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ABSTRACT

The purpose of this study was to map the landscape of metabolic-transcriptional 
alterations in glioblastoma multiforme. Omic-datasets were acquired by metabolic 
profiling (1D-NMR spectroscopy n=33 Patient) and transcriptomic profiling (n=48 
Patients). Both datasets were analyzed by integrative network modeling. The 
computed model concluded in four different metabolic-transcriptomic signatures 
containing: oligodendrocytic differentiation, cell-cycle functions, immune response 
and hypoxia. These clusters were found being distinguished by individual metabolism 
and distinct transcriptional programs. The study highlighted the association between 
metabolism and hallmarks of oncogenic signaling such as cell-cycle alterations, 
immune escape mechanism and other cancer pathway alterations. In conclusion, 
this study showed the strong influence of metabolic alterations in the wide scope of 
oncogenic transcriptional alterations.

INTRODUCTION

Glioblastoma multiforme (GBM) is the most 
common primary malignant brain tumor in adults, with 
an annual incidence of 3–4 cases per 100 000 people in 
Europe [1, 2] and the United states [3]. In spite of the best 
available treatment, the prognosis for patients with GBM 
is poor, with a median survival of not more than 14–16 
months [4-8]. During the last decade, numbers of novelties 
in cancer development, genetic and metabolic alterations 
were discovered in the context of glioma [9]. Most 
notably, altered metabolism was described as a hallmark of 
cancer development and frequently occurs among different 
cancer types [10]. Furthermore, tumorigenesis is driven by 
the reprogramming of cellular metabolism, which derives 
directly or indirectly from genetic or epigenetic alterations 
[10]. The recently published revised WHO classification of 

brain tumors accounts for genetic alterations highlighting 
in gliomas especially the IDH mutation [11]. In glioma, 
the “Glioma-CpG island methylator phenotype“(G-
CIMP) has been found to arise as a consequence of tumor-
associated metabolic alterations [12, 13]. Usually, isocitric 
acid is transformed into α-ketoglutaric acid by IDH1/2. In 
case of a catalytic located IDH1/2 mutation, isocitric acid 
is converted into the oncometabolite 2-hydroxyglutaric 
acid (2-HG) [12, 13]. Accumulation of 2-HG reshapes the 
tumor methylome and constitutes the G-CIMP [12, 13]. 
Interestingly, patients affected by the IDH1/2 mutation 
reveal a better clinical course compared to non-mutated 
patients [14]. In particular, the IDH1/2 mutation and 
its metabolic changes pinpointed the strong coherence 
between metabolic and genetic alterations and highlighted 
the relevance of tumor-metabolism in glioblastoma 
multiforme.
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Metabolic/genetic profiling in glioma

The first observations on metabolic alterations in 
gliomas were made in 1H-magnetic resonance spectroscopy 
(H-MRS) some decades ago [15, 16]. Aided by array-based 
molecular methods and improved analytic approaches, 
new studies in cancer cell metabolism were expanded 
to the understanding of the mechanisms and functional 
consequences of tumor-associated metabolic alterations. 
Nuclear magnetic resonance (NMR) and 1H-MRS are 
established tools for metabolic profiling in-vivo or ex-vivo. 
A recent study analyzed nine glioma-cell lines by NMR 
spectroscopy [17]. The metabolic profiles were compared to 
publicity available gene expression data of these cell-lines. 
Four distinct profiles were detected, which were classified 
according to specific metabolic alterations [17]. In another 
study, the metabolic/proteomic signature of glioma-cell-
lines was investigated. Eight metabolites were detected by 
NMR and compared to RPPA (reverse-phase protein array) 
proteomic analysis and expression data. The cell-lines 
were then clustered into “full-stem” and “restricted stem” 
subgroups, based on their stem-cell capacity [18]. Moreover, 
in a study performed by Chinnaiyan et al., 2012, where 
metabolic analysis was performed by liquid chromatography, 
altered anaerobic metabolism in the mesenchymal subgroup 
described by Verhaak and Phillips [19, 20] was shown. Pantel 
et al., 2014 analyzed tumor heterogeneity by single-cell RNA 
sequencing and investigated 4 subgroups of transcriptomic 
profiles, which co-existed within the same tumor [21]. The 
profiles were named by dominant biological function as 
oligodendrocytic differentiation, cell-cycle, immunoresponse 
and hypoxia [21]. Therefore, environmental conditions as 
hypoxia with its metabolic alteration may influence tumor 
heterogeneity and associated expression profiles in GBM and 
other cancers [22-24].

