indicated the
enrichment of A. muciniphilaDNA in feces at both evaluation stages
(71). However, a variety of metagenomic studies have associated the
inverse abundance of A. muciniphila in the gut microbiota of obese,
prediabetic, and diabetic humans or mice (48, 72–74).Mice fed an
HFD for 16 weeks exhibited an increased mRNA expression of
inflammation markers in WAT, including TNF and CCL-2, in
addition to developing hyperinsulinemia, hyperglycemia, and
higher serum leptin concentrations. All of these metabolic and
inflammatory changes were accompanied by a lower abundance of
A. muciniphila after 3 weeks of diet and precede peripheral insulin
resistance and T2D development (48). However, the influence of the
relative abundance of A. muciniphila does not seem to be only
involved in the T2D onset. Refractory T2D is characterized by an
individual’s inability to achieve optimal glycemic control, marked by
the serum levels of HbA1c less than or equal to 8%. A metagenomic
study of stool samples indicated that patients with refractory T2D
exhibited a lower relative abundance of A. muciniphila than diabetic
subjects who achieved optimal glycemic control using metformin or
other hypoglycemic agents (75). In an experimental model of T2D
induced by streptozotocin (STZ) in rats, viable or pasteurized A.
muciniphila attenuated T2D, which was associated with improved
liver function and reduced plasma pro-inflammatory factors, gluco/
lipotoxicity, and oxidative stress (76).

T2D is characterized by changes in glucose metabolism through
the resistance of peripheral tissues to insulin, while T1D is an
autoimmune disease in which it is possible to observe the
progressive destruction of insulin-producing pancreatic b-cells by
an inflammatory cell infiltrate and the production of autoreactive
antibodies. Despite the differences in the nature of the development
of these pathologies, both diseases are accompanied by gut dysbiosis
(77–79). In case of T1D, the cytokine IFN-g has an important role in
the diabetes onset (80). Interestingly, IFN-g-/- mice show better
glucose tolerance and increased gut A. muciniphila relative
abundance compared with wild-type mice. In the same study,
IFN-g-/- mice without A. muciniphila showed no improvement in
glucose tolerance (81), indicating that the diabetogenic role of IFN-g
may be related to its ability to induce changes in the gut microbiota,
especially in the reduction of A. muciniphila.

Interestingly, one study indicated that NOD mice that received
oral treatment with the antibiotic vancomycin from birth to day 28 of
life predominantly haveA.muciniphila in their gut microbiota, which
was accompanied by a lower incidence of T1D. Additionally, mice
that received vancomycin treatment from the eighth week of life
Frontiers in Immunology | www.frontiersin.org 5
developed less insulitis associated with reduced destruction of
pancreatic b-cells (Figure 1) (82). Similarly, diabetes-resistant
antibiotic-treated STZ injected mice exhibited an increase in
Akkermansia abundance (83). These results suggest a protective
effect of A. muciniphila against T1D development. Furthermore, by
observing two colonies of NODmice with different incidence rates of
diabetes, it was possible to notice that the colony of NODmice with a
low incidence of T1D presented a greater abundance of A.
muciniphila in the gut microbiota. It is worth mentioning that
administration of A muciniphila to the colony of NOD mice with
high-incidence T1D delayed the T1D outcome (Figure 1) (84). It was
seen that regulation of T1D/T2D byA. muciniphilawas associated by
a local modulation with goblet cell hyperplasia, increased M2
macrophage number and antimicrobial peptide expression in the
colon, and the reduction of bacterial translocation. The Akkemansia-
induced gut homeostasis was accompanied by increased insulin
secretion and Treg lymphocyte numbers in the pancreas from
diabetic mice models (74, 76, 84). Together, these studies elucidate
the role of gut microbiota in the regulation of metabolic and
autoimmune diseases, suggesting that probiotic bacteria, especially
A. muciniphila, can be used as a therapeutic tool against diabetes.

CONCLUSION REMARKS

Gut dysbiosis has been proposed to be a risk factor for the
development of inflammatory and metabolic diseases. Restoring
a balanced microbiota and modulating the gut–immune system
axis using probiotics has been increasingly studied as a therapeutic
strategy for these diseases. It has already been verified that A.
muciniphila is capable of attenuating metabolic syndrome and
damage to the intestinal mucosa by inducing an anti-
inflammatory response and controlling intestinal homeostasis.
Interestingly, the derived proteins A. muciniphila, AmOMV, and
pasteurized A. muciniphila proved to be more efficient than viable
bacteria for alleviating these diseases. Thus, A. muciniphila
bacterial products or secreted proteins, named as postbiotics,
have been proven to be promising targets as new therapeutic
tools against chronic inflammatory and metabolic diseases.
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