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A new clustering membrane system using a complex chained P system (CCP) based on evolutionary mechanism is designed,
developed, implemented, and tested. *e purpose of CCP is to solve clustering problems. In CCP, two kinds of evolution rules in
different chained membranes are used to enhance the global search ability. *e first kind of evolution rules using traditional and
modified particle swarm optimization (PSO) clustering techniques are used to evolve the objects. Another based on differential
evolution (DE) is introduced to further improve the global search ability. *e communication rules are adopted to accelerate the
convergence and avoid prematurity. Under the control of evolution-communication mechanism, the CCP can effectively search
for the optimal partitioning and improve the clustering performance with the help of the distributed parallel computing model.
*is proposed CCP is compared with four existing PSO clustering approaches on eight real-life datasets to verify the validity. *e
computational results on tested images also clearly show the effectiveness of CCP in solving image segmentation problems.

1. Introduction

Membrane computing, also known as membrane systems or
P systems, is a novel research of bioinspired computing
initiated by Păun [1]. It seeks to discover novel biological
computing models from the structure of biological cells as
well as the cooperation of cells in tissues, organs, and
populations of cells. Over the past years, there are three
investigated P systems, cell-like P systems, tissue-like P
systems, and neural-like P systems, including spiking neural
P systems.

P systems have several characteristics: nondeterminism,
programmability, extensibility, and readability [2]. Research
shows that the some models of P systems present the same
computing power as Turing machines and is more efficient to
some extent [3]. *erefore, the analysis of computing power
and computational efficiency of P systems is one of the im-
portant basic studies [4, 5]. Other studies are focused on the
variation of P systems to solve optimization problems, in-
cluding the variant of rules and structures [6, 7]. In addition,
some intelligence techniques, such as evolutionary

computation and fuzzy theory, is also introduced to the variant
P systems in some specific optimization problems [8].

Because the parallel computation in membrane systems
can avoid the increase in time consumption with the in-
crease in the number of data points, the membrane systems
are suitable for solving clustering problems [9]. *ere are a
lot of interesting researches in variant P systems to solve
clustering problems. Liu and Xue [10] proposed a new
cluster splitting technique based onHopfield networks and P
systems. Liu et al. [11] presented an improved Apriori al-
gorithm, named ECTPPT-Apriori, based on evolution-
communication tissue-like P system with promoters and
inhibitors. Peng et al. [12] developed an extended P system
with active membranes, in which a modification differential
evolution mechanism is used to find the optimal clustering
centers in clustering problems. Peng et al. [13] introduced a
multiobjective clustering framework using a tissue-like P
system for solve fuzzy clustering problems. Wang et al. [14]
proposed a new cell-like P system using a modified genetic
algorithm to evolve the objects and using communication
rules in the cell-like P system.
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Image segmentation is an important part of image
processing; it also has critical impact on the final quality of
image analysis and subsequent tasks [15]. In the previous
studies, the segmentation technique can be divided into
region-based methods, edge-based methods, cluster-based
methods, and threshold-based methods [16], in which the
threshold methods can be classified into bilevel and mul-
tilevel threshold methods based on the number of clusters
[17]. *e region-based methods can obtain high segmen-
tation quality but are sensitive to the parameters. *e edge-
based methods have high segmentation quality in different
regions or targets and are also more sensitive to noise. *e
cluster-based methods are simple and easily implemented,
but the clustering results rely on the number of clusters and
feature selection in the colour space. *e threshold-based
methods are simple to computation, requiring no prior
knowledge, but the continuity of the regions is not guar-
anteed due to the lack of space information [18]. So far,
image segmentation has been used with wide recognized
significance in machine vision, computer-aided diagnosis of
the medical imaging, feature extraction, and analysis [19]. In
this paper, the experiment on tested images is simple and
easily implemented, and the application of image segmen-
tation is not used in our works, so more details are not
described in the following.

Because these segmentation methods mentioned
above have their respective advantages and limitations, a
lot of works have been done to find robust and optimum
segmentation techniques [20]. *e threshold technique is
one of the most popular segmentation techniques which
are based on the gray level of images. It is simplicity and
easy implementation, which has lower computational
complexity [21]. Li et al. [22] presented a novel thresh-
olding extraction method based on variational mode
decomposition (VMD). Zhao et al. [23] introduced a
gradient-based adaptive particle swarm optimization
(PSO) combined with improved external optimization
(EO) to overcome being trapped into local optima in high-
dimensional tasks. Wang et al. [24] designed a new P
system with related interaction rules; the PSO mechanism
is used to maximize entropy threshold. Tan et al. [25]
proposed a hybrid clustering models using ensemble deep
neural networks for skin lesion segmentation.

P systems are a class of distributed parallel computing
models that can be used to improve the global search
ability of PSO [26]. *e commutation rules of chained P
systems can be used to accelerate convergence of PSO.
Compared with the crossover and mutation operation of
DE, the partitioning information only can be used in the
velocity updating of particles [27, 28]. Besides, although
the neural networks have high quality for solving the
optimization problems, the space and time consumption
is too much, and the parallel computing model of P
systems is also not executed on the neural networks.
*erefore, a new variant of P systems based on PSO
mechanism is proposed, which is named complex chained
P (CCP) systems. And, the concepts of membrane, objects,
and rules based on a special chained structure are in-
troduced in the literature [29]. In this CCP system, two

kinds of evolution rules in different chained membranes
are introduced to enhance the global search ability. One of
evolution rules is using the traditional and modified PSO
mechanism to evolve the objects, and the partitioning
information is introduced as the environmental factor to
improve the clustering performance. Another is based on
differential evolution (DE) to evolve the global chained
objects in order to enhance the global search ability.
Compared with genetic algorithm (GA) [30], the DE is
simple and easily implemented, which has less predefined
parameters and quick convergence speed. *e commu-
nication rules for global objects between chained mem-
branes are used to accelerate the convergence speed and
avoid prematurity [31, 32]. At last, the CCP system is
evaluated on eight benchmark clustering problems and
eight tested images with the compared clustering and
image segmentation techniques; the experimental results
verify the validity and performance of proposed CCP.

*e rest of this paper is organized as follows: the
framework of the chained P systems is described in Section
2. Section 3 gives more details about the complex chained P
system for clustering problems, and the evolution rules and
communication rules are described in this section. In order
to verify the validity of CCP, some experiments which are
conducted on benchmark clustering problems, are taken in
Section 4.2. Furthermore, some tested images are used to
evaluate the competitive performance of CCP in Section 4.3.
Section 5 provides some conclusions and outlines future
research directions.

2. Chained P Systems

Some concepts can be briefly defined as follows. A special
membrane is called chained membrane, which contains
many objects based on a chained structure, and these objects
are called chained object. *e formal descriptions of the
chained P system can be expressed as the following tuple
[29].

􏽙 � O, μ, w1, · · · , wm, R1, · · · , Rm, σin, σout( 􏼁, (1)

where

(1) O is a finite nonempty alphabet, and the symbols are
called chained objects.