The purpose of this study was to integrate 
metabolomic and transcriptomic data by comprehensive 
network-based modeling. This analytic approach attempts 
to improve the knowledge about interacting regulation 
mechanism between metabolic and transcriptional 
alteration in glioblastoma multiforme.

RESULTS

Workflow and overview of combined methods

This study contained a pipeline including several steps 
from, tissue sampling guided by neuronavigation, genetic 
and metabolic engineering up to bioinformatic analysis. In 
short, tissue samples were subjected to a combined genetic 
and spectroscopic analysis. Metabolites from 1H NRM 
spectroscopy and genetic expression data were normalized. 
Classical analysis (Consensus Cluster (k=5), unsupervised 
clustering and survival Analysis) of transcriptomic and 
metabolic data was performed separately on both datasets. 
For data integration, a network analysis using a topological 
overlapping measurement identified genetic modules 

[25]. Associations of each gene and the traits of interest 
(metabolites) were quantified by defining Gene Significance 
(GS) as the correlation between each gene and metabolite. 
Additionally, module membership (MM) for each gene 
was measured by correlation of module eigengene and 
the gene expression profile. The intramodule connectivity 
(kME) was calculated using the GS and MM measures. 
Therefore, genes were defined by its correlation with specific 
metabolites as well as its importance (ranked within its 
module membership). The kME allowed an identification 
of those genetic modules, which were associated to specific 
intracellular metabolism. All steps of the workflow were 
illustrated in Figure 1.

Separate metabolic and transcriptomic profiling 
of glioblastoma multiforme

56 patients with neuronavigation-guided intraoperative 
sampling, available fresh frozen tissue samples and a 
histological confirmed glioblastoma multiforme were 
included in this study. RNA preparation and transcriptomic 
profiling was performed in 48 cases (low RNA quality in 8 
cases), a total number of 38 tissue samples were analyzed by 
NMR (low tissue quality in 8 cases, low metabolite quality 
in 10 cases) and 4 samples not achieved post-processing 
quality criteria (fitting not successful).

Raw spectra (Figure 2, upper panel) were 
processed by a Bayesian-algorithm implemented in the 
R-software packed “Batman” (Figure 2, lower panel, 
detailed description in the method part). An unsupervised 
hierarchical clustering of the normalized metabolic 
intensity values of all tissue samples identified three 
clusters with distinct metabolic profiles (Figure 3C). 
Cluster yellow was associated to the proneural subgroup 
and revealed a significant better clinical course in 
comparison to the other cluster groups. Cluster green 
showed an association to the mesenchymal expression 
group and showed a poor clinical course. In comparison 
to the separate metabolic analysis the transcriptomic 
profiles of 48 patients were explored. A consensus 
clustering showed 3 main subgroups, which were 
confirmed by unsupervised hierarchical clustering (Figure 
3A–3B). The expression subgroups of each patient were 
predicted by a random forest algorithm, which based 
on a training dataset (TCGA data set of 484 patients) 
with implemented subgroups by Verhaak (Figure 3B 
bottom panel). Three subgroups were found with distinct 
transcriptomic profiles. The proneural (PN) and neural 
(N) group was not separately grouped weather classical 
(CL) and mesenchymal (MES) samples grouped into 
distinct cluster. A survival statistics revealed no strong 
differences between all subgroups, only the PN subgroup 
revealed a significant improved survival compared to the 
MES subgroup. This analysis showed a clear separation 
of transcriptome and metabolic profiles into the described 
subgroups of Verhaak. To quantify these correlations an 
integrative analysis of both omic-datasets was performed.
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Combined integrative network-based analysis of 
metabolic and transcriptome profiling

For further characterizing of each metabolite, a 
gene expression network with integrated metabolic data 
was build. Genes were summarized in 79 expression 
modules. Module-containing genes were ranked by 
their intramodule connectivity and correlated to each 
metabolite. These correlation coefficients were analyzed 
by an unsupervised hierarchical clustering (Figure 4A). 
Highly correlated metabolites and expression modules 
revealed four specific subgroups colored in green 

(Cluster I), yellow (Cluster II), violet (Cluster III) and red 
(Cluster IV).

