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The healthcare industry, aided by technology, leverages the Internet of Things (IoT) paradigm to offer 
patient/user-related services that are ubiquitous and personalized. The authorized repository stores 
ubiquitous data for which access-level securities are granted. These security measures ensure that only 
authorized entities can access patient/user health information, preventing unauthorized entries and 
data downloads. However, recent sophisticated security and privacy attacks such as data breaches, 
data integrity issues, and data collusion have raised concerns in the healthcare industry. As healthcare 
data grows, conventional solutions often fail due to scalability concerns, causing inefficiencies and 
delays. This is especially true for multi-key authentication. Dependence on conventional access control 
systems leads to security flaws and authorization errors caused by static user behaviour models. This 
article introduces an Opportunistic Access Control Scheme (OACS) for leveraging access-level security. 
This approach is a defendable access control scheme in which the user permissions are based on their 
requirement and data. After accessing the healthcare record, a centralized IoT security augmentation 
and assessment is provided. The blockchain records determine and revoke the access grant based on 
previous access and delegation sequences. This scheme analyses the possible delegation methods for 
providing precise users with interrupt-free healthcare record access. The blockchain recommendations 
are analyzed using a trained learning paradigm to provide further access and denials. The proposed 
method reduces false rates by 11.74%, increases access rates by 13.1%, speeds up access and 
processing by 12.36% and 13.23%, respectively, and reduces failure rates by 9.94%. The OACS 
decreases false rates by 10.64%, processing time by 15.62%, and failure rates by 10.95%.
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α  Access Level States
H   Authorization for User Handling
mi  Defendable Permission Level
on  Anonymous Detection
cr   Appropriate Data to the End Users
d′  Access Control
w0  Information Forwarded to Appropriate User
i0  User Time
fd (∅)  Defendable Access Control
t′  Data Forwarded to Users Based on Relevance
S  Access Grant
Y   Secure Transmission of Data
la  The Augmentation Approach for the Access Grant
∅  Blockchain Security
R  Recommends for the Training Data to Improve the Access Rate
sm  Assessment
∂  Access Grant and Revokes
α (tg)  Training Data
P   Security Prediction
r0  Computation Time
e0  Error Data
γ (d′)  Interrupt-Free Healthcare Record Access
f ′  Failure Rate
∆  State the Matching
n′  Decrease the Denial of Service
β  Failure in Networking Healthcare Data Transmission
vk   Authorized Access Level

Internet of Things-enabled healthcare security concerns generally include unauthorized access to patient data, 
which could violate trust and confidentiality. More linked health gadgets and more individually identifiable 
health information mean it’s more necessary than ever to anonymize and safeguard this data using blockchain 
technology. Due to performance difficulties like controlling system scalability as devices increase, essential 
health records may be unreachable for a lengthy period in an emergency. Integrating different IoT devices causes 
uneven security methods, making universal access control tougher. These issues require a balance between data 
management, adaptive access control, and security. Blockchain technology has the potential to completely 
change several business sectors, including financing, management of supply chains, and healthcare. Blockchain 
is fundamentally a distributed ledger that safely logs transactions across several computers or nodes and verifies 
them. Electronic health records (EHRs) can be stored and managed using a secure, unchangeable ledger that 
can be provided via blockchain. Blockchain preserves the integrity and confidentiality of health records by 
leveraging cryptographic hashes and decentralized patient data storage to restrict unauthorized access and 
modification. Not all nodes on the blockchain network will necessarily have a backup of the data once it is added 
to the blockchain, as the technology, while providing tamper-resistant features, does not guarantee that all nodes 
store identical copies of the data. With its autonomous and distributed ledger structure, blockchain technology 
offers data redundancy and security; nevertheless, it does not guarantee that every node retains a copy of every 
data. Blockchain’s support of granular consent management can give people more power over their health data. 
Patients can securely grant or revoke access to their health records, protecting their privacy while allowing data 
sharing for study and individualized care.

Blockchain technology’s decentralization means data is stored on a distributed node network, not a central 
server. This dispersal of data across nodes helps avoid single points of failure. The network’s redundancy and 
consensus procedures ensure that it continues to function even in the event of a node or group failure, and the 
nodes work together to preserve access control rules. This collective approach ensures data security and system 
integrity, affirming the statement’s correctness. IoT is a new technological paradigm expected to emerge as a 
dynamic global network of interacting devices and machines, incorporating many standards and technologies 
to enable sensing, identification, networking, connectivity, storage, computational, and other capabilities1. 
The development of IoT includes multiple intelligent sensory elements and wearable smart devices, which are 
crucial in various fields such as healthcare, mining, buildings, cities, agriculture, transportation, industries, 
and automated systems2. The healthcare industry has integrated IoT successfully due to advancements in 
information and communication technologies, resulting in self-replenishing services. Healthcare services 
using IoT can provide data for EHRs, but EHRs are not exclusively for IoT; they represent digital medical data 
accessible through various means, including traditional computer systems, web interfaces, and mobile apps. 
Smart devices offer seamless connectivity between users and EHR systems, enabling end-to-end access and 
retrieval of information. As a result, users retrieve the required information without any delays or interruptions.

Furthermore, smart devices also enhance information sharing as part of health monitoring and patient 
assessment3. IoT infrastructure transfers such communications to the medical and healthcare centres. The 
healthcare centre comprises the information technology infrastructure for storing, managing, exchanging, 
and analyzing data4. This infrastructure includes servers, databases, EHR systems, networking equipment, and 
security systems. IoT platform exploits cloud computing resources for analyzing, visualization, and projecting 
healthcare data5. Data handling varies based on the type and quantity of data accumulated or shared from 
user devices. Different types of data require different levels of processing and storage resources in IoT-based 
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healthcare services6. The raw data collected from various sources is processed and organized into EHR that 
can be easily identified, accessed, and retrieved. In this organization of data, timestamp-based augmentation 
and updates are often used for access. Therefore, a user query is processed and granted with an identified EHR 
through healthcare applications and cloud services1,5.

Healthcare data contains sensitive user information, such as personal and medical records, that must be 
kept secure to ensure privacy. Unauthorized access and modifications to EHR raise concerns about the 
privacy and security of sensitive healthcare data and the accuracy of medical diagnoses and treatment plans7. 
Besides, active attacks compromise the confidentiality and integrity of healthcare data, exposing sensitive 
information8. Therefore, security demands are crucial to protect sensitive healthcare data from attacks, including 
unauthorized access, modification, and exposure. It is essential to ensure healthcare data’s confidentiality, 
integrity, and availability to maintain privacy and prevent potential patient harm9. Healthcare organizations 
and service providers implement robust security measures such as access control, encryption, authentication, 
and monitoring to protect healthcare data from cyber threats10. IoT-based healthcare services use various 
security measures to protect sensitive healthcare data, including infrastructure and access-based security11. 
Infrastructure services rely on various security measures such as authentication, identity verification, and device 
connectivity-based security. At the same time, access-level security includes data authentication, trust modules, 
and integrity verification for meeting security demands11. These two security measures provide swift and reliable 
data and user privacy, reducing adversary impacts12. The security measures implemented through IoT vary in 
effectiveness and complexity, reflecting IoT security’s ongoing and evolving nature.

Data authentication and validation provide access and analysis security by restricting unauthorized access 
and preventing tampering13. These measures ensure that only authorized users have access to the healthcare 
data and that the data is accurate and reliable for analysis. Regularly scheduled security updates and processing 
improve the reliability of data sharing and processing and help mitigate the impact of various attacks. Key-
based authentication is a widely used security mechanism that involves using cryptographic keys to verify the 
authenticity of data and ensure secure communication between devices14. Trust models are also used to establish 
trust between different entities in an IoT ecosystem, such as between devices, applications, and users, to prevent 
unauthorized access and malicious attacks15. Therefore, IoT-based healthcare services provide a scalable and 
harmonized security measure that leverages authentication, validation, and trust models to ensure data and user 
privacy and prevent unauthorized access and modifications16.

Sensitive healthcare information requires strong authentication and verification mechanisms to ensure privacy 
and prevent unauthorized access or retrieval. Anonymous access and unauthorized storage can compromise the 
integrity of EHR, leading to modifications or unavailability of the data that may result in the wrong diagnosis, 
delayed treatments, and other serious consequences17. Therefore, healthcare service providers implement 
privacy controls and access management to ensure concealed access and privacy controls for different users. 
This process ensures that only authorized individuals can access the data, maintaining data confidentiality. The 
user’s access levels and permissions are defined based on the verification and platform recommendations18. A 
user’s access levels and permissions can be updated based on various factors such as user behaviour, data content, 
and availability. Blockchain technology offers a promising solution to mitigate security risks associated with 
healthcare systems. Its decentralized and immutable nature provides a robust and secure platform for storing, 
managing, and sharing sensitive healthcare data17. The computational complexity of reaching consensus among 
nodes might increase latency and degrade throughput when handling numerous networked devices’ massive 
volume of real-time transactions. Even while blockchain enhances data security, it must address scalability and 
efficiency issues to ensure successful performance in large-scale IoT scenarios.