(2) μ is the membrane structure consisting of m

membranes, which is composed of two parts: the
structure of chained membranes and the structure of
the whole chained P system.

(3) w1, · · · , wm are the initial finite sets of chained ob-
jects; wi represents the chained objects in membrane
i, for 1≤ i≤m, wi ∈ O.

(4) R1, · · · , Rm are the finite sets of chained rules, and Ri

represents a finite set of chained rules in membrane i,
for 1≤ i≤m,Ri � Ri1, Ri2, · · · Rir􏼈 􏼉 which consists of r

subrules that are executed on a special order. *ere
are many chained rules on objects, for example,
object addition rule, object subtraction rule, object
crossover rule, and object variation rule.
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(5) σin is the input region or membrane in the chained P
systems, which contains the initial objects in the
systems.

(6) σout is the output region or membrane in the chained
P systems. If a certain chained rule cannot be exe-
cuted in the chained P system, the computation
process will be stopped and the computation results
or objects will be transported in the output region or
membrane.

3. Proposed Complex Chained P
System for Clustering

*e proposed chained P system based on evolutionary
mechanism with a complex chained structure for clustering
problems is presented in this section. First, the general
framework of this complex chained P system (CCP) is
described, and the basic membrane structure is given. Next,
the evolution and communication mechanisms of chained P
system are introduced in the CCP system. Finally, the
computational process of the CCP system is described in the
last parts.

3.1. General Framework of CCP System. *e general
framework of CCP is similar to that of the chained P systems,
but the main differences are the membrane structure of
whole P system and the evolution rules for chained objects.
In complex chained P system, there are two kinds of chained
membranes, chained membranes σ1 to σm and membranes
σm+1, which contains different evolution rules. *ese
chained membranes are labelled from 1 to m + 1. Respec-
tively, the formal descriptions of the CCP system are as
follows :

􏽙 � O, μ, w1, · · · , wm, R1, · · · , Rm, R1′, · · · , Rm+1′ , R
∗
m+1, σin, σout( 􏼁,

(2)

where

(1) O is a finite set of alphabets, which includes all
chained objects or strings in the CCP systems.

(2) μ is the membrane structure of CCP system con-
sisting of m + 3 membranes.

(3) w1, · · · , wm are the multisets of the initial chained
objects, with wi ∈ O, for 1≤ i≤m, and wi represents
the chained objects.

(4) R1, · · · , Rm represent finite sets of evolution rules in
chained membranes σ1 to σm, Rir, (1≤ i≤m) rep-
resent a set of evolution subrules in chained mem-
brane i, and the number of the subrules are denoted
by r. *e subevolution rules are of the form:
Rir � u⟶ v{ }, with u, v ∈ O, which means that
chained object u will be evolved to chained object v.

(5) R1′, · · · , Rm+1′ represent the communication rules in
chained membranes σ1 to σm+1. *e communication
rules are of the form: Ri

′ � u⟶ (v, inj)􏽮 􏽯, with
u, v ∈ O, for 1≤ i≤m + 1, which means the chained

object u in membrane i will be changed in object v

and transported into membrane j.
(6) R∗m+1 represents finite sets of evolution rules in

chained membrane σm+1. For two arbitrary chained
objects u and v, u, v ∈ O, there are two kinds of
evolution rules existing in the membranes can be
executed: crossover rules and variation rules,
R∗m+1 � R∗m+1,1, R∗m+1,2􏽮 􏽯.

(7) σin is the input region or membrane in the CCP
system, which contains the initial objects of the
whole system.

(8) σout is the output region or membrane in the CCP
systems. Once the computation is completed, the
computation results or objects will be transported to
the output region or membranes. Figure 1 gives the
membrane structure of the proposed CCP system.

In this proposed CCP, the chained objects are considered
to be feasible solutions in the search space, and the partition
obtained by the clustering technique is represented by
C � Ck􏼈 􏼉, for 1≤ k≤K. *us, the i-th chained object ui can
be defined as ui � (zi1, zi2, · · · , ziK), where zk, (1≤ k≤K)

represents the k-th cluster center, K is the number of the
clusters, and the dimension of cluster center is denoted by d.
At last, the best chained object that represents the best
partitioning results in the system will be output to the σout
when the computation is completed.

3.2. Evolution Rules onChainedObjects. *ere are two kinds
of evolution rules on chained objects existing in the chained
membranes, the evolution rules in chained membranes σ1 to
σm and another evolution rules in chained membrane σm+1.

3.2.1. Evolution Rules in Chained Membranes σ1 to σm.
*ere are two kinds of evolution subrules in chained
membranes σ1 to σm, which are based on different velocity
updating strategies for chained objects. Firstly, the particle
swarm optimization (PSO) mechanism is used to evolve the
chained objects, and the traditional velocity model of PSO is
introduced to update the velocity of chained object. At t + 1
time, the velocity formula of the i-th object ui in j-th chained
membrane σj, (1≤ j≤m) is determined by (3) in the fol-
lowing equation:

Vi(t + 1) � wVi(t) + c1r1 u
lbest
i (t) − ui(t)􏼐 􏼑 + c2r2 u

gbest
j (t) − ui(t)􏼐 􏼑,

(3)

where the inertia weight is denoted by w and c1 and c2
represent the learning factor, which is usually restricted to 2.
*e iteration counter is denoted by t. r1 and r2 are two
independent uniform random numbers. *e local best of ui

in history is denoted by ulbest
i , specially, the global best in σj is

denoted by u
gbest
j .

Another velocity updating strategy for objects is based
on environmental factors. At t + 1 time, a modified velocity
formula of EPSO is determined by (4) in the following
equation:
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Vi(t + 1) � wVi(t) + c1r1 u
lbest
i (t) − ui(t)􏼐 􏼑

+ c2r2 u
gbest
j (t) − ui(t)􏼐 􏼑 + c3r3 Ei(t) − ui(t)( 􏼁,

(4)

where c3 represents a positive constant, r3 is a uniform
random number, and Ei(t) represents the environmental
factor around to the object ui, which is based on the in-
formation of clusters. *e partitioning information of
cluster is changed dynamically through the evolution of
objects, and the geometric center of the data point belonging
to the corresponding cluster in the object ui is used as the
environment factor, where Ei(t) � ei1(t), ei2􏼈

(t), · · · , eiK(t)}, for k � 1, 2, · · · , K, which is given by (5) at t

time in the following equation:

eik(t) �
􏽐xp∈Ck

xp

Nk

, (5)

where eik(t) represents the k-th cluster centroid of the
environment factor Ei, xp represents the p-th data point in
the dataset, for p � 1, 2, · · · , N, N is the number of the data
point in the datasets, and number of data points belonging to
the corresponding cluster Ck is denoted by Nk.