Cluster I (green): proneural/oligo-related cluster

Cluster I contained 10 metabolites and 16 
expression modules. These expression modules were 
analyzed by gene set enrichment analysis (GSEA, detailed 
description in the method part). The results of the GSEA 
were summarized in a volcanoplot (Figure 3B). This plot 
illustrated each enrichment-score and the corresponded 
negative log of FDR p-values of each module within 

Figure 1: The figure reveals the workflow and data processing of the “in-house” pipeline. This semi-automated analysis served as a 
robust method for integrative analysis of metabolic and genetic data.
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cluster 1. Most expression modules that were presented 
in cluster I significantly enriched proneural genes. 
In addition, oligodendrocytic genes were also highly 
enriched in most of the expression modules summarized 
in cluster I (Figure 4B). Creatine, was identified as “key-
metabolite” defined as highest total kME correlation in 
each cluster group, which was significantly associated 
with all expression modules contained in cluster I.

Cluster II (yellow): immune-related cluster

Cluster II comprised 5 metabolites and 8 
expression modules. A GSEA was used for further 
functional characterization. An analysis of the known 
glioblastoma multiforme expression subgroups showed 
a stronger overall enrichment for the mesenchymal 
gene set. Interestingly, immune response and activation 
of the immune system were highly enriched in cluster 
(Figure 4B). The key-metabolites of this cluster were 
phosphocholine and choline being significantly correlated 
to all related expression modules.

Cluster III (violet): cell-cycle-related cluster

Cluster III included 9 metabolites and 11 expression 
modules. Four expression modules showed a strong 
association with the proneural subgroup, while others 
enriched mesenchymal genes. Further analysis of other 
biological functions revealed a strong connection with 
cell-cycle functions including regulation of Phase M2, 
DNA repair mechanism and regulation of mitosis (Figure 
4B). The metabolite glycine was identified as the key-
metabolite of this cluster. It was significantly correlated to 
all related expression modules.

Cluster IV (red): hypoxia/mesenchymal-related 
cluster

Cluster IV contained 7 metabolites and 6 expression 
modules. A strong enrichment of mesenchymal genes was 
found by GSEA. Only one expression module showed 
a non-significant enrichment of proneural genes. Key-
metabolite of this cluster was lactate, which is a known 

Figure 2: High resolutionNMR-Spectra of one patient including a raw spectra (upper panel) and fitted curves (lower panel).
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Figure 3: (A) Consensus cluster of expression data (n=48) revealed 4 cluster groups, which were summarized in an unsupervised clustering 
(B). The bar below the heatmap indicated the expression subgroups (identified by random forest analysis). (C) Unsupervised hierarchical 
cluster of normalized metabolite values. Bars below the heatmap describe the expression subgroup of each patient. (D-E) Survival analysis 
of all clustergroups (derived from transcriptome (D) and metaboliom (E)) shows a significantly different overall survival with a more 
favorable outcome for the proneural subgroup of proneural-associated metabolic cluster.
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Figure 4: (A) Unsupervised hierarchical cluster of correlation coefficients (kME and normalized metabolite values). High correlations 
was colored in red, low correlation in blue. (B) Gene set enrichment analysis plots summarized enrichment scores of indicated biological 
functions. Enrichment Scores (ES) and p-values of all expressions modules (derived from WGCNA) were illustrated in a volcano plot. On 
the y-axis, the negative logarithm of GSEA p-values were presented, the x-axis contained ES-values. The size of each point indicated the 
level of gene set enrichment.
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agent of anaerobic metabolism (Figure 4B). Interestingly, 
expression modules of cluster IV highly enriched more 
genes that were up-regulated in hypoxic conditions than 
those being down-regulated.