Blockchain can store access control policies in a distributed, immutable, and transparent tamper-evident 
ledger, making it an ideal solution to mitigate security risks associated with unauthorized access, tampering, 
and data breaches in the healthcare industry19. This process allows for enforcing access control policies without 
relying on a centralized authority. Blockchain-based access control allows fine-grained access control over user 
permissions and delegations. Fine-grained access control provides a more detailed and precise way of controlling 
access to data and resources. It typically involves defining access permissions based on specific attributes or 
characteristics of the user, data, or context20. Breaking down access permissions into smaller, more specific 
units is called granular control, which involves defining access permissions on a per-object or per-action basis. 
This access control prevents false data injection and modification by restricting access to sensitive data and 
resources based on specific attributes, such as user role or location21. It also allows for more sophisticated 
security recommendations and authentication modifications, such as granting temporary access or requiring 
multi-factor authentication for high-risk actions. Blockchain technology allows the storing and processing users’ 
credentials and device access levels securely and de-centrally22. Implementing an access control scheme allows 
access-level security and patient privacy in healthcare services that IoT enables. With blockchain technology, it is 
possible to precisely analyze past states and revoke access grants accordingly while granting authorized persons 
uninterrupted access based on delegation knowledge.

The OACS framework employs blockchain technology to govern consent and to design and enforce access 
control policies using smart contracts, as shown in Fig. 1.

 (1)  Creating a smart contract requires user authorization to access healthcare data. This contract specifies data 
access rules.

 (2)  The blockchain network receives all IoT-generated health data requests from healthcare providers and ap-
plications

 (3)  Smart contracts allow the blockchain network to verify user consent by matching requests to contract rules. 
It checks the request’s legality using user roles, security levels, and past actions.
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 (4)  A smart contract decision allows access if the request fits its conditions. The system can automatically re-
voke access when user actions or security needs change. Blockchain allows real-time tracking and consent 
adjustments by recording delegations and access.

Motivation
IoT-enabled healthcare poses major security risks, such as unauthorized access to sensitive patient data and data 
breaches due to the large number of interconnected devices, which motivated the OACS. The motivation behind 

Fig. 1. Flow diagram of consent management.
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blockchain in healthcare is that data is stored and retrieved on the blockchain tamper-proof because of its secure 
and unchangeable storage method. Data integrity is improved, and the risk of data breaches is decreased because 
blockchain’s decentralized structure ensures that data cannot be readily updated or manipulated. Therefore, the 
primary objective of this study is to ensure robust security measures, including maintenance of authentication, 
access control, data integrity, and concealed sessions. These measures are implemented dynamically and flexibly, 
depending on user behaviour, potential adversary impact, and the system’s reliability. The absence of access 
control privileges for user information underscores the paramount challenge of preserving patient privacy in 
IoT-based healthcare systems23.

Design goals and contributions
The following design goals are set to implement the proposed methodology:

 (1)  By introducing an OACS, access-level security and privacy of patients in IoT-enabled healthcare services 
can be provided.

 (2)  The incorporation of blockchain enables accurate analysis and revocation of access grants based on the 
previous state and provides uninterrupted access to authorized users based on delegation knowledge.

 (3)  Enhance the access control scheme and informed decisions using a trained learning paradigm
 (4)  Improved overall efficiency by evaluating false rate, failure, processing time, access rate, and time

The work’s main novelty is combining the access control scheme with the blockchain concept to improve overall 
security. In addition, a learning paradigm is incorporated that provides the grants and revocation effectively. The 
contributions of this article in addressing the sensitive nature of healthcare data include the following:

 (1)  To design an effective access control scheme that grants appropriate user permissions for secure and de-
pendable access to healthcare data.

 (2)  To augment complementary security for grant and revocation powered by blockchain with delegation 
knowledge

 (3)  To incorporate a trained learning paradigm to decide on access grants and revocation through iterated 
learning and random forest (RF) classification.

 (4)  The OACS outperformed typical access control methods in processing speed, false positive rate (FPR), and 
dynamic access request flexibility. These findings show that an OACS can secure healthcare IoT settings 
while streamlining processes, which could inform enhanced access management solutions.

Overall, this approach helps to ensure the confidentiality, integrity, and availability of sensitive healthcare data, 
which is crucial for maintaining the quality of care provided to patients. The rest of the paper is organized as 
follows. Section “Related works” analyzes the researchers’ studies on the secured IoT health data monitoring 
process. Section  “Proposed opportunistic access control scheme” proposes a blockchain-based IoT data 
transmission and access control process, and system efficiency is evaluated in Section “Performance analysis”. 
Section “Conclusion” summarizes and concludes the work.

Related works
Modern technology in healthcare has led to significant advancements in how medical services are delivered 
to patients. Cloud computing, fog computing, and mobile-based healthcare systems are some technologies 
implemented in recent years to improve healthcare service delivery. However, the security and privacy of 
patients’ sensitive information remain major concerns. Various access control models and security mechanisms 
based on blockchain have been proposed to address these concerns.

Li et al.24 proposed a data aggregation scheme using blockchain technology for medical environments to 
secure patient privacy and provide more personalized healthcare services. Additionally, a group authentication 
mechanism was designed for multiple authorized users to access patients’ health records and protect sensitive 
information with a group session key. With the advancements in information and telecommunication 
technologies, telecare has become integral to modern healthcare services. A telecare medical information 
system implemented in the wireless body area network (WBAN) offers the convenience of remote healthcare 
monitoring, enabling real-time data collection and analysis. However, these systems are prone to security threats, 
including eavesdropping, data tampering, and denial-of-service attacks.

The authors in25 implemented a protocol that employed ciphertext-policy attribute-based encryption for 
access control and blockchain to guarantee data integrity. Access control models are necessary to verify legitimate 
user requests and prevent attacks. Similarly, healthcare systems have adopted traditional access control models 
such as role-based or attribute-based access control. While effective in managing permissions, these models often 
fail to adapt to dynamic contexts, such as emergency scenarios, making them susceptible to privilege escalation 
attacks. Singh et al.26 proposed a trust-based access control model for the healthcare system that enhanced the 
accuracy and efficiency of the system by including a trust mechanism, trust model, and access control policies.

The growing need for wider access to healthcare data has prompted the development of healthcare 
information exchange between health authorities. The cloud paradigm is used as a solution but remains 
inefficient and vulnerable. To address this, researchers proposed EdgeMediChain (EMC), a secure and efficient 
data management framework that leveraged edge computing and blockchain to improve scalability, security, 
and privacy. As the proposed implementation is performed in simulation, the real-time implementation is very 
expensive to process27.

In28, the authors proposed a lightweight, secure access scheme (LSAS) that was robust and effective for 
protecting data security and privacy in cloud-based E-healthcare services. This scheme applied a secure access 
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technique using multiple keys derived through a key derivation function to ensure end-to-end information 
encryption and prohibit unauthorized access. However, employing a local database and low power wide area 
networks, the proposed approach is not economically viable, and security administration is more complex.

Zhang et al.29 proposed an inference attack-resistant e-healthcare cloud system with two-layer encryption 
for fine-grained access control (TLE-FGAC) to address EHR data’s security and privacy issues. The authors 
implemented a two-layer encryption scheme to efficiently and securely control access to EHR data while 
preserving the privacy of role attributes and access policies. They also suggested a blind data retrieving protocol 
that protected the EHR’s access pattern of data attributes. It is crucial to evaluate the mechanism’s applicability 
and flexibility in various healthcare contexts this proposed concept.

Fog computing, a distributed computing paradigm, has the potential to revolutionize the healthcare industry 
by bringing the power of cloud computing closer to the edge of the network, allowing for faster and more 
efficient processing of healthcare data. It is designed to support IoT and other applications that require real-time 
data processing, low-latency communications, and improved security and privacy. However, security risks are 
often not considered, and existing machine learning and blockchain approaches are inadequate for meeting the 
quality-of-service requirements of healthcare IoT. A novel solution integrating fog computing with blockchain is 
proposed to address this issue30. The proposed approach includes a fog computing-based three-tier architecture, 
an analytical model, a mathematical framework, and an advanced signature-based encryption algorithm for 
secure data transmission.

In31, the authors presented a lightweight authentication and matrix-based key agreement scheme to ensure 
secure healthcare transmission in fog computing. The proposed scheme supported multi-party communication 
in fog computing and encrypted healthcare data using doubly-linked cyclic tables.

With the advancement of technology, healthcare providers can now gather and store large amounts of data. 
The healthcare industry has emerged as a potential area of big data application to improve patient diagnostic 
systems while preserving their privacy. Big data analytics is an effective approach to identifying patterns and 
trends that traditional methods may miss—however, big data comprises significant data privacy and security 
challenges. Therefore, a security framework for big data in healthcare based on the logistic equation, Hyperchaotic 
Equation, and DNA encoding was proposed32. A Lossless Computational Secret Image Sharing method was used 
to convert encrypted secret images into shares for distributed storage in cloud-based servers. Hyperchaotic and 
DNA encryption was used to improve overall security, and Pseudorandom Numbers generated by the Logistic 
Equation were XORed with the image sequence in two phases. The application of Secret Sharing generates 
completely noise-like cipher images that enhance the security of the cloud-based cryptosystem.

Study33 designed a novel framework to integrate big data with privacy and security concerns to determine 
knowledge patterns for future decision-making in human immunodeficiency virus and Tuberculosis coinfection 
patients. The framework utilized unsupervised learning techniques in STATA and MATLAB 7.1 to develop 
patterns for the knowledge discovery process while maintaining data privacy and security.