At t + 1 time, the position formula of ui is determined by
(6) in the following equation:

ui(t + 1) � ui(t) + Vi(t + 1), (6)

and the local best of ui at t + 1 time is updated according to
(7) in the following equation:

u
lbest
i (t + 1) �

ui(t + 1), f ui(t + 1)( 􏼁<f ulbest
i (t)( 􏼁,

ulbest
i (t), otherwise,

⎧⎨

⎩

(7)

where f(u) represents the fitness function of ui for clus-
tering problems, which can be defined by (8) in the following
equation:

f ui( 􏼁 � min 􏽘
K

k�1
􏽘

N

j�1
xj − zik

�����

�����. (8)

*e purpose of clustering problems is to find a parti-
tioning result C � C1, C2, · · · , CK􏼈 􏼉 obtained by techniques
to minimize the values of fitness function according to
equation (8). *e global best u

gbest
j at t + 1 time is updated

according to (7) in the following equation:

u
gbest
j (t + 1) �

ulbest
i (t + 1), f ulbest

i (t + 1)( 􏼁<f u
gbest
j (t)􏼐 􏼑,

u
gbest
j (t), otherwise.

⎧⎪⎨

⎪⎩

(9)

At t time, a success rate of chained objects ui is defined
by the following equation:

S ui, t( 􏼁 �
1, if f ulbest

i (t)( 􏼁<f ulbest
i (t − 1)( 􏼁,

0, if f ulbest
i (t)( 􏼁 � f ulbest

i (t − 1)( 􏼁,

⎧⎨

⎩ (10)

where S(ui, t) represents the success rate of ui. *e success
rate in the chained membrane σj, for 1≤ j≤m, is computed
by (11) in the following equation:

P σj, t􏼐 􏼑 �
􏽐

nj

i�1 s ui, t( 􏼁

nj

, (11)

where nj represents the number of the chained object in
chained membrane σj and P(σj, t) is the success rate of σj,
P(σj, t) ∈ [0, 1], which means the improvement rate at last
computation. In this study, a linearly increasing strategy is
introduced to adjust the values of the inertia weight dy-
namically; the possible range is based on the mapping re-
lationship of P(σj, t), which is given by (12) in the following
equation:

w(t) � wmax − wmin( 􏼁P σj, t􏼐 􏼑 + wmin, (12)

… ……… … … ……

σin

σmσ2

σm+1

σout

σ1

Figure 1: *e membrane structure of CCP system.
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where wminand wmax represent the minimum and maximum
of inertia weight and w(t) ∈ [wmin, wmax].

3.2.2. Evolution Rules in Chained Membrane σm+1. *e
evolution rules in chained membrane σm+1 contain objects
crossover rules and object variation rules, differential evo-
lutionary (DE) approach is further used as the variant of
evolution rules in σm+1, and the mutation and crossover
mechanism is also introduced to help the objects escape the
local optima. At t time, the i-th chained object in σm+1 is
denoted by ui(t) � (ui1(t), ui2(t), · · · , ui D(t)), where
D � k∗ d represents the dimension of the objects and ui′(t)

and ui∗(t) are two randomly chained objects in σm+1; the
mutation operation is defined by (13) in the following
equation:

viy(t) � uiy(t) + F1y ∗ u
gbest
m+1y(t) − uiy(t)􏼐 􏼑

+ F2∗ ui′y
(t) − ui∗y(t)􏼒 􏼓, fory � 1, 2, · · · , D,

(13)

where vi(t) represents the created donor, ugbest
m+1 (t) represents

the best object in σm+1, the scaling factor is denoted by F, and
the value is given by F1 � 0.5 × (1 + rand(0, 1)),
F2 � 0.5 × (1 + rand(0, 1)). *e mutant ui

′(t) comes from
the created donor through crossover mechanism, which can
be defined by

uiy
′ (t) �

viy(t), if randi≤Pcory � randy ,

uiy(t), otherwise ,

⎧⎨

⎩ fory �1,2, · · · ,D,

(14)

where the crossover rate is denoted by Pc, it is a predefined
constant within the range from 0 to 1, randi is an inde-
pendent uniform random number, and randy is the random
dimension from 1 toD. At t + 1 time, the position formula of
ui is determined by

ui(t + 1) �
ui
′(t), f ui

′(t)( 􏼁<f vi(t)( 􏼁,

ui(t), otherwise.

⎧⎨

⎩ (15)

3.3. Communication Rules in Chained Membranes. *e
communication rules of chained P system are used to en-
hance the cooperation between the chained membranes,
which provide good foundation for exchange and sharing of
the information. *ere are two kinds of communication
rules in the CCP system:

(1) Rj
′ � u

gbest
j (t)⟶ (uj(t), inm+1)􏽮 􏽯, for j � 1, 2, · · · ,

m. At t time, the global best u
gbest
j in σj is sent to the

chained membrane σm+1 and transformed into the
j-th object uj. At each iterative computation, the
chainedmembrane σm+1 only contains m objects that
come from the chained membranes σ1 to σm.

(2) Rm+1′ � u
gbest
m+1 (t)⟶ (u

gbest
j (t), inj)􏽮 􏽯, for j � 1, 2,

· · · , m. At t time, the global best u
gbest
m+1 in σm+1 is

transported to the chained membranes σ1 to σm,
which is considered to be the global best u

gbest
j in

chained membrane σj. Meanwhile, the global best
u
gbest
m+1 in membrane σm+1 is sent to the output

membrane σout, which is viewed as the best object or
the final computation results of the CCP at t time.

3.4. Computation Process of CCP

3.4.1. Initialization. *e input membrane σincontains all
initial objects in the P system, denoted by Q � m∗ n. *e
position of chained object is randomly initialized in the
search space. After initialization, the chained objects in the
membrane σin will be transported to the chained membrane
σ1 to σm, and each chained membrane contains n objects.

3.4.2. Evolution in Chained Membranes σ1 to σm. *e
evolution rules on chained objects are used to completed the
evolution process according to the equations (3), (4),and (6)
in chained membrane σj, (1≤ j≤m). And, the selection for
velocity formula is based on a random strategy. *e local
best and global best in σj are updated through the equations
(7) and (9).

3.4.3. Communication between Chained Membranes. *e
first kinds of communication rules are used to transport the
global best in the σj, (1≤ j≤m) to the chained membrane
σm.

3.4.4. Evolution Rules in Chained Membranes σm+1. *e
evolution rules on chained objects are used to completed the
evolution process according to the equations (13) and (14) in
chained membrane σm+1, and global best in σm+1 is updated
by the equation (15).

3.4.5. Communication between Chained Membranes. *e
second kinds of communication rules are used to transport
the global best in σm to each chained membrane
σj, (1≤ j≤m).

3.4.6. Halting and Output. *e evolution and communi-
cation will be implemented repeatedly with an iterative form
during the computation process. *e termination criterion
of the system is stopped to whether the maximum number of
iterations or computation is reached. When the system halts,
the output membrane σout will send the global best to the
environment, and this object is regarded as the final com-
puting results of CCP system.