All connections between metabolite and correlated 
genes were given in a connectivity-weighted network 
and illustrated in Figure 5. This scheme represents the 
relationship between the metabolites and the genetic 
modules. It is apparent from this that some metabolites, 
such as myo-inositol and lactate, also have connections 
to further clusters than only to those identified primarily.

Integrative interpretation of clusters

Individual expression modules of each identified 
cluster (1-4) were separately analyzed by gene-set-
variation analysis (GSVA) to find highly enriched 
metabolic-pathways (KEEG) (Figure 6A). Cluster 1 and 
3 dominantly expressed proneural genes. These clusters 
showed an overlap of enriched metabolic pathways 
(Figure 6A), including arginine, proline-, glutathione-, and 
amino-sugar-metabolism. Cluster 3, which contained cell-
cycle functions, exclusively enriched glycerolipid- and 
sphingolipid metabolism. Cluster 2 and 4 highly enriched 
mesenchymal genes and were characterized as immune 
response- or hypoxia-related. These clusters showed an 
overlap of metabolic pathways (pathways in line 22 – 25 
on Figure 6A), spotlighted by the pyruvate metabolism. 
Most notably, Cluster 2 contained expression modules, 
which enriched dominantly genes of the immune response 
and exclusively enriched the tryptophan metabolism.

A map of metabolites associated with the proneural 
subtype (creatine) including the creatine-, arginine-, 
glycine-, serine- and pyruvate metabolism as illustrated 
in Figure 6B. Enzymes of the creatine degradation were 
significantly stronger expressed in mesenchymal samples, 
while enzymes of the arginine-proline metabolism were 
up-regulated in proneural tumors (Figure 6B).

DISCUSSION

Gene expression and cell metabolism are frequently 
altered in glioblastoma and support cell proliferation, 
epigenetic alterations and tumor aggressiveness. In 
2010, Verhaak proposed four glioblastoma multiforme 
subclasses by expression profiling [19]. These subgroups 
were characterized by specific gene sets, which were 
exclusively expressed in each subclass. Patel et al. (2014) 
showed a strong variance of the Verhaak expression 
subgroups based on single-cell sequencing of up to 
100 cells within the same tumor [21]. Intratumoral 
heterogeneity within those subgroups could be 
demonstrated, and four transcriptional modules were 
additionally identified on single cell lines within the same 
tumor (Hypoxia, Immune, Oligo, Cell Cycle). These 
metabolic profiles reflect the final downstream product of 

gene transcription [26]. Therefore the purpose of this study 
was to combine genetic and metabolomic information 
to identify the transcriptomic-metabolomic landscape 
of glioblastoma multiforme, which mirrors the up- and 
downstream products of cellular regulation mechanisms.

In the first cluster analysis containing only spectral 
intensities, a significant association of metabolism to the 
Verhaak expression subgroups was found (Figure 3C). 
This connection was to be expected and has already been 
described in the literature [27]. In the next step, a network 
model was developed that integrates functional expression 
modules and correlated metabolites of GBM. This model 
resulted in four different cluster-groups, illustrated in 
Figure 4. Each cluster was interpreted in the context of its 
dominant underlying biological functions and contained: 
oligodendrocytic differentiation (Cluster 1), cell-cycle 
(Cluster 3), immune response (Cluster 2) and hypoxia 
(Cluster 4). Cluster 2 (immune response) and 4 (hypoxia) 
highly enriched mesenchymal genes. They showed 
an overlap of their enrichment of metabolic-pathway 
signatures, which highlight the pyruvate metabolism. 
Pyruvat plays an important role by connecting anaerobic 
and aerobic metabolism [28]. The immune response 
related cluster additionally enriched exclusively the 
tryptophane metabolism. A study by Moffett et al., 2003 
described the major role of the tryptophane metabolism in 
several immune functions including the immune escape 
mechanism [29]. The key metabolite of the immune 
response-related cluster was choline. Although choline-
containing compounds are generally discussed to be 
involved within membrane [30] turnover, other authors 
discussed the choline-containing compound to be related 
to immune response in crap [31].