In the era of health 4.0, mobile-based healthcare systems have emerged as healthcare services that utilize 
mobile devices such as smartphones, tablets, and wearable devices to provide healthcare services remotely. 
Hathaliya et al.33 proposed an approach enabling patients to self-authenticate using their mobile and wearable 
devices, establishing a session key between owned devices. After mutual authentication, the cloud server verifies 
each user. An attribute-based signature scheme with attribute revocation was implemented to protect user 
identity privacy in a blockchain-based healthcare system34. This scheme used attributes to identify users and 
protect their identities. The attribute revocation was achieved using the KUNodes algorithm. The proposed 
method was unforgeable, collusion-resistant, and privacy-preserving and required relatively few pairing 
operations without relying on a central authority.

In35, the authors also implemented BCHealth, an architecture based on blockchain technology, to address the 
data security and privacy challenges in smart healthcare applications. The proposed architecture allowed data 
owners to define their access policies over their healthcare data, and it was composed of two separate chains for 
storing access policies and data transactions.

Tolba et al.36 applied predictive data analysis to improve data security features in modern healthcare systems. 
This approach prevented illegal access to sensitive information by selectively processing healthcare and grid data. 
The proposed method used transfer learning to analyze and match medical and grid data recurrently, classify 
loss, and predict accurate analysis data. The predictive data analysis method’s intensive learning and training 
process can differentiate between authenticated and illegal access to healthcare data.

Liu et al.37 Suggested blockchain and distributed ledger technology to improve biomedical security and 
privacy across healthcare applications. Since this involves managing and accessing a large amount of medical 
information, it makes it feasible for patients to use the information to support their care and provide strong 
consent systems for sharing data among various organizations and applications. Additionally, this sort of 
technology can maintain data to ensure reliability. The experimental study revealed that it could boost the ratios 
of sharing time and records by 8.077% and 7.03%, respectively. Additionally, it delivers a 20.11% faster response 
time than the alternative methods. The suggested solution limits computation and convergence time in the 
authentication situation by 10.26% and 12.31%, respectively.

Wu et al.38 provided a blockchain-based intelligent healthcare network with granular privacy protection for 
trustworthy data sharing and transferring between various users. To provide attribute-based privacy protection 
in the transactional process, create a dynamic access control system that uses local differential privacy techniques 
with blockchain technology. The smart contracts address the needs of anonymous transactions, adaptive control 
access, matching, and the assessment of published data in an open network. The suggested privacy-preserved 
method can conduct dependable and stable transactions between EMR providers and requesters. The accuracy 
and utility of the data may be jeopardized by adding noise or randomization to protect privacy, which could 
lower the standard of evaluation and decision-making.
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Rani et al.39 described a framework that uses numerous pre-trained models and transferred learning to use 
blockchain for security. The suggested routing technique uses probability, believability rating, and node energy 
to route the data to its destination with the least network overhead and energy consumption. It isn’t easy to reach 
a common understanding of norms, protocols, and data representations. The suggested routing routes the data 
to its destination with variables like likelihood, credibility rating, node energy, etc., to reduce network overhead 
and minimize energy usage. The findings demonstrate that the suggested method provides 92.24% classification 
accuracy.

Sapna et al.40 discussed an efficient IoT interoperability model using a secure access control mechanism 
(ACM). Except for the downward flow direction, the mode of operation for a Routing Protocol designed for 
low-power and lossy networks is configured to the direction of multipoint-to-point traffic. In this configuration, 
the server receives data packets from the sensor nodes, which it then uses to calculate trust levels. To reduce 
packet loss by 0.43%, energy consumption by 0.4%, and average residual energy loss by 0.87 mJ, the suggested 
trust mechanism is based on privacy access control. The largest average residual energy loss occurs at node 30, 
which has the highest residual energy.

Zahid Ghaffar et al.41 suggested the ML Attack Resilient and Low-Latency Authentication Scheme for AI-
driven Patient Health Monitoring System. Concerns about privacy and security have made it difficult to design 
a mutual authentication and key agreement mechanism for RPHM that is both effective and safe. For RPHM 
systems powered by AI, dependable and low-latency connectivity is especially essential. The high delay rates 
and vulnerability to machine learning attacks are two of the many problems with many current authentication 
techniques. We address these concerns by introducing a low-latency authentication system for AI-driven 
RPHM resistant to machine learning attacks. The suggested method makes use of an ECC-based three-factor 
authentication system. To protect medical sensing equipment against assaults by machine learning, it uses an 
OPUF or one-time physical unclonable function. The robustness and durability of the scheme’s security are 
shown by evaluations of its security in informal and formal settings. In addition, the scheme’s performance is 
evaluated using several metrics, proving that it is better than comparable schemes and achieves a low latency 
rate.

Khalid Mahmood et al.42 proposed a Cloud-Assisted, Secure, Cost-Effective Authenticated Solution for 
a Remote Wearable Health Monitoring System. The author explores informal security proof to demonstrate 
the security strength of the proposed approach against recognised security risks. A thorough evaluation of the 
suggested scheme’s performance in conjunction with relevant protocols shows that it can cut communication 
costs by 40% and calculation expenses by 37%. In addition, the approach provides further security measures to 
avoid physical and desynchronisation threats.

Muhammad Asad Saleem et al.43 recommended the Puncturable Pseudorandom Function for Provably a 
Secure Authentication Protocol for Mobile Clients in an IoT Environment. Two mobile clients may authenticate 
each other via the server using the proposed PSK-MC protocol. The security strength of the proposed protocol 
is determined via formal and informal evaluations. The random oracle model, which is often used, is used to 
illustrate the formal security analysis. In addition, a desktop computer is utilised to get experimental findings to 
evaluate computation cost, while a mobile device is used to conduct all the cryptographic operations used by the 
mobile client side. According to the results of the performance investigation, the protocol outperforms similar 
ones since it has the lowest communication and computing overhead.

Table 1 presents a comprehensive comparison of various models from the literature survey, highlighting key 
features, FPR, processing time, blockchain integration, and the strengths and weaknesses of each approach. This 
table offers a clear overview of the different models, showcasing their performance metrics and the extent to 
which they incorporate blockchain technology for enhanced security and policy enforcement.

Scalability, high latency, and static policy enforcement make healthcare IoT ACM unsuitable for dynamic 
contexts. Traditional access control measures are inflexible and unable to respond to changing user behaviours 
and urgent real-time demands, which might delay high-volume requests. Centralized access control solutions 
increase security risks and single points of failure. The OACS leverages blockchain and RF machine learning to 
provide a secure, scalable, and adaptable access control system. The blockchain element of the OACS ensures 
distributed, tamper-proof access request processing, while the machine learning part dynamically modifies 
permissions using real-time data and user behaviour. This dual strategy reduces latency scales and improves 
access control in healthcare IoT systems, bridging security and operational efficiency.

While these methods effectively establish security for IoT healthcare data, they fail to manage authentication 
and security while analyzing large amounts of data and hidden sections. The existing algorithms face many 
challenges, especially a lack of concentration related to authentication and security. Systems may be susceptible 
to unauthorized access if authentication procedures are weak or poorly built. It’s crucial to anonymize personally 
identifying information when working with vast amounts of data to safeguard the privacy of individuals. When 
examining massive amounts of data, it is crucial to prioritize security and authentication. Organizations can 
improve their capacity to safeguard sensitive information and reduce risks by implementing strong security 
measures like access control measures and routinely evaluating and upgrading security rules. Rather, it focuses 
on huge data analysis of healthcare records. Some of the existing limitations are discussed here. The security 
administration becomes more complex, particularly with the multi-key-based authentication methods discussed 
in28,31. On the contrary, the contributions in25 and33 present a long time gap resulting from single and multi-
server authentications. However, the focus is on improving the session duration while maintaining consistent 
access and authentication security. In this process, fine-grained access control29, pairing operations34, or flexible 
yet robust methods, as in27, are required.

This plan’s novel work suggests an enhanced access control system as a smart contract in blockchain. 
However, the access control strategy put out by this proposal restricts the kinds of access people can have with 
the recommended approach and is defined based on the delegation factors. This approach uses access control 
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contact based on blockchain. It predicts authorization using an RF scheme compared to the previously proposed 
ones, which lacked management in session duration while preserving constant access and authentication security 
and a waste of time in handling single and multiple servers. These drawbacks motivate the introduction of an 
OACS using blockchain that emphasizes user validation for secure access.

Proposed opportunistic access control scheme
System architecture
IoT-based healthcare systems utilize service forwarding to the appropriate patient. This deployment of an 
IoT environment enables ubiquitous and convenient patient access to related services. The ubiquitous data is 
stored in an authorized repository to determine access to secure users. In the healthcare industry, IoT detects 
the data; based on this, the service is provided on time. The computation time is decreased, and the patients 
handle the relevant information. The storing of relevant and irrelevant data is done on the repository; from 
this approach, the access level states the user’s health. This study proposes a fully decentralized authentication 
strategy leveraging blockchain to address the shortcomings of the present centralized authentication solutions. 
A distributed network of computing devices powers a blockchain called nodes.

Using the term opportunistic suggests that the proposed system may prioritize adaptability and flexibility in 
access domains, potentially by introducing some level of false positives or false negatives in certain situations. 
Such a metric is analyzed to accommodate dynamic or changing conditions and adapt to them. Incorporating 
blockchain technology is part of an effort to enhance transparency, traceability, and accountability in access 
decisions.