4. Experimental Analysis of
Clustering Problems

In this section, the feasibility and effectiveness of the pro-
posed CCP will be demonstrated through the experimental
analysis. *e datasets of the experiment are introduced first,
and the artificial dataset from the previous studies [33] is
used to tune the parameters in CCP. Eight real-life datasets
from UCI machine leaning repository [34] is used to
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compare the performance with currently existing clustering
approaches. All clustering approaches, including CCP, are
implemented on MATLAB 2016b, and all the experiments
are conducted on a DELL desktop computer with an Intel
4.00GHz i7-8550U processor and 8GB of RAM in a
Windows 10 environment.

4.1. Parameter Setting. *e numbers of chained membranes
have important influences on the performance of CCP.
*erefore, four artificial datasets [33], Data_5_2, Data_9_2,
Size5, and Square4, are used to tune this parameter in order
to ensure the equity of the experiment.*e details of the four
artificial datasets are given in Table 1.

Different CCP systems with different degrees of m � 4,
m � 5, m � 6 [12] are used to evaluate the effects of the
number of the chained membranes. *e maximum of it-
erations is set to tmax � 100, and the positive constant c3 is a
random number which distributed to 0.6 and 3. *e lower
and upper limits of the inertia weight are set to wmin � 0.4
and wmax � 1.2. *e mutation probability Pc is randomly
generated from 0.2 to 0.8. Other parameters which are not
tested in this experiment will be maintained the same values
for the fairness of the comparison experiments. And, the
number of independent running is set to 30 to eliminate the
effect of the random factors. *e values of mean and SD of
the fitness function obtained by CCP system with different
degrees are reported in Table 2.

Table 2 reports the clustering results of the CCP system
with different degrees on four artificial datasets. *e best
values of mean and SD for each dataset are given in bold.
*ese results show that the mean and the SD values obtained
by the CCP system when m � 10 are the best among these
different systems.

4.2. Clustering Problems. *e performance of the CCP is
compared with four clustering approaches that have been
reported in the literature to further evaluate the effective-
ness, such as standard particle swarm optimization (PSO)
[35], differential evolution (DE) [36], environment particle
swarm optimization (EPSO) [37], and adaptive particle
swarm optimization (APSO) [38]. *e comparison experi-
ments are conducted on eight real-life datasets from the UCI
machine learning repository, Iris, Newthyroid, Seeds, Dia-
betes, Yeast, Glass, CMC, and Lung Cancer. More details
about these datasets are presented in Table 3.

In these compared clustering approaches, the crossover
probability Pc of the DE approach is randomly generated
from 0.2 to 0.8. An environment factor based on the clus-
tering information is embedded in the velocity updating
model of EPSO approach, and the learning factor c3 is
randomly generated from 0.6 to 3. A nonlinear regressive
function of APSO based on the population diversity is used
to the adjustment formula of the inertia weight, L represents
a predefined constant, and c is a predefined constant. All
adjustable parameters in these clustering approaches are set
to the appropriate values which are reported in the re-
spective publications from Table 4.

Each clustering approach, including CCP, ran for 50
times for each dataset to eliminate the effects of random
factors. Simple statistics including worst values (Worst), best
value (Best), Mean, and SD of fitness function according to
(8) are used in the experiments as the evaluation criteria of
clustering results.*e experimental environment is the same
for all comparative clustering approaches.

Figure 2 shows the convergence of these clustering
approaches on the eight test datasets for typical runs of these
approaches. *e fitness value obtained by CCP declines
faster at the beginning of the evolution process and then
obtains fine convergence for each dataset. *e values of the
fitness function of PSO and DE decrease slowly at the be-
ginning of the evolution process and do not apparently have
better convergence performance than other approaches.
Although EPSO and APSO show better performance than
the above clustering approaches, they are also easily trapped
into local optima, as shown in Figures 2(e), 2(f), and 2(h).
*erefore, CCP has better convergence speed and higher
clustering quality than the comparative approaches for all
these datasets, as shown in Figure 2.

Simple statistics of the fitness function values of these
clustering approaches on these datasets are reported in
Table 5. Results in Table 5 show that CCP has the overall best
performance on these eight test datasets. Due to the char-
acteristics of the test datasets, some clustering approaches
performed better on some specific datasets with smaller SD,
but the performance of CCP on these ten datasets is all
considered comparable. Table 6 provides the average
computation time in seconds taken by each of the five
clustering techniques when running 50 times on each of the
datasets. It can be seen from Table 6 that the proposed CCP
has a larger average computation time as compared with
PSO, DE, EPSO, and APSO. *e evolution process in the
chained membranes is time-consuming so that CCP takes
more time than other techniques does.

In order to evaluate the clustering performance of these
compared clustering approaches, clustering accuracy (CA) is
used to evaluate the quality of clustering results obtained by
the clustering techniques; the overall accuracy of parti-
tioning results is defined by

CA �
􏽐

K
k�1 maxK

l�1 Ck ∩Cl

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

N
, (16)

where |Ck ∩Cl| represents the number of the data points in
both belonging to actual cluster k and partitioning cluster l,
for k, l � 1, 2, · · · , K. *e simple statistics of clustering ap-
proaches on eight datasets are reported in Table 7. It can be
seen that CCP has overall better performance on these
datasets. Although some approaches show a better perfor-
mance on some specific datasets, the performance of CCP on

Table 1: Properties of the artificial datasets.

Datasets Data Feature Class
Data_5_2 250 2 5
Data_9_2 900 2 9
Size_5 1000 2 4
Square4 1000 2 4
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Table 2: Performance of CCP with different degrees.

Datasets
m � 4 m � 5 m � 10

Mean SD Mean SD Mean SD
Data_5_2 326.5071 0.0301 326.4696 0.0123 326.4641 0.0110
Data_9_2 590.8587 0.0624 590.7589 0.0463 590.7413 0.0287
Size_5 2493.1450 4.8048 2491.9680 0.0789 2491.9020 0.0565
Square4 2367.6443 0.0317 2367.6052 0.0260 2367.5917 0.0141

Table 3: Properties of the UCI datasets.

Datasets Data Feature Class
Iris 150 4 3
Newthyroid 215 5 3
Seeds 210 7 3
Diabetes 768 8 2
Yeast 1484 8 10
Glass 214 9 6
CMC 1473 9 3
Lung Cancer 32 26 3

Table 4: Parameter setting of the comparative clustering approaches used in the experiments.