The key metabolite of the hypoxia-related cluster 
was L-lactic acid. As generally known, lactate acid is 
used for energy metabolism in hypoxic environment 
[10, 27]. Hypoxic conditions were also known for a 
proneural-to-mesenchymal transition, which revealed 
strong coherence between metabolic environment and 
transcriptional regulation mechanism [32]. The metabolic 
and transcriptional differences of the pyruvate and 
lactate metabolism are presented in Figure 6. Our results 
point to the fact that metabolic alterations may drive the 
appearance of specific glioblastoma multiforme expression 
subclasses as a specific adaption upon microenvironmental 
conditions.

Clusters 1 and 3 dominantly enriched proneural 
genes and therefore belonged to the proneural subtype. 
Furthermore, cluster 1 showed a strong enrichment of 
oligodendrocytic differentiation. The key-metabolite was 
creatine, which is in line with the literature [33], where 
creatine was found to be highly associated with increased 
expression of proneural genes in a MRS in-vivo study [33]. 
Additionally, proneural samples were typically characterized 
by an up-regulation of oligodendrocytic genes as OLIG1/2 
[19]. The cluster 3 contained cell-cycle functions and showed 
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Figure 5: (A) Integrative network of metabolite and expression modules (WGCNA). Size and color indicated the importance of each gene/
metabolite in the network. Hub-genes/metabolites were colored in red.

an exclusive enrichment of the glycerolipid and sphingolipid 
pathway. This metabolic alteration is well known and 
highly associated with G0/G1- cell-cycle functions and 
other parts of cell-cycle regulation [34]. Its key-metbolite 
was glycine, which has several unspecific functions and 
could metabolized in several substrates (KEGG). A specific 
connection between glycine and cell cycle function has not 
been reported so far.

The study by Patel et al., 2014 analyzed single-cell 
transcriptomic profiles of glioblastoma multiforme within 
the same tumor. All profiles were summarized in four 
clusters containing: oligodendrocytic differentiation, cell-
cycle, immune response and hypoxia. These results were 
totally in-line with our reported findings. In fact, tumor 

metabolism is highly inhomogeneous within the same 
tumor and our study was limited by only single biopsies, 
taken from the contrast-enriched part. In contrast to limited 
analysis by metabolomic/transcriptomic data alone, an 
integrative approach of metabolomic-transcriptomic 
features allowed to capture all subgroups being described 
by Patel et al. This is attributed to the fact, that integrative 
approach mirrors the intracellular functional processes 
better than transcriptomic profiling alone.

All these findings confirm a strong link between 
metabolic alterations and specific expression subclasses. 
Known metabolic alterations (IDH1/2 mutation) are able 
to reshape the tumor methylome and may also affect 
specific traits of tumor gene expression. For the first time, 
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Figure 6: (A) KEEG metabolism-pathway of Cluster 1-4 was illustrated. The exclusive and overlapping enriched pathways were marked. 
The color code at the bottom showed the dominant expression subgroup and indicated the functional subgroup. (B) Map of metabolic 
differences on single-metabolite level and expression of enzymes belonging to the mapped metabolic pathways. *** p<0.001, ** p<0.01, 
*p<0.05.
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our study described metabolic alterations, which were 
related to specific expression subtypes of glioblastoma 
multiforme. Therefore, our results point to the fact that 
metabolic alterations may drive the appearance of specific 
glioblastoma multiforme expression subclasses as a 
specific adaption upon microenvironmental conditions.

Finally, these findings highlight the strong mutual 
dependence of transcriptional oncogenic alterations and 
glioblastoma metabolism. The global network, which 
described the landscape of transcriptional/metabolomics 
alterations (Figure 5) revealed lots of new findings 
beyond the reported metabolic connections. These GBM 
specific alterations could be used to explore further new 
therapeutic strategies.