Every node keeps an archive of blockchain technology containing encrypted data on patient records. Thanks 
to this decentralized storage, data availability is improved as there is no single point of failure. Blockchain creates 
a safe ACM using cryptographic methods. Smart contracts, autonomous, rule-based contracts, can control who 
has access to patient records. Only parties with permission to see or alter the patient data can do so, thanks to 
smart contracts’ enforcement of access control restrictions. The proposed scheme’s process is illustrated in Fig. 2.

The proposed scheme performs user validation, access control, and decision-making using the blockchain 
paradigm. The assessment is based on the previous user information, such as access and revocation. Based 
on this information, blockchain provides users with access to delegations. User validation relies on identity 
verification and denial history (Fig.  2). The order or sequence in which permissions for access are assigned 
to various individuals inside a system is called the delegation sequence. According to historical data and user 
requirements, the delegation sequence enables the system to keep track of access privileges and make educated 
judgments about giving or denying access. Data security is ensured for the number of services and determines 
the relevant processing. The relevant service is evaluated for the access control scheme. The user permission is 
used to delegate the defendable access control scheme. The authorized repository defines the concord patient 
in the healthcare industry. All nodes on the blockchain network will not have a backup of the data once it is put 
in the blockchain because the technology is not tamper-proof. The security and privacy of medical records are 
considerably enhanced if an attacker interferes with the data in some nodes since the erroneous data will be 
found and corrected by other nodes.

Healthcare IoT data access management is the goal of the OACS, which combines machine learning for 
adaptive decision-making with blockchain for secure access control. At its heart, the OACS is a distributed 

Model Key features FPR
Processing 
Time (ms) Blockchain Integration Strength Weakness

BCHealth-Privacy19 Access control with 
attribute revocation 0.0715 479 High (Blockchain + Attribute 

Control)
Efficient health data exchange, 
High data integrity through 
blockchain

Complexity in maintaining 
multiple authentication keys 
and reliance on edge computing 
may lead to bottlenecks

Trust-Based Access 
Control26

Trust mechanism, 
security for healthcare 
systems

0.0745 603 Moderate (Trust-based)
Implements trust-based 
mechanisms, Strong security 
measures

This can lead to false positives/
negatives in access decisions, 
Complexity in managing trust 
relationships

Moderate (Trust-based)27
Efficient health data 
exchange, edge-
augmented

0.0673 537 High (Blockchain with Edge)
Combines edge computing 
with blockchain, Enhances 
data access speed

Moderate processing time under 
heavy loads May face challenges 
in multi-key authentication

LSAS-Secure28
Multi-party key 
agreement, matrix-based 
keys

0.0523 563 High (Matrix-Based 
Security)

Lightweight and efficient for 
mobile environments.

Vulnerable to unauthorized 
access if keys are leaked,

TLE-FGAC29 Fine-grained access 
control, EHR privacy 0.0931 768.09 Moderate (Two-layer 

Encryption)
Fine-grained access 
control, Strong data privacy 
protections

High latency due to sequential 
processing, Limited scalability 
for large user bases

Fog-BI30 IoT security for 
healthcare, low latency 0.0584 490.57 High (Blockchain with Fog) Quick access decision-making Limited adaptability to changing 

access patterns

BC Health35 Decentralized, attribute-
based access policies 0.0471 450 High (Blockchain-based 

Access)
Decentralized management of 
permissions, Robust against 
tampering

Potential scalability issues with 
increased nodes, Higher latency 
in achieving consensus

OACS (Proposed)
Dynamic consent 
management, RF, smart 
contracts

0.0321 382.50 High (Blockchain + RF) Enhanced Security, Dynamic 
and adaptive access control Dependency on data quality

Table 1. Comparative analysis of models from Literature Survey.
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ledger system that records all transactions, including those involving access requests (approved or denied). Smart 
contracts automate the process of enforcing policies related to access control. With each access request, the smart 
contract verifies the user’s identity and verifies the data permissions and predefined restrictions. Because these 
smart contracts are unchangeable once deployed, they add another safeguard by ensuring the rules for access 
control are consistent and trustworthy.

Along with blockchain technology, the OACS also uses RF techniques for machine learning to assess access 
requests. The system utilises considerations such as user role, data sensitivity, access context, frequency of 
prior accesses, and request geolocation for classification. Access requests are categorized as valid or suspicious 
based on these factors. The system may adjust to its users’ evolving demands and behaviours by processing 
past data using the RF algorithm. One way the algorithm can help prevent unauthorized access is by detecting 
suspicious patterns of requests (such as those coming from an unexpected location) and then implementing 
extra authentication processes.

The OACS takes the following steps in response to an access request:

 (1)  An initial step in the validation process is for the system to compare the user’s credentials and previous 
actions with those stored on the blockchain.

 (2)  The OACS checks the blockchain for their delegation history, including previous attempts, permissions, and 
revocations, to verify that the user has the right authorisation for the resource they are requesting.

 (3)  For the final decision, the RF algorithm looks at the request through the lens of past access trends and be-
havioural analysis. This assessment determines whether the request is approved or denied by the OACS.

 (4)  After reaching a decision, it is added to the blockchain as a new transaction, ensuring that the access request 
record cannot be altered.

Utilizing methods like sharding to divide the blockchain and reduce processing costs for each node and off-
chain storage for non-critical data, the OACS tackles possible scalability difficulties, especially in high-traffic IoT 
applications. This makes it ideal for widespread healthcare IoT deployments since it keeps the system responsive 
even under heavy strain.

Unauthorized people can attempt to get physical access to IoT devices that support them. To do this, one can 
tamper with the devices, directly extract data from memory, or connect to the network to intercept or modify data 

Fig. 2. The proposed Opportunistic Access Control Scheme.
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transfers. The access level is kept secure by blocking unauthorized entrances and data downloads. Data security 
is guaranteed for various services, and the appropriate processing is chosen. The pertinent service is assessed in 
light of the access control plan. The defendable access control scheme is delegated via user authorization. In the 
healthcare sector, the authorized repository specifies the concord patient. The examples are: Blockchain offers a 
tamper-proof and unchangeable storage solution for medical documents called an authorized repository. Here, 
blockchain can store patient data, ensuring that once the information is recorded, it cannot be changed without 
the network’s participants’ consent. It preserves data integrity and stops unidentified people from tampering 
with the records. Blockchain relies on decentralized consensus methods, in which several network users verify 
and concur on the blockchain’s current state. With the help of this consensus model, healthcare records are 
protected against unilateral modification or manipulation, increasing the security against unauthorized access.

Here, similar information matches the current and the previous state and examines the authorized repository. 
The data repository provides access grants to the patient and maintains security. Blockchain is a ledger that 
includes healthcare data collection and provides similar information to the end-users. To determine the legitimacy 
of a healthcare provider’s access to patient records during an emergency, Eq. (1) represents the circumstances 
when access requests are being considered. User credentials, historical access patterns, and data sensitivity are 
defined; they are used to improve the healthcare IoT system’s security by re-evaluating permissions when an 
anomaly in access patterns is detected.

 

γ =
( 1

en + un

)
∗

∑ e0

gr

(mi + r0) ∗







rd (qe)
/

en

w0 + t′


 + (kh ∗ mi)


 + jc (1)

As shown in Eq.  (1), where en denotes the number of active entities, un is the number of unauthorized 
users, e0 denotes the number of evaluated requests, mirepresents the access request metric, r0 denotes the 
constant factor related to an access request, qe denotes user request, kh indicates blockchain-based healthcare 
services, γ  represents anonymous entries, gr signifies access grant, rd symbolizes healthcare record holds, 
w0is the information Forwarded to the appropriate user, fd implies defendable services, jc denotes record 
forwarding. The anonymous entries and data download define the access level for the number of services. Here, 
the computation determines the repository and examines the related services on time. An access control scheme 
for security analysis is employed, and it is stored in an authorized contract with a blockchain by identifying the 
user request and access grant for the initiated transaction flow was stored in a current state and then based on 
delegation knowledge and identifies the anonymity user request and then revoke it. Assuring consensus and 
preventing unauthorized changes, the distributed network of blockchain nodes collectively maintains the ledger 
and authenticates transactions. Security analysis was performed using the abovementioned procedures.

The computation process utilizes the recent IoT for ubiquitous and concord patients/users. A similar service 
is forwarded to the end-user by defining anonymity in the network. In IoT, the repository stores the collection 
of information and leverages the access level for security. The security level is maintained for anonymous entries 
and data downloads. For every iteration step, the analysis is carried out for the anonymous entries and data 
download.

The system manages access grants using blockchain technology. Based on prior access and delegation 
sequences, access grants are determined from blockchain records and can be revoked. The service handling 
deploys the augmentation and evaluation to refer to the access allowed to the end-users and is used to decide 
the blockchain. The requirement is assessed here, and blockchain provides security using Eq. (3). The decision 
is made for the deployable blockchain security and defendable access control followed by the security, and it 
is referred to in Eq.  (4). This RF classification tree is used to classify the access, give and revoke suggestions 
given by blockchain, and forward the information on time. Equation (6) is used by the blockchain suggestion to 
analyze this scheme’s training stage of processing data and investigates the blockchain recommendation’s access-
level security to ensure security. The security setting is appropriate for the range of services and widespread 
information sharing by accessing Eq. (13).