Parameters PSO DE EPSO APSO CCP
Population (Q) 100 100 100 100 100
tmax 200 200 200 200 200
c1, c2 2,2 N 2,2 N 2,2
c3 N N (0.6, 3) N (0.6, 3)
r1, r2 (0,1) N (0, 1) N (0, 1)
r3 N N (0, 1) N N
(wmin,wmax) 1 N (0.4, 0.6) N (0.4, 1.2)
Pc N (0.2, 0.8) N N (0.2, 0.8)
L N N N 2.1 N
c N N N 2 N
m N N N N 10
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Figure 2: Continued.
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Figure 2: Convergence of the approaches on each of the eight real-life datasets. (a) Iris, (b) Newthyroid, (c) Seeds, (d) Diabetes, (e) Yeast,
(f ) Glass, (g) CMC, and (h) Lung Cancer.
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these specific datasets is also considered compared from
Table 7.

4.3. Proposed CCP for Image Segmentation. In this section,
some typical experiment and analysis for tested image are
proposed to evaluate the segmentation performance of this
proposed CCP. *ese tested images are used in the previous
studies and researches, which are provided from the Ber-
keley segmentation dataset and benchmark [39]. *e size of

the tested image is 481× 321; Figure 3 gives the original
image of these tested images.

OSTU proposed by Qtsu [40] is one of most popular
segmentation methods, and it has been used to determine
whether the optimal thresholdmethod can give a satisfactory
segmentation results. *e following discriminant criterion
measure of OSTU can be described as follows: An image
contains N pixels from 0 to L, usually L is set to 255, need to
segmented in M + 1 clusters. *us, M thresholds
t1, t2, · · · , tM􏼈 􏼉 are needed that divided the original image.

Table 5: Performance of the comparative clustering approaches on the eight real-life datasets.

Datasets Statistics
Clustering approaches

PSO DE EPSO APSO CCP

Iris

Worst 153.8256 109.9969 96.8183 96.7113 96.6555
Best 114.6361 101.9888 96.7063 96.6672 96.6555
Mean 133.4267 105.2555 96.7431 96.6863 96.6555
S.D. 8.7150 2.3362 0.0374 0.0093 1.23E− 13

Newthyroid

Worst 2400.0152 1977.3729 1943.6091 1908.2618 1895.9965
Best 2040.0058 1924.2365 1887.7578 1885.4950 1866.5183
Mean 2271.0529 1950.8237 1903.7699 1897.2114 1888.1277
S.D. 91.1317 14.0217 11.1225 5.0863 7.5021

Seeds

Worst 452.8039 353.1875 312.1602 311.9663 311.7978
Best 384.2174 333.9361 311.8824 311.8493 311.7978
Mean 422.1335 342.6432 312.0224 311.9148 311.7978
S.D. 23.0106 5.4078 0.0715 0.0257 4.27E− 07

Diabetes

Worst 59885.0835 47911.2714 47629.8621 47590.4655 47561.1362
Best 51628.1083 47693.6403 47585.4012 47561.6124 47561.1262
Mean 54535.4335 47779.1879 47607.6176 47573.1668 47561.1262
S.D. 2147.4319 73.2248 11.8570 6.9363 3.79E− 08

Yeast

Worst 430.0923 378.2874 248.9934 287.4479 245.0999
Best 391.0852 348.2327 236.9439 256.7699 235.3785
Mean 407.6461 367.3743 242.7818 271.6039 239.6706
S.D. 10.9776 7.2050 3.3082 8.0848 2.4396

Glass

Worst 451.0029 334.2308 226.0186 253.7243 213.4793
Best 328.2842 292.1006 212.6117 210.8631 212.1629
Mean 418.7840 314.2182 216.2731 230.8009 212.9308
S.D. 31.2743 8.9158 3.5290 14.8939 0.3110

CMC

Worst 6852.7697 5720.0002 5537.8142 5535.5675 5532.3096
Best 6335.6713 5628.6990 5535.5853 5533.1403 5532.1857
Mean 6551.6558 5683.0978 5536.8242 5534.1784 5532.1913
S.D. 174.0443 28.1480 0.5543 0.5962 0.0278

Lung Cancer

Worst 170.2152 153.9227 127.4346 125.6464 125.6485
Best 184.9632 159.9095 138.4711 126.3331 125.6685
Mean 178.8476 157.0802 133.1676 125.7308 125.6609
S.D. 4.1542 1.6051 3.3466 0.1595 0.0052

Table 6: Average computation time in seconds over 50 runs.

Datasets
Clustering approaches

PSO DE EPSO APSO KEPSO-CCP
Iris 2.4630 2.7315 3.0608 2.6708 3.3833
Newthyroid 2.4785 2.8251 3.3350 2.8360 3.6576
Seeds 2.4263 2.7072 3.2817 2.8446 3.5799
Diabetes 2.7341 3.1116 4.9156 3.2315 5.2833
Yeast 5.1674 5.2355 9.8255 5.6831 10.3316
Glass 2.6526 3.0069 3.6378 2.9946 4.0859
CMC 3.7550 4.0391 8.0583 3.9940 8.1726
Lung Cancer 2.3451 2.7382 2.8267 2.7655 3.2006
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Table 7: Performance of the comparative clustering approaches on the eight real-life datasets.

Datasets Statistics
Clustering approaches

PSO DE EPSO APSO CCP

Iris

Worst 0.6667 0.8933 0.8933 0.9000 0.8667
Best 0.9267 0.9000 0.9000 0.9000 0.9600
Mean 0.8077 0.8983 0.8997 0.9000 0.9013
SD 0.0904 0.0027 0.0015 1.03E− 17 0.0248

Newthyroid

Worst 0.6977 0.7488 0.7721 0.7721 0.7767
Best 0.8372 0.8093 0.8047 0.8047 0.8047
Mean 0.7391 0.7777 0.8000 0.8000 0.8014
SD 0.0337 0.0187 0.0114 0.0114 0.0080

Seeds

Worst 0.6476 0.8477 0.8952 0.8952 0.8952
Best 0.8953 0.9143 0.8952 0.8952 0.8953
Mean 0.8367 0.8814 0.8952 0.8952 0.8952
SD 0.0850 0.0207 1.14E− 16 1.14E− 16 1.14E− 16

Diabetes

Worst 0.6510 0.6510 0.6510 0.6510 0.6510
Best 0.6510 0.6510 0.6510 0.6510 0.6654
Mean 0.6510 0.6510 0.6510 0.6510 0.6518
SD 1.14E− 16 1.14E – 16 1.14E− 16 1.14E− 16 0.0032

Yeast

Worst 0.3120 0.3309 0.4508 0.3942 0.4683
Best 0.3376 0.4016 0.5370 0.4569 0.5418
Mean 0.3171 0.3640 0.4965 0.4377 0.5200
SD 0.0057 0.0248 0.0275 0.0134 0.0152

Glass

Worst 0.3551 0.4720 0.5607 0.5093 0.5841
Best 0.4813 0.5234 0.5981 0.5841 0.5841
Mean 0.4140 0.5021 0.5834 0.5486 0.5841
SD 0.0444 0.0144 0.0122 0.0267 1.14E− 16

CMC

Worst 0.4332 0.4358 0.4515 0.4562 0.4515
Best 0.4630 0.4582 0.4569 0.4562 0.4569
Mean 0.4510 0.4492 0.4556 0.4562 0.4562
SD 0.0087 0.0074 0.0016 5.66E− 17 0.0012