Limitations of the study

This study has some limitations. First, the small 
sample size and the disregarded heterogeneity could 
have lead to false-positive associations or confounder 
effects. Second, samples were guided by intraoperative 
neuronavigation without correction for brain shift. H&E 
stainings confirmed the occurrence of tumor in each 
biopsy. Additionally, tissue samples also contained non-
tumor cells (1-10%), which could have an impact on global 
metabolomics/transcriptomic profiling. Conservative 
statistical methods with corrections for multiple testing 
at each level of analysis were applied. Only corrected 
p-values (Bonferroni, Benjamini-Hochberg) were reported 
for the sake of robustness. Nevertheless, these findings 
have to be confirmed in a larger cohort of patients.

Conclusion

This study displayed the landscape of metabolic-
transcriptomic alterations in glioblastoma multiforme. 
Our results point to the fact that metabolic alterations may 
drive the appearance of specific glioblastoma multiforme 
expression subclasses. Additionally, we highlighted 
the association between metabolism and hallmarks of 
tumorigenesis such as cell-cycle dysfunctions or immune 
escape mechanisms. In conclusion, the strong influence 
of metabolic alterations in the wide scope of oncogenic 
transcriptional alterations.

MATERIALS AND METHODS

Workflow and study design

An illustration of the following workflow is shown 
in Figure 1. A detailed description of each analytic step is 
presented below.

Patients

For this prospective study we included 48 patients 
with primary glioblastoma multiforme WHO grade 

IV (without known lower-grade leasion in the patients 
history), who underwent surgery at the Department 
of Neurosurgery of the Medical Center, University 
of Freiburg between 2012 and 2016. The local ethics 
committee of the University of Freiburg approved data 
evaluation, imaging procedures and experimental design 
(protocol 100020/09 and 5565/15). The methods were 
carried out in accordance with the approved guidelines. 
Written informed consent was obtained from all patients.

Tissue collection and histology

Tumor tissue was sampled from contrast enhancing 
regions identified by intraoperative neuronavigation 
(Cranial Map Neuronavigation Cart 2, Stryker, Freiburg, 
Germany) during tumor resection. The tissue was snap-
frozen in liquid nitrogen immediately after resection 
and processed for further genetic/metabolic analysis. 
Tissue samples were fixed using 4% phosphate buffered 
formaldehyde and paraffin-embedded with standard 
procedures. H&E staining was performed on 4 µm paraffin 
sections using standard protocols. Immunohistochemistry 
was applied using an autostainer (Dako) after heat-induced 
epitope retrieval in citrate buffer. IDH1 mutation was 
assessed by immunohistochemistry using an anti-IDH1-
R123H antibody (1:20, Dianova).

1H-NMR spectroscopy

Frozen tissue samples (n=48) were extracted by 
methanol-water (M/W) extraction. The M/W extraction 
was performed as described in Beckonert et al [35]. 
Extracts were disintegrated by sonication. Half of the 
extract was used to extract DNA and determine its total 
concentration (for normalization step-1, as described 
below). Only 38 samples achieved the quality criteria. 
The hydrophilic-phase was separated, lyophilized and 
resolved in deuteriumoxide (D2O). 600μl suspension was 
transferred to NMR-tubes for further NMR procedures. 
1H-NMR was performed at the Institute of Physical 
Chemistry of the University of Freiburg. 1D-NMR spectra 
were performed on a Bruker Avance III HDX 600-MHz 
FT-NMR spectrometer (Rheinstetten, Germany), equipped 
with the probe: PABBO BB/19F-1H/D Z-GRD. Each 
single spectrum within the spectra was recorded with 2 
dummy scans and 32 scans with 64k points in the time 
domain. The sweep width was set to 16.02 ppm with an 
offset of 4.691 ppm. This resulted in an acquisition time 
of 3.4 seconds for each scan with a dwell time of 52 
microseconds. The relaxation delay was set to 2 seconds, 
so that the total acquisition time of each spectrum was 
3 minutes and 5 seconds. Water-suppressed 1H NMR 
spectra were acquired by using a zgesgp sequence [36]. 
The FID was Fourier transformed and automatically phase 
corrected without any further zero filling or apodization. 
The spectra were manually calibrated by setting the 
peak of L-lactate acid at 1.310 ppm. All acquisition and 
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processing of the spectra was performed with TopSpin 3.2 
patchlevel 6. A total number of 29 spectra achieved high 
quality, which is necessary for complex post-processing.