The detection process states the authorized service and forwards it to the defendable access control. This 
paper introduces an OACS for leveraging access-level security and the defendable access control scheme. 
The access-control scheme determines the related services, provides the authorized repository, and deploys 
ubiquitous information. The information forwarding is used to determine the healthcare record and estimate the 
defendable service to the end-users. Blockchain for the healthcare system is used to utilize the related services, 
and it is represented as kh. The number of users who request the requirement qe in Eq. (2a) to the healthcare 
centre, {u0, u1, . . . un} and services are defined as {e0, e1, . . . en}.

Here, analysis defines the anonymous entries to access the authorized record from IoT, referred to as γ
. The access is granted to the end-users based on the relevant information, and it is denoted as gr  described 
using Eq.  (2b). The healthcare centre handles the requests/requirements of the patients pt, and matching is 
performed with the current and previous state, which provides the result. Here, the permission mi is granted 
to the patient to ensure the security level. The healthcare record holds the collection of information regarding 
the patients, and it is represented as rd. In this approach, access control is used to determine the defendable 
services, and it is denoted as fd. The access control defines the blockchain for better record forwarding, and it 
is termed as jc. Thus, the information w0 is forwarded to the appropriate user on time i0. From this analysis 
approach, the examination for access level is formulated in the following Eq. (2). This equation calculates the 
access efficacy score (α), which indicates the likelihood of approval based on several parameters. Credentials, 
request significance, prior access trends, and present request context are considered. The score helps improve 
decision-making by revealing the access request’s legitimacy.
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α = (u0 + mi) ∗

(
H + cr∏
gr (S ∗ rd)

)
+ (qe ∗ u0) (2)

Query effectiveness ( qe) measures access request efficacy based on the time and resources involved. This 
equation considers timing, resource sensitivity, and other criteria to decide if an access request is appropriate.

 qe = t′ ∗ w0(gr + on) (2a)

This equation estimates the group of resources ( gr) associated with the access request by including data 
sensitivity ( fd), present request context ( cr), and access request metric ( mi). Quantification helps prioritize 
access requests by resource utilization to handle sensitive data correctly.

 gr = (fd + cr) ∗ mi (2b)

This equation evaluates the request context ( cr) using query effectiveness ( qe), a historical adjustment factor 
( kh), and any necessary deviation or adjustment ( d′ ). This equation uses the request’s context to determine if 
access is good in the current situation.

 cr = (qe + kh) − d′  (2c)

In Eq. (2), the access level states the anonymous entries and data download. Here, the examination provides 
the authorization and deploys the security. The access control determines the defendable permission and 
examines the blockchain. The requirement provides IoT security augmentation and assessment for healthcare 
record access. The augmentation determines the access grant and provides the requirement, and it is represented 

as
(

H+cr∏
gr (S∗rd)

)
.

Here, the requirement defines anonymous and data download and estimates the defendable access control. 
The assessment determines permission access for the requested users. The request is granted based on the 
healthcare record and deploys the authorization H  for the user service handling. The service handling is 
examined to determine the appropriate information exchange between the users in IoT. Here, examination α  
is performed for the requirement, and permission is granted to the users based on the anonymous on detection. 
The control is provided to forward the appropriate data to the end users, and it is represented as cr  and calculated 
using Eq. (2c). Figure 3 presents the user access grant procedure.

This access grant procedure is defined by two conditions, namely verification success and failure. Access 
level and user delegations are defined based on the available information. A failed verification (user) is revoked 
of current access, and the new request is denied (refer to Fig. 3). Blockchain security states the augmentation 
and assessment and defines the access grant. Thus, the data is forwarded to the users based on relevance, and 
it is represented as t′ . The defendable access control transfers the information to the appropriate user, and it 
is denoted as fd. The delegate service is handled by the end-users, and it is based on the access control and is 
denoted as d′ . Equation  (3) performs the data forwarding based on the requirement and data delegated for 
defendable access control. From the access-level approach, an OACS is used for security maintenance and 
examines the user permission for the requirement for the data. IoT security is used to define the user permission 
delegated for service forwarding.

Fig. 3. Access grant procedure.
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The defendable access control scheme defines the user permission delegated based on the requirement and 
data. The anonymous entries and data downloads are used to estimate the access to the secure users. The service 
handling is used to determine the blockchain and deploys the augmentation and assessment to refer to the 
access S granted to the end-users. Here, the evaluation is carried out for the requirement, and the blockchain is 
deployed for security.

Several aspects of forwarding processes require mathematical formulae by accounting for the parameters 
like user request on time for a particular requirement is verified by authorization and permission given for 
authorized users to access the information in the secured environment as represented in Eq. (3):

 
fd (∅) =

∏ u0

mi

(w0 + S) ∗
(

Y + H

cr

)
−

[(
t′ ∗ kh

)
∗ (qe − i0)

]
+ d′  (3)

The defendable access control fd is calculated in response to blockchain security ∅ by analyzing the 
authorization H  the information w0 is forwarded on time i0 only when the permission mi is granted to the 
patient u0 to ensure the security level and the blockchain augmentation to refer to the access S granted to the 
end-users. Considering the blockchain for the healthcare system to utilize the related services, it is represented 
as kh the data is forwarded to the users based on relevance, and it is represented as t′ . User requirement request 
is given as qe followed by analyzing the delegated service, which is handled by the end-users; it is based on access 
control and is denoted as d′ .

Access is granted to the secure Y  transmission of data from one end to the other. The anonymous detection 
is detected, and the secure transmission is deployed for the requested user. The determination is done for the 
defendable access control and deployment of blockchain security, which is termed as ∅ . The computation is 
performed for the requirement, and it is based on the time, and it is formulated as [(t′ ∗ kh) ∗ (qe − i0)]. Thus, 
the delegation, requirement, and data forwarding are examined in Eq. (3), and the security is provided using 
Eq. (4).

 
Y = 1

en
∗

∑
w0

[
(cr + H) ∗

(
γ + kh ∗ la

mi

)]
+ (qe ∗ rd) − ∅ (4)

The security is maintained to prevent anonymous entries and data downloads, and the blockchain is deployed for 
assessment and augmentation. The computation is based on the access grant and provides the recommendation 
approach. The recommendation is performed for the healthcare record and states the access control for the 
number of services and users in IoT. The OACS is used in the healthcare blockchain and permits delegated 
service handling. The defendable service provides permission for the access control level and estimates the 
security. For the iteration step, the healthcare record is used to state the augmentation for the assessment and 
provide security. Security is ensured for the blockchain to handle the record.

Blockchain is used to refer to the augmentation approach for the access grant la to the number of users in IoT. 
The examination states the access grant by providing permission, and it is represented as

(
γ + kh∗la

mi

)
. Thus, 

the security level is balanced throughout the computation step for the number of services. Machine learning 
techniques such as RF can be used to determine access grants and revoke them based on the blockchain.

Random forest classification technique
IoT-based healthcare systems employ RF because they excel with mixed numerical categorical and high-
dimensional data, making them suitable for flexible user access demands. In environments with frequent user 
behaviour changes, ensemble learning reduces over fitting. Feature relevance metrics from RF help us understand 
access choice criteria.

To train the data, it is necessary to gather access logs from the healthcare IoT environment, which record both 
authorized and unauthorized attempts to enter the system. Next, the dataset is prepared to deal with missing 
values and normalize features. Then, it is separated into training and testing sets to evaluate the model on unseen 
data. The classifier is trained to generalize and make correct predictions on future requests by learning patterns 
associated with successful access requests using the RF method.

Feature selection
Information like user role, data sensitivity, historical access habits, and contextual factors like time and place 
are key to access control decisions. Features are selected to detect these factors. Both recursive feature removal 
and the RF model’s feature relevance ranking reduce the number of features that affect classifier prediction 
performance. This keeps the model efficient and understandable without over fitting.

Optimisation of classifier parameters
Parameter tuning adjusts the RF classifier’s hyper parameters, including the number of trees, maximum depth, 
and minimum samples for splitting nodes. To ensure the model works optimally on the validation set, grid 
search and cross-validation are used to evaluate parameter combinations. The security framework’s effectiveness 
improves by tweaking the classifier’s distinction between allowed and unauthorized access attempts.

The OACS uses RF because it handles high-dimensional data well and prevents overfitting with ensemble 
learning. RF’s many decision trees improve anticipated performance and provide reliable access request 
evaluations. This precision is essential for real-time access control in IoT contexts because it permits quick and 
informed user rights decisions based on context and behaviour. The system’s capacity to quickly process massive 
datasets ensures low latency and adaptability, essential for meeting healthcare applications’ evolving needs.
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Here, the computation states the blockchain for security. The permission is granted to the requested user 
and deploys the augmentation and assessment for the varying services. The security level is performed for the 
defendable service forwarding concerning requirements and data. The access grant and revocation are classified 
from this RF tree. Equation  (5) considers many parameters to determine access control decisions ( ∂ ) for 
granting or denying access. A weighted assessment of past access grants, data sensitivity, unauthorized users, 
request context, and historical access trends are considered. This complete study can make healthcare systems 
supported by IoT secure and flexible ACM, enabling informed decision-making. Based on this, a decision is 
made for the defendable access control, shown in Eq. (5).
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∑
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The classification is performed for the varying services and determines the authorization. The authorization 
is given to the patients to handle the service and examine the anonymous entries and data download. The 
computation is based on the delegation, and the defendable service is forwarded to the end-users. This processing 
leads to access control and recommends R for the training data to improve the access rate. The above equation 
differentiates the access grant and revokes the operation for the relevant service forwarding. The first derivation 
indicates the access grant for the data analysis equated in Eq.  (1). In this approach, the recommendation is 

performed for the access grant to the number of users, and it is represented as 




cr
/

gr

(γ +R)


. Here, both the 

assessment sm and augmentation is centralized in this IoT environment.
The second derivation represents the revoke; if any unwanted access alert is examined in IoT infrastructure, 

the revoke operation is performed. It is executed if an access denial occurs during the time-of-service request 
and forwarding. In this approach, the security level is maintained for the patients and the blockchain for the 
augmentation k0. In this case, the authorization is balanced for the varying users, estimates the matching with 
the previous state, and provides the result on time. Figure 4 presents the classification illustration.