Lung Cancer

Worst 0.4062 0.4063 0.5313 0.4063 0.5625
Best 0.5625 0.5000 0.5625 0.6250 0.5625
Mean 0.4641 0.4281 0.5578 0.5188 0.5625
SD 0.0433 0.0250 0.0114 0.0644 1.28E− 16

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 3: Benchmark tested images. (a) Church. (b) Train. (c) Roman. (d) Starfish. (e) Surfer II. (f ) Cow. (g) Crocodile. (h) Elephant.
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*enumber of i-th gray level pixels or frequencies is denoted
by h(i), PRi represents the probability of i-th gray level pixel
in the image,PRi � h(i)/N, where N � 􏽐

L
i�0 h(i). *e opti-

mal thresholds t1, t2, · · · , tM􏼈 􏼉 are determined by the fol-
lowing equations:

t
∗
1 , t
∗
2 , · · · , t

∗
M􏼈 􏼉 � argmax σ2B t1, t2, · · · , tM( 􏼁􏽮 􏽯, (17)

σ2B � 􏽘
M

k�1
wk ∗ uk − ut∗

k
􏼒 􏼓

2
, (18)

where w2
k � 􏽐i∈Ck

PRi, u2
k � 􏽐i∈Ck

iPRi/wk, for k � 1,2, · · · ,M.
*e compared experiments are performed on the test

images with a different number of thresholds, M � 3, M � 5,
and M � 8 [41], to evaluate the performance of the CCP in
both low- and high-dimensional multilevel thresholding
problems. And, the proposed CCP is compared with PSO,
DE, EPSO, and APSO approaches as mentation above. *e
purpose of image segmentation is to find a set of thresholds
t1, t2, · · · , tM􏼈 􏼉 to maximize the values of Ostu’s function
according to equation (17). Figures 4–7 give the segmented
results on tested images with a different number of
thresholds.

Figures 4–7 provide the segmented images on church,
starfish, surfer II, and elephants obtained by the compared
techniques. It can be observed that the segmented quality has
been improved with the increasing number of thresholds.
And, CCP has a better performance than others on these
tested images. Respectively, the segmented images obtained
by APSO and CCP achieve better consistency than those by
PSO, DE, and EPSO when Th � 8. *e gray-level histogram
is often regarded as a kind of distributions to determine the
thresholds for the image segmentation [42]. And, the peak
value of the histogram is one of the important factors that

affect the segmentation accuracy. *erefore, the thresholds
of the compared approaches on church and elephant images
are shown in gray-level histogram as follows.

Figures 8 and 9 show the segmented results of church
and elephant at 8 thresholds level obtained by CCP and
compared approaches. *e optimal thresholds values of
CCP with {40, 79, 114, 130, 158, 191, 213, 235} is similar to
those of the PSO with {40, 77, 114, 130, 157, 190, 213, 235}
on church images and also similar to those of the elephant
image. From these figures, it can be seen that the optimal
thresholds values by DE and EPSO are very different from
those by PSO, APSO, and CCP in most cases. Because the
segmentation results depend on the information of classes
according to the thresholds level, the optimal thresholds
of EPSO have statistical difference with others. Further-
more, it is not difficult to find that the selected optimal
thresholds heavily depend on the objective function that is
chosen. Besides EPSO, other threshold selection ap-
proaches, including the CCP approach, can segment the
test images more reasonably, as shown in Figures 4–7.
Table 8 provides the mean and S of Ostu’s function with 3,
5, and 8 thresholds achieved by all compared approaches
in 50 run times.

*e simple statistics of compared approaches on tested
images are reported in Table 8. *e best values of mean and
SD for each image are highlighted, and it is not hard to see
that the CCP system is able to find the best values. Because
the PSO, DE, EPSO, and APSO are not specially techniques
for image segmentation, some segmented approaches based
on multilevel threshold, whale optimation algorithm
(WOA) [43], gray wolf optimizer (GWO) [44], whale op-
timization algorithm based on thresholding heuristic
(WOA-TH) [41], and gray wolf optimizer based on
thresholding heuristic (GWO-TH) [41], are used to evaluate

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 4: Segmented images of church at different thresholds calculated by all approaches: (a) PSO (*� 3), (b) DE (*� 3), (c) EPSO
(*� 3), (d) APSO (*� 3), (e) CCP (*� 3), (f ) PSO (*� 5), (g) DE (*� 5), (h) EPSO (*� 5), (i) APSO (*� 5), (j) CCP (*� 5), (k)
PSO (*� 8), (l) DE (*� 8), (m) EPSO (*� 8), (n) APSO (*� 8), (o) CCP (*� 8).
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the clustering effectiveness of CCP. *e maximum number
of iterations is set to 2200, 3000, and 3600 with the number
of thresholds being 3, 5, and 8. *e mean and SD of Ostu’s
function are obtained by the 100 run times to avoid the
effects of random factors.

Table 9 provides the values of mean and SD obtained by
different segmented approaches on tested images.

Obviously, traditional approaches are easily trapped into
local optima, and WOA and GWO have worse segmented
performance than that of the others. And, the thresholding
heuristic has finetuned the best thresholds to enhance the
global search ability of WOA and GWO. It also can be
observed that the CCP has better and stable performance
than compared segmented approaches on the tested images.

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 6: Segmented images of Surfer II at different thresholds calculated by all approaches: (a) PSO (*� 3), (b) DE (*� 3), (c) EPSO
(*� 3), (d) APSO (*� 3), (e) CCP (*� 3), (f ) PSO (*� 5), (g) DE (*� 5), (h) EPSO (*� 5), (i) APSO (*� 5), (j) CCP (*� 5), (k)
PSO (*� 8), (l) DE (*� 8), (m) EPSO (*� 8), (n) APSO (*� 8), (o) CCP (*� 8).

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 5: Segmented images of starfish at different thresholds calculated by all approaches: (a) PSO (*� 3), (b) DE (*� 3), (c) EPSO
(*� 3), (d) APSO (*� 3), (e) CCP (*� 3), (f ) PSO (*� 5), (g) DE (*� 5), (h) EPSO (*� 5), (i) APSO (*� 5), (j) CCP (*� 5),
(k) PSO (*� 8), (l) DE (*� 8), (m) EPSO (*� 8), (n) APSO (*� 8), (o) CCP (*� 8).
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Figure 8: Continued.

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 7: Segmented images of elephant at different thresholds calculated by all approaches: (a) PSO (*� 3), (b) DE (*� 3), (c) EPSO
(*� 3), (d) APSO (*� 3), (e) CCP (*� 3), (f ) PSO (*� 5), (g) DE (*� 5), (h) EPSO (*� 5), (i) APSO (*� 5), (j) CCP (*� 5),
(k) PSO (*� 8), (l) DE (*� 8), (m) EPSO (*� 8), (n) APSO (*� 8), (o) CCP (*� 8).
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Figure 8: Segmented images of church at 8 thresholds level calculated by all approaches and their respective gray histogram. (a) Church,
(b) PSO, (c) DE, (d) EPSO, (e) APSO, and (f) CCP.