Post-processing and evaluation

Raw data was analyzed by “batman”, a R-software 
based tool for metabolite detection in complex spectra. 
The batman software fits a predefined list of metabolites 
by a Bayesian approach. A detailed description of the 
batman algorithm was given by Hao et al [37]. Four 
spectra did not archive quality criteria and were excluded 
from further analysis. Metabolite (spectral) intensities 
were used as further input for the integrative analysis.

Data normalization

Data was normalized by a two-step normalization-
approach. First, raw intensity values were normalized by 
the given DNA concentration of each patient to balance 
different tumor mass of each extract. Second, normalization 
was performed by a median-based normalization-algorithm.

Genome-wide expression analysis

RNA of 48 patients was prepared using the RNAeasy 
kit (Qiagen). An amount of 1.5 µg RNA was obtained for 
expression arrays analysis. 8 samples did not achieve 
RIN>8.5 and could not used for further transcriptomic 
profiling. Arrays were performed by human gene ST 2.0 
chip (Affymetrix). Raw data were processed, normalized 
and controlled by R software and the “affy” R-package. 
Different expression analysis and statistical testing 
(pairwise t-test) were performed by limma R-package.

Identification of expression-subgroups

A consensus cluster analysis was performed by the 
implemented R package “ConsensusClusterPlus”, with 
a kmax of 10. The samples were dominantly split into 3 
Clusters, which was also revealed by an unsupervised 
hierarchical clustering (Figure 3A–3B). Additionally, a 
random forest algorithm was used to identify the Verhaak 
expression subgroups for each sample (R-package: 
“randomForest”) [19]. Expression data of 484 TCGA 
samples were processed at level-3 and analyzed in the 
forest model as training data. The model showed a 
specificity of 94.3% and a sensitivity of 89.3%. Expression 
subgroups were predicted in the expression data of 48 
patients based on the trained algorithm [38].

Weighted gene co-expression network analysis 
and gene set enrichment analysis

The WGCNA analysis is a robust tool for integrative 
network analysis and was used in recent studies [39-41]. It 
is based on a scaled-topology-free based network approach 

and uses the topological overlapping measurement to 
identify corresponding modules as shown in Figure 
1. These modules were analyzed by their eigengene 
correlation to each metabolite. The correlation of the 
intramodule connectivity (kME) and metabolites was used 
as input for a “Cluster of Clusters analysis”. This analysis 
integrates expression modules and metabolites, which 
present equal correlation values (kME and metabolite 
intensity values). A detailed description of WGCNA is 
given in Heiland et al. 2016 [33].

Gene set enrichment analysis (GSEA) and gene 
set variation analysis (GSVA)

A permutation-based pre-ranked Gene Set 
Enrichment Analysis (GSEA) was applied to each module 
to verify its biological functions and pathways [42]. The 
predefined gene sets of the Molecular Signature Database 
v5.1 were taken. Enrichment score was calculated by 
the rank order according to normalized intramodule 
connectivity of each gene in the expression module [42]. 
For significant enrichment, p-values were adjusted by 
FDR. Gene Set Variation Analysis (GSVA) was performed 
by the GSVA package implemented in R-software. 
The analysis based on a non-parametric unsupervised 
approach, which transformed a classic gene matrix (gene-
by-sample) into a gene set by sample matrix resulted in an 
enrichment-score for each sample and pathway [43].

Statistic analysis

Normalized intensity values were clustered in an 
unsupervised hierarchical clustering. Cluster analysis 
was performed in r-software and affiliated packages. The 
Kaplan–Meier method was used to provide median point 
estimates and time-specific rates. The Hazard-Ratio (HR) 
was calculated by Cox-Regressions tests.
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