Sequential time observations are recorded for different access intervals in the permission-granting sequence. 
This sequence is observed for different classification instances for providing permission. The training is 
performed to verify the sequential access/grant for the users through classification (refer to Fig. 4). Thus, the 

Fig. 4. RF classification illustration.
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classification model is performed in this RF method for the access grant and revokes, denoted as ∂ . Equation (6) 
performs the training data to enhance the detection of anonymous entries and data downloads.

 

α (tg) =





(
e0∏

rd
(R∗d′ )

)
+ [(kh∗t′ ) + (w0 ∗ d′ )] − r0

d′ = (u0 + mi) ∗ sm

sm = (e0 + on) ∗ (kh + fd)
fd = (Y + w0) ∗ qe

 (6)

The training data is done by performing matching that deploys the blockchain for reliable security. Here, security 
determines the service forwarding and performs the recommendation.

The error data determines a better prediction model and determines the access granted to the users. The access 
is granted to the appropriate user by deploying the access control. The access control states the augmentation and 
assessment for a reliable result. The evaluation is carried out for the different service handling and provides the 
access grant to the relevant users. The previous state defines the training data tg  for the different sets of services, 
and it is represented as r0. Thus, the training data determines the authorization for the service handling and 
provides security. The prediction is evaluated based on the RF classification and deploys the concord patient/
user-related service. In Table 2, the failure % for different user requests is tabulated.

Failure is computed for different granted requests, regardless of their pending status. In this case, the failure 
is estimated ∂  using the training data.

Blockchain for access control mechanism
With blockchain technology, there is no longer any need to depend on a single authority for access control, 
as it offers a decentralized structure that eliminates this danger. Data integrity is ensured by the immutability 
of access control choices and procedures stored on the blockchain. The complete auditability and traceability 
of all transactions (access demand, authorization, refusal) are recorded on the blockchain. It is difficult for 
unauthorized individuals to manipulate access control since blockchain employs sophisticated encryption 
methods to secure data. At first, blockchain compiles information about access requests, such as the user’s role, 
the data type requested, the time of access, the location, the security of the device, and access trends of the past. 
With the use of access control history data, an RF model can be trained. Each data point comes with the above 
attributes and the matching access decision. Extract the pertinent features and feed them into the trained RF 
model whenever a new access request is submitted. The model can determine if the access request should be 
approved or denied by analysing the features provided. Ensure everyone can see the model’s reasoning and 
choice on the blockchain. An intelligent contract on the blockchain enforces the decision to give or refuse access.

Utilizing blockchain technology, the system oversees the granting of access. Access grants can be revoked 
and determined from blockchain records based on earlier access and delegation sequences. When deciding on a 
blockchain, the service in charge of deployment evaluates and enhances the end-user access policies. Assessing 
the demand and utilizing the blockchain for security are both done here. Security is the decision-making process 
followed by defendable access control and deployable blockchain. To further guarantee security, blockchain also 
suggests analyzing the training stage of data processing for this scheme and looking at the access-level security of 
the blockchain recommendation. Various services and extensive data exchange are compatible with the current 
security configuration.

Every node in the network is vital in an OACS or other blockchain-based access control system because 
it manages state transitions associated with user permissions and access requests. Common tasks include 
representing states, transitioning between states, verifying user credentials against stored states, determining 
whether access should be provided based on current permissions and delegation history, and updating the state 
to reflect changes in permissions.

In the consensus mechanism, nodes talk to each other until they agree on the status of the current permissions. 
That way, nobody can alter the record of user permissions without authorization, and all the nodes will have the 
same record. Every time someone asks for access and the blockchain decides to approve or deny that request, it’s 
recorded as a transaction. As a result, an auditable, immutable log is created.

The OACS class creates a blockchain for access requests and an index for user permissions. Request Access 
checks a user’s blockchain delegation history for validity. It considers the user’s credentials and past behaviour 
to determine resource access. If so, it grants or forbids access. Grant Access and deny Access record every choice 
as a blockchain transaction.

User Requests Granted Revoked Failure (%)

20 18 0 0

40 36 3 0

60 52 5 1.8

80 74 7 2.5

100 91 9 3.9

120 109 10 3.4

Table 2. Failure % for user requests.
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The training is based on previous blockchain information and prediction; prediction is discussed in the 
following section.

Security prediction
The security prediction is performed based on matching the previous state and provides a reliable result. Here, 
the recommendation is made for the blockchain to ensure security. The permission is forwarded concerning 
the relevant information handling to the end-user in IoT. The utilization of the recent IoT for ubiquitous and 
concord patients is examined in the healthcare industry. Access-level security is determined to grant permission 
to access the services. Concerning this prediction, the upcoming anonymous entries are avoided, and the 
efficient access rate is explored. Equation (7) is used to predict the varying services, and here, matching is done 
with the previous state.

 

P =


 S ∗ H

(w0 + kh)
/

gr


 +

∏ la

d′
(rd ∗ ∅) +

[(
k0 − R

cr

)
∗ (fd − en)

]
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The prediction is performed by examining the service’s current and previous state in the healthcare industry. 
Here, the evaluation is done by deploying the defendable access control and providing permission for the 
delegate services.

The end-user requests the particular services, so the healthcare industry performs the mapping. This mapping 
matches the current and previous data states and forwards the relevant data to the end user. In this stage, the 
recommendation is made for access control and augmentation, and it is formulated as 

[(
k0−R

cr

)
∗ (fd − en)

]
. 

Here, the defendable process examines the security between the users and the devices. The analysis of anonymous 
entries and data downloads states the permission provided to the user. The computation time is included to 
perform the particular task and, from this prediction, is examined, and it is denoted as P . The delegation scheme 
deploys interrupt-free healthcare record access, as shown in Eq. (8).

Algorithm 1. Pseudocode of blockchain-based access control.
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]
+ (k0∗sm) + on (γ ) (8)

In Eq.  (8), the interrupt-free healthcare record access determines the access grant for the end users. The 
evaluation is carried out for the varying service handling, examines the augmentation and assessment, and 
deploys the delegated. The previous state performs the matching, and from this approach, permission is granted 
to revoke the services. Here, the recommendation is made to provide access control and deploy the defendable 
access control. The evaluation is done by deploying the access to the end user and determining the blockchain 
record based on the previous state and delegation sequences. The access control is forwarded to the secure user 
in the network and balances the security for the access level.

The analysis is done by determining the delegation scheme, examining the access control, and providing the 
authorization, and it is denoted as jc. The data forwarding is done securely in the centralized IoT augmentation 
and assessment, providing post-to-healthcare record access. The evaluation is done by deploying the permission 
to the repository and estimating the reliable processing for the delegation scheme. This delegation scheme 
includes the augmentation and assessment for healthcare record access in IoT. Thus, authorization is performed 
for the varying services in the environment. In this evaluation, the interrupt-free healthcare record access is 
determined, and from this blockchain, the recommendation is formulated in Eq. (9).

 
kh (R) = (cr + t′ ) ∗

(
H ∗ en∑

gr (d′ + e0)

)
+ [qe (mi) ∗ on] +

(
jc + w0
∂ /

S

)
 (9)

The blockchain recommendation analyzes this scheme’s training state of data processing using Eq.  (6). The 
performance is used to state the authorization of service forwarding from one state to another. Figure 5 presents 
the recommendation process.

The recommendation process relies on matching updates after the request processing. In this process, the 
classified intervals are used for decision-making. Blockchain records are used for information updates and 
access to information storage. This is replicated in the services provided by the healthcare industry for retaining 
service-level security (refer to Fig. 5). In the healthcare industry, computation leads to examining the security 
and balances throughout the iteration steps. In the IoT healthcare industry, service delegation is performed to 
determine the security and access grant. The access grant to the user states the augmentation and assessment. 
It is a pre-defined term that holds the number of user access, and from this, the service is forwarded to the 
appropriate user by matching. From this, forwarding is done based on the classification method, and it is 

represented as
(

jc+w0
∂/S

)
. The determination of access and denial is formulated in Eq.  (10), which examines 

Eq. (5), which indicates the classification model.

Fig. 5. Blockchain recommendation process.
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∅
(
S, n′) =




(Y + qe) ∗
∑
r0

(e0 + w0) +
(

e0−f ′/vk
kh

)

f ′ = (la*cr) + r0
r0 = P + (∆ (c′) *mi)
mi = r0 (e0) ∗ t′ + w0

 (10)

The determination is carried out for the access and denial in service forwarding. From this approach, blockchain 
is used to define user permission. Concerning user permission, anonymous entries and data downloads are 
used to state the security. The security of the user and the devices in IoT is balanced. Here, the computation 
matches the current and the previous state and provides the result. The derivation is performed based on the 
user’s requirement and grants access on time. The access control and granting permission to use the service is 
termed from the authorization. The service authorization leads to examining the augmentation and assessment 
of the upcoming data handling in the healthcare centre. Table 3 presents the request examination for different 
delegation factors.