Gray histogram

0

2000

4000

6000

8000

10000

12000

14000

16000

Th
e n

um
be

r o
f p

ix
els

50 100 150 200 250 3000
Gray values

(a)

50 67 95 128 160 190 216 239

Gray histogram

0

2000

4000

6000

8000

10000

12000

14000

16000

Th
e n

um
be

r o
f p

ix
els

50 100 150 200 250 3000
Gray values

(b)

48 66 93 129 152 183 211 234

Gray histogram

0

2000

4000

6000

8000

10000

12000

14000

16000

Th
e n

um
be

r o
f p

ix
els

50 100 150 200 250 3000
Gray values

(c)

59 78 102 124 153 192 217 239

Gray histogram

0

2000

4000

6000

8000

10000

12000

14000

16000

Th
e n

um
be

r o
f p

ix
els

50 100 150 200 250 3000
Gray values

(d)

Figure 9: Continued.
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Figure 9: Segmented images of elephant at 8 thresholds level calculated by all approaches and their respective gray histogram. (a) Elephant,
(b) PSO, (c) DE, (d) EPSO, (e) APSO, and (f) CCP.

Table 8: *e values of Ostu’s function with a different number of thresholds calculated by all approaches.

Images * P
Segmentation approaches

PSO DE EPSO APSO CCP

Church

3 Mean 3276.8367 3276.837 3276.7685 3276.8367 3276.8367
SD 1.87E− 12 1.87E− 12 0.155831 1.87E− 12 0.00E+ 00

5 Mean 3381.9107 3381.4923 3380.4929 3381.9236 3381.9246
SD 0.0171 0.2245 1.1240 0.0046 9.25E− 13

8 Mean 3422.5621 3420.9578 3416.2082 3420.7834 3423.2006
SD 2.6579 0.9181 3.5574 2.86725 1.2323

Train

3 Mean 2606.5951 2606.5951 2606.5623 2606.5951 2606.5951
SD 4.67E− 13 4.67E− 13 0.0500 4.67E− 13 4.67E− 13

5 Mean 2736.2257 2735.3181 2735.2676 2735.6328 2736.2331
SD 0.0135 0.5241 0.6743 2.6787 9.33E− 13

8 Mean 2790.3435 2788.0338 2786.9829 2790.4068 2790.4461
SD 0.0913 0.5724 2.5511 0.0897 0.0389

Roman

3 Mean 2142.3440 2142.3440 2142.2752 2142.3440 2142.3440
SD 9.33E− 13 9.33E− 13 0.1073 9.33E− 13 1.39E− 13

5 Mean 2221.3026 2220.8465 2220.5998 2221.3051 2221.3056
SD 0.0047 0.2476 0.4636 0.0012 1.67E− 13

8 Mean 2251.7218 2250.5766 2249.7117 2251.7258 2251.7325
SD 0.0592 0.4211 1.2147 0.0673 0.0573

Starfish

3 Mean 2784.2272 2784.2272 2784.0795 2784.2272 2784.2272
SD 1.4E− 12 1.4E− 12 0.1267 1.4E− 12 9.25E− 13

5 Mean 2916.2557 2915.6466 2915.5862 2916.2726 2916.2730
SD 0.0240 0.3693 0.6716 0.0010 0.0009

8 Mean 2973.9976 2971.8186 2971.2207 2974.0391 2974.0829
SD 0.0404 0.7603 1.8786 0.0942 0.0151

Surfer II

3 Mean 7953.4181 7953.4181 7953.3489 7953.4181 7953.4181
SD 2.80E− 12 2.80E− 12 0.0718 2.78E− 12 2.80E− 12

5 Mean 8025.5880 8025.1056 8024.6160 8025.6045 8025.6055
SD 0.0147 0.2639 1.2232 0.0031 0.0019

8 Mean 8055.9754 8054.3387 8052.1159 8056.0443 8056.0530
SD 0.0505 0.5497 2.2741 0.0361 0.0189
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Table 8: Continued.

Images * P
Segmentation approaches

PSO DE EPSO APSO CCP

Cow

3 Mean 3858.2202 3858.2202 3858.1872 3858.2200 3858.2202
SD 0.00E+ 00 0.00E+ 00 0.0886 0.0009 0.00E+ 00

5 Mean 3965.2806 3964.3722 3964.0770 3965.2925 3965.2932
SD 0.0196 0.4531 1.2480 0.0032 4.67E− 13

8 Mean 4028.8447 4026.0490 4024.4213 4028.9299 4028.9450
SD 0.0758 0.8635 2.6447 0.0548 0.0107

Crocodile

3 Mean 3155.4359 3155.4343 3155.3468 3155.4359 3155.4359
SD 9.33E− 13 0.0069 0.0969 9.33E− 13 9.25E− 13

5 Mean 3291.4296 3290.6065 3290.4743 3291.4263 3291.4407
SD 0.0163 0.4943 1.0594 0.0323 0.00E+ 00

8 Mean 3348.6314 3346.4809 3345.8010 3348.6425 3348.7305
SD 0.0719 0.6380 2.0889 0.1033 0.0168

Elephants

3 Mean 1626.7205 1626.7205 1626.6710 1626.7198 1626.7205
SD 0.00E+ 00 0.00E+ 00 0.1220 0.0035 0.00E+ 000

5 Mean 1695.8663 1695.5298 1695.2335 1695.8663 1695.8676
SD 0.0039 0.1415 0.8755 0.0023 0.0005

8 Mean 1728.1706 1726.9276 1726.1534 1728.0408 1728.2503
SD 0.0592 0.3931 1.5228 0.6764 0.0232

Table 9: *e values of Ostu’s function with a different number of thresholds calculated by segmentation approaches.