The examination factor is high if the matching is high, whereas complexity is less. If the matching is high, it 
reduces the denial ratio, and hence the examination is high. The examinations are performed based on P  and 
interrupt free access delegations. Therefore, the access rate is high, reducing the denial, as shown in Table 3.

Access and denial are performed concerning the failure in the process, and it is termed as f ′ . The denial is 
made by determining the matching process with the requirement and defining the delegation for access control. 
The prediction is made by determining the previous state of action and deploying the revoke and access grant. 
The access grant is used to state the matching ∆ and decrease the denial of service, and it is denoted as n′ . Thus, 
determining access control and denial is performed by decreasing the failure in networking healthcare data 
transmission. Equation (11) evaluates the access rate and shows better improvement.

 
β = kh (Y ) ∗

(
∂ + la

on

)
+ (en + un) qe − r0 (11)

The access rate is enhanced in this approach by decreasing the failure and defining the defendable access control 
scheme. The delegation of service determines the authorization by concerning the service to the requested user 
on time. The computation time is reduced in this processing, and permission is provided to secure users from 
this state. The security level is maintained for the varying users and the services based on the requirement, and 
it is equated as (en + un) qe. The evaluation β  is done to prevent anonymous entry into IoT and access to 
improper records. The matching process is derived in Eq. (12), which indicates the prediction model for the 
current and previous processing state.

 
∆ = d′ (e0) ∗

(
fd + S ∗ la

tg

)
+

[∑ (
vk ∗ c′ )

− r0

]
+ P  (12)

The matching is performed with the previous access and delegation sequences for the number of services. 
The evaluation is used to deploy the anonymous detection and provides the evaluation for the access control. 
The access control determines the dependable services and provides the recommendation process. The 
recommendation defines the permission for the current and the previous state and provides the result based on 
the matching. For every computation step, matching examines the defendable access control. In this case, the 
access grant and revoke are used to determine the blockchain for security. Equation (13) performs access-level 
security to decrease the false rate.

 
S (α ) = 1

un + en
∗ qe [(w0 + u0) + tg ∗ (P + ∆ )] + gr (e0 + H (u0)) (13)

The above equation explores access-level security in the blockchain recommendation to ensure security. The 
security level is balanced for the varying services and ubiquitous information sharing. The defendable access 
control determines the augmentation and assessment. The computation deploys the authorized access level to 
the secure user to maintain the related service forwarding. In this state, the false rate decreases for the varying 
services users request. It is achieved using an OACS and RF classification to address the issues and ensure 
security. Machine learning deploys training data in the IoT-based healthcare industry and transmits relevant 
services to patients with less computation time.

Delegation Factor Matching Factor Complexity (ms) Denial (%) Examination

0.2 0.44 56.3 11.39 0.61

0.4 0.52 45.27 9.61 0.78

0.6 0.69 39.26 8.45 0.81

0.8 0.85 21.48 6.39 0.95

1 0.91 17.81 4.1 1

Table 3. Examination for delegation factor.
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Figure 6a analyzes the access grant and request examination factors under different training instances. As the 
training instances vary, the learning is instigated based on classification. This identifies the grant and revokes 
cases for requests in the succeeding intervals. Therefore, the examination is performed for previous intervals 
and stored in the blockchain for further delegation. This improves the access rate for the examined requests, 
preventing interruptions. Based on the stored information, the interrupt-causing requests are identified. The 
identified users are denied new service provisioning, and the current requests are revoked. This ensures secure 
and liable healthcare data sharing between the devices under different training instances, as shown in Fig. 6b.

Performance analysis
The proposed scheme’s performance has been empirically analyzed and evaluated using the OMNeT + + simulator44. 
To simulate ACM, blockchain integration, consensus algorithms, etc., the authors must develop custom models 
and modules or leverage third-party libraries/frameworks designed for simulating blockchain systems. The 
purpose of developing network simulators, OMNeT + + provides a framework and library for C + + simulations 
that are extendable, modular, and component-based. To demonstrate how the network members would interact 
and sync information, this study uses an OMNeT + + simulation to build the simplest version of the OACS. It then 
shows how interrupt-free healthcare record access to precise users would work. OMNeT + + provides a graphical 
runtime environment, an integrated development environment (IDE) based on Eclipse, and many more tools. 
Among the many available extensions are those that facilitate real-time simulation, network emulation, database 
integration, and System C integration. Researchers worldwide have contributed many simulation models and 
model frameworks to OMNeT + + throughout its availability.

Many different parts of a blockchain system, including nodes, transactions, consensus techniques, and 
protocols for network communication, can be modelled in OMNeT++. The proposed model utilizes the INET 
framework.

INET framework: One of the most well-known simulation libraries for the OMNeT + + discrete-event 
modelling environment is the INET framework. This framework simulates communication networks, especially 
ones that use blockchain technology. With IoT healthcare services as an example, there are several benefits to 
using the INET framework in blockchain-related simulations. The well-known modular design of OMNeT + + is 
the foundation upon which INET is based. We can expand and personalize simulations to incorporate particular 
blockchain protocols and healthcare IoT-related scenarios. Complex systems like blockchain networks, 
OMNeT++, and INET offer strong visualization and debugging capabilities crucial for understanding their 
behaviour. For healthcare IoT blockchain solutions to work, there must be enough capacity to handle many 
devices and users. As a result of INET, blockchain applications may be tested for scalability and performance 
under varying network loads and situations. The fault endurance of blockchain systems must be evaluated. To 
ensure the blockchain is resilient, INET can mimic network outages, node crashes, and other failure scenarios.

The experiment contains 23 user equipment generating 130 requests. The data is collected from the Best 
Electronic Health Record Datasets, Databases & APIs45. Four healthcare data servers with 61,067 user data 
records (replicated) are used in this scenario. The access interval is set to 10 so that minimum failures are 
targeted. This basic consideration is applied in simulator46 to develop the introduced system. The performance 
metrics false and access rate, access and processing time, and failures are considered for analysis. The methods 
TLE-FGAC29, EMC27, and LSAS28 from the related works section are augmented for a comparative analysis. 
Table 4 provides a detailed overview of the experimental setup.

Based on the implemented access control scheme, classification based on RF is utilized to identify failure and 
analyze MTBF.

Fig. 6. (a) Grant and examination factor analysis (b) Access and interrupt factor analysis.
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False rate

 F R = (F ailed Access Requests)/(T otal Access Requests) × 100 (14)

A system’s FPR in Eq. (14) is the percentage of valid access requests that are mistakenly rejected. Figure 7 presents 
the false rate analysis for the delegation factor and user requests with the existing methods. The proposed scheme 
initiates an anonymous entry check before delegating access permissions. This is performed using user identity 
and previous history stored in the blockchain. The further processes are validated based on two assessments, 
namely ∂  and γ (d′ ). Therefore, the adversary inclusion and false request processing are denied in the Y  
administration, reducing the false rate, as shown in Fig. 7.

Access rate

 
AR = Sucessfull Access Requests

T otal Access Requests
× 100  (15)

The access rate is defined in Eq. (15). The proposed scheme achieves a high access rate for different requests. The 
processing is first analyzed for (mi + r0) preventing anonymity. This information is matched with the available 
blockchain information for identifying Y  and ∅ (S, n′ ). Access delegation and revocation are consistently 
performed based on (u0 + mi) and (Y + w0). Therefore, the prediction for unavailability and secure access is 
determined. Based on this P , the healthcare records are mapped with the requests. This enhances the continuity 
between users and application services without denial. Contrarily, γ (d′ ) analysis identifies certain false or 
unattended requests mitigated by the communication sessions. Retaining the service sessions, the user requests 
are fed to different sessions, providing access to healthcare data. Based on the access rate, further allocations 
are planned with tn and its pursuing sequence. This improves the request handling rate, and access is improved 

Fig. 7. False rate analysis.

 

Component Specification

Processor Intel Core i7

Memory (RAM) 32 GB

Storage 500 GB SSD

Power Supply 650 W

Network Interface Wi-Fi 6

Operating System Windows 11

Simulator OMNeT + + 6.0.1

Programming Language Python 3.8+

Transaction Rate 10–100 transactions per second

Network Topology Star topology for IoT device communication

Simulation Duration 1000 s

Network Configuration Wireless Body Area Network (WBAN) with 100 nodes

Table 4. Experimental setup and configuration for performance analysis.
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without denials. The matching process further scrutinizes the request count to retain the security level, and 
hence S (α ) is unanimous for all the requests. Therefore, the access rate is improved for different user requests, 
as presented in Fig. 8.