Images * P
Segmentation approaches

WOA GWO WOA-TH GWO-TH CCP

Church

3 Mean 3271.4427 3271.4383 3271.4427 3271.4445 3276.8367
SD 1.24E – 02 9.93E – 03 9.14 E− 13 8.27E− 05 1.87E− 12

5 Mean 3375.8721 3374.2197 3375.9118 3371.9813 3381.9246
SD 2.65E+ 00 6.74E+ 00 2.62E+ 00 9.65E+ 00 9.33E− 13

8 Mean 3416.6815 3415.4415 3417.0876 3415.6558 3423.5841
SD 2.40E+ 00 1.74E+ 00 1.78E+ 00 3.51E+ 00 2.72E− 02

Train

3 Mean 2606.5951 2611.4987 2611.5081 2611.5081 2606.5951
SD 2.26E− 02 2.53E− 02 4.57E− 12 4.57E− 12 9.52E − 13

5 Mean 2740.6749 2740.5534 2740.6800 2740.6784 2736.2331
SD 1.57E− 02 1.16E− 01 5.77E− 03 6.18E− 03 2.32E − 03

8 Mean 2794.6931 2793.9232 2794.7170 2794.2733 2790.4901
SD 5.57E− 02 1.19E+ 00 1.90E− 02 5.32E− 01 1.12E− 02

Roman

3 Mean 2138.7893 2138.7837 2138.8057 2138.7992 2142.3440
SD 2.52E− 02 2.62E− 02 0.00E+ 00 1.69E− 02 9.33E − 13

5 Mean 2218.6635 2218.7936 2218.9622 2218.9687 2221.3056
SD 2.53E+ 00 7.93E− 01 1.11E− 02 2.35E− 04 9.25E − 13

8 Mean 2249.3768 2248.6408 2249.6457 2249.6080 2251.7798
SD 1.28E+ 00 1.17E+ 00 1.37E− 01 2.00E− 01 3.77E − 02

Starfish

3 Mean 2779.9252 2779.9167 2779.9252 2779.9214 2784.2272
SD 3.20E− 12 6.64E− 03 3.20E− 12 5.91E− 03 1.40E − 12

5 Mean 2912.8532 2912.7058 2912.8562 2912.8371 2916.2730
SD 1.18E− 02 1.66E− 01 5.48E− 03 4.62E− 02 9.34E-04

8 Mean 2972.2218 2971.3725 2972.3479 2972.2159 2974.0989
SD 1.21E+ 00 1.19E+ 00 7.36E− 03 1.99E− 01 2.23E− 03

Surfer II

3 Mean 7953.4167 7953.4063 7953.4167 7953.4135 7953.4181
SD 5.07E− 03 1.89E− 02 4.82E− 03 7.80E− 03 6.48E − 12

5 Mean 8025.0703 8025.4959 8025.6049 8025.6025 8025.6055
SD 7.73E− 03 5.56E− 02 7.11E− 03 3.20E− 03 2.80E − 12

8 Mean 8055.4215 8054.4135 8056.0617 8055.8463 8056.0646
SD 8.27E− 03 7.36E− 01 2.05E− 03 1.25E− 01 2.01E − 03
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5. Conclusions

A complex chained P system (CCP) is proposed for
solving clustering problems, which combines complex
chained P systems and evolution mechanisms, including
PSO and DEmechanisms. Two kinds of evolution rules for
objects in different chained membranes are introduced to
enhance the global search ability of PSO. One of evolution
rules contain two subevolution rules, which are based on
traditional and modified PSO techniques. *e partitioning
information as environmental factor is introduced to
improve the clustering performance of PSO. Another is
based on the DE mechanism to evolve the global chained
objects in the chained membrane m + 1 to enhance the
global search ability. In addition, two kinds of commu-
nication rules in the chained P systems are defined to
enhance the cooperation between chained membranes
and avoid prematurity. In order to verify the validity and
the performance of CCP, this proposed system is evalu-
ated on eight benchmark clustering problems from the
UCI machine learning repository as compared with four
developed clustering approaches. Furthermore, eight
tested images which from the Berkeley segmentation
image databases BSDS300 are used to further evaluate the
performance of CCP compared to four existing seg-
mentation techniques. *ese experimental results verify
the validity and performance of this proposed CCP.

P systems, as parallel computing models, are highly
effective and efficient in solving optimization problems
with linear or polynomial complexity. *ese parallel
computingmodels based on evolutionmechanisms provide
new ways for solving clustering problems. *e extended
clustering chained P system uses the chained P system as
the computation structure, and the communication rules
between chained membranes are single directional. Al-
though these single directional communication rules are
simple and easy to implement, bidirectional

communication rules may be introduced in future studies
to further accelerate the convergence and improve the
diversity of populations. Some more complicated com-
munication structures between different membranes may
be used in future studies to improve the performance of the
approach. Furthermore, the experiments only used small
datasets from the artificial datasets and the UCI Machine
Learning Repository, and the proposed approach may have
some limitations on high dimensional and large datasets.
Future studies may test the effectiveness of CCP using large
datasets. Balancing the local and global search abilities is
also a hard problem to resolve in the future studies. Future
studies may also focus on extended P systems based on
tissue-like P systems and other bioinspired computing
models. More works are needed to apply these extended
membrane systems to solve automatic and multiobjective
clustering problems.

Data Availability

*e two artificial datasets that were manually generated and
often used in the existing literature are from the artificial
datasets, available at https://www.isical.ac.in/content/
databases (accessed June 2018). *e eight real-life datasets
are often used in the existing literature from the UCI Ma-
chine Learning Repository, available at http://archive.ics.uci.
edu/ml/datasets.html (accessed June 2018). *e eight tested
images are from the Berkeley computer vision group, Ber-
keley segmentation dataset, and benchmark (BSDS300),
available at https://www2.eecs.berkeley.edu/Research/
Projects/CS/vision/grouping/segbench/(accessed October
2018).
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Table 9: Continued.

Images * P
Segmentation approaches

WOA GWO WOA-TH GWO-TH CCP

Cow

3 Mean 3858.2202 3858.2188 3858.2202 3858.2202 3858.2202
SD 5.94E− 12 1.03E− 02 5.94E− 12 5.94E− 12 1.85E − 12

5 Mean 3965.2795 3965.1739 3965.2932 3964.6096 3965.2932
SD 2.01E− 02 9.72E− 02 6.40E− 12 2.93E+ 00 1.39E − 12

8 Mean 4028.9410 4027.7892 4028.8474 4027.7210 4028.9605
SD 1.83E− 02 9.47E− 01 6.11E− 01 1.69E+ 00 1.50E − 02

Crocodile

3 Mean 3155.4359 3155.4337 3155.4359 3155.4359 3155.4359
SD 9.14E− 13 1.39E− 02 9.14E− 13 9.14 E − 13 9.33E− 13

5 Mean 3291.4340 3291.2945 3291.4366 3291.4287 3291.4407
SD 1.02E− 02 1.22E− 01 5.38E− 03 1.35E− 02 4.67E− 13

8 Mean 3348.0384 3347.4528 3348.7453 3348.6504 3348.7454
SD 2.79E+ 00 1.75E+ 00 1.94 E − 03 7.60E− 02 3.27E− 03

Elephants

3 Mean 1626.7183 1626.7192 1626.7205 1626.7196 1626.7205
SD 3.53E− 03 9.10E− 03 1.37E− 12 9.25E− 03 9.25E − 13

5 Mean 1695.0482 1695.3208 1695.8664 1695.8231 1695.8676
SD 3.99E+ 00 2.84E+ 00 1.05 E - 03 8.42E− 02 7.12E− 02

8 Mean 1727.1725 1726.5379 1728.2596 1728.1452 1728.2676
SD 2.86E+ 00 1.34E+ 00 2.55E− 02 1.35E− 01 1.20E− 02
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