Access time

 AT = Tresponse − Trequest (16)

As shown in Eq.  (16), where Tresponse is the timestamp at which the system gives a response (approval or 
denial) after finishing processing the request for access and Trequest denotes the timestamp when the user 
initiates the access requests. A comparative analysis of access time (AT) for different user requests is presented in 
Fig. 9. AT is predicted based on incoming and pursuing resource delegations. AT equation refers to the system’s 
processing time and response to an access request. At different intervals, the anonymity is mitigated at the initial 
step, confining the wait time for different requests. In pursuing access requests, ∂  is validated in (d′ ∗ t′ ) 
Intervals, preventing the revocation of timed requests. The process is pursued in different training instances, 
and the information γ (d′ ) and on (γ ) is used for validating different requests. The recommendation process is 
pursued at different intervals through access and denial classification. Classification learning relies on training 
data to predict instances of failure. Such instances are mitigated using training data, and hence, fd (∅ ) is 
granted. This ensures concurrent and seamless request processing, preventing augmented queues. The proposed 
scheme validates interrupt-free access to retain multiple security instances and prevent failures. The failure-
detained intervals improve the request processing rate, reducing the time needed to process the request. Besides, 
the sequential classification reduces the false requests; hence, the pursuing request is handled without additional 
wait time. This reduces multiple requests’ AT, improving the proposed scheme’s performance.

Processing time

 Access P rocessing T ime = T ime of Access Response − T ime of Access Request (17)

Therefore, the processing time is confined to the previous intervals until tn as in Eq. (17). Figure 10 compares 
the request processing time based on the delegation factor and user requests with the existing methods. The 
proposed scheme mitigates anonymous requests from the users at the initial stage. This prevents time for 
processing illegitimate requests, so the α  process is uninterrupted. At this stage, the healthcare data allocation 

Fig. 8. Access rate analysis.
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Fig. 10. Processing time analysis.

 

Fig. 9. Access time analysis.
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is sequential and does not require additional validation. The classification learning identifies ∂  for which the 
sequence is modified, and hence, interrupt-free access is provided. In multiple scenarios, the training data is 

used for access or denial estimation, preventing unnecessary data access. 

(
jc+w0
∂/

S

)
 estimation ensures high-

level access security for all the scrutinized requests. As the requests enter the security administration process, 
the consequent request is processed without additional delay. In this process, delegation is improved without 
additional time. The pending requests are validated based on the blockchain recommendation, as guided 
through ∆  processes.

Failures
A comparative analysis of healthcare data access failures is presented in Fig. 11. The dense user requests increase 
the processing and data allocation rate regardless of different intervals. In this process, classification learning 
differentiates the access grant and revocation based on P . This computation aids γ (d′ ) fewer recommendations 
for preventing access failures. From the other end, the delegation is specific over ∅ (S, n′ ) such that the matching 
instances alone deviate for further processing. Therefore, the delegations are performed for different intervals 
based on user requests and access rates. The proposed scheme identifies anonymity based on fd (∅ ) and further 
training is ensured using classification data. This classification distinguishes the permission grant and revoking 
instances for which the failures are identified. The identified failing instances are categorized under anonymous 
access or P  process, reducing permissions. Therefore, the access rate is high, preventing unnecessary denial. The 
proposed scheme achieves less failure by providing seamless and classified access permissions. Failure analysis 
with 4 existing algorithms, including ACM-low-power and lossy networks40, confirms the superiority of the 
proposed OACS by providing 16 failure node count on delegation factor and 14 for each request, as depicted in 
Fig. 11.

Mean time between failures analysis

 MT BF (%) = T otal Operational T ime / F ailures count. (18)

Equation (18) shows the mean time between failure analysis. The system’s performance needs to be evaluated for 
accessing IoT healthcare services. A measurement is the mean time between two consecutive system failures in 
identifying the anonymous access by distinguishing the permission grant and revoking instances for user access 
or the Mean Time between Failures (MT BF ). Quantifying the system’s capacity to function continuously 
without experiencing malfunctions shows its dependability.

Keeping track of the system’s total operational time during user request initiation and transaction of files 
indicates the entire time the system has been up and running without experiencing problems in computing 
(MT BF ). It is possible to determine (MT BF ) to assess the system’s dependability quantitatively. While a 

lower MTBF value signifies a less reliable technology with more frequent failures, a higher (MT BF ) value 
denotes a system with longer gaps between failures, which improves the system’s performance. A comparative 
analysis of (MT BF ) is presented in Fig. 12.

Time to detect replay attacks
One of the key performance indicators that can demonstrate the effectiveness of the OACS’s blockchain-based 
access control system in preventing replay attacks is the Time to Detect Replay Attacks (TDR). A replay attack 
occurs when an attacker attempts to reuse a legitimate data transmission, and TDR measures how quickly the 

Fig. 11. Failure analysis.
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system can identify and prevent such attempts. TDR for various methods is compared in Table 5. Compared to 
conventional access control models, which require 1.1 s for TDR, the OACS demonstrated an average detection 
time of 0.25 s in simulations using the blockchain’s decentralized verification mechanism. This faster detection 
is attributed to the immutable nature of the blockchain, which timestamps every access request, preventing 
unauthorized retransmission of data. The reduced detection time significantly limits the vulnerability duration, 
effectively mitigating replay attacks.

Latency
Latency, a key OACS indicator, measures healthcare IoT access request processing time. Using blockchain and 
smart contracts to automate access control options greatly reduces validation and response times, as shown in 
Table 6. With the OACS’s decentralized ledger, many network nodes record and validate each access attempt, 

Method TDR (Sec)

TLE-FGAC 1.1

EMC 0.9

LSAS 1.2

OACS 0.25

Table 5. Time to detect replay attacks.

 

Fig. 12. System performance based on (MT BF ).
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unlike traditional models that use central servers. This setup speeds up authentication and authorization by 
avoiding centralized processing bottlenecks. The OACS has lower latency than TLE-FGAC, EMC, and LSAS 
as user numbers increase. OACS has 250 ms latency for 100 users, while TLE-FGAC, EMC, and LSAS have 
600–550 ms, which shows that OACS is best for instantaneous healthcare applications. The OACS’s RF algorithm 
improves latency by making decisions based on prior access patterns. The model optimizes latency by learning 
from new access requests in real time. Thus, the OACS provides a scalable solution to meet expanding access 
needs without losing speed or efficiency and maintains lower latency under varying user loads. The suggested 
model emphasizes the OACS’s latency improvements, demonstrating its ability to handle high-demand 
healthcare contexts with fast reaction times and powerful processing capabilities.

Throughput

 
T hroughput = T otal sucessful Access requests

T otal P rocessing T ime
 (19)

Compared to more traditional approaches, the OACS has an impressive throughput capability, meaning it can 
process more requests per second, as shown in Table  7. For example, the OACS keeps its throughput at 20 
requests per second with 200 users, while traditional systems struggle to keep up with 8 requests per second. This 
distinction emphasizes how efficiently the OACS handles several concurrent access requests without noticeably 
lowering performance. The use of blockchain technology allows for more efficient processing and faster handling 
of access requests. In healthcare contexts, where quick data access is vital for patient care, these throughput 
figures highlight the OACS’s potential to grow efficiently in scenarios with many concurrent users. The suggested 
model emphasizes the OACS’s throughput improvements, demonstrating its ability to handle high-demand 
healthcare contexts with fast reaction times and powerful processing capabilities.

Comparative evaluation
Tables 8 and 9 present the comparative analysis of average user requests and delegation factors.

The proposed scheme achieves an 11.74% less false rate, 13.1% higher access rate, 12.36% less access time, 
13.23% less processing time, and 9.94% less failure. Also, the OACS achieves a 10.64% less false rate, 15.62% less 
processing time, and 10.95% fewer failures.

The OACS analyses input variables like the delegation factor and user requests, which strongly impact access 
control results. Users’ ability to delegate access permissions affects the system’s responsiveness and flexibility, 

Methods TLE-FGAC EMC LSAS OACS

False Rate 0.0931 0.0704 0.0502 0.0321

Access Rate 0.7510 0.8070 0.8980 0.9498

Access Time (ms) 481.19 403.37 357.35 260.507

Processing Time (ms) 768.9 621.68 512.36 382.498

Failure 17 12 8 5

Table 8. Comparative analysis results for average user requests.

 

No of Users
TLE-FGAC
(req/sec)

EMC
(req/sec)

LSAS
(req/sec)

OACS
(req/sec)

100 33 35 40 66

200 56 58 60 89

300 78 85 98 143

400 95 105 163 178

500 124 156 186 220

Table 7. Throughput under varying loads.

 

No of Users TLE-FGAC(s) EMC(s) LSAS(s) OACS(s)

100 329.54 280 255.43 150.43

200 423.53 378.65 359 204.21

300 523.53 486.5 432.54 259.43

400 694 634.53 596.53 364.30

500 894.3 725.4 649 412.31

Table 6. Latency under varying loads.
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allowing authorized users to handle access in real time. The OACS has greater access rates in systems with 
high user interaction and clear delegation laws because its machine-learning component can dynamically alter 
permissions based on access patterns. The OACS can improve decision-making in settings with extensive and 
relevant historical data by providing quick and secure access to sensitive information and lowering the risk of 
unauthorized access. The OACS is flexible and performs well in healthcare IoT contexts.

Blockchain provides a safe platform for recording transactions and controlling access requests by 
guaranteeing data integrity, transparency, and immutability. As part of the machine learning strategy, Random 
Forest allows the system to analyze and forecast access patterns in real-time, making context-aware decisions 
and adjusting to changing user behaviours and network circumstances. This adaptive decision-making power 
is vital in healthcare, where strict security requirements must be balanced with the need for real-time access to 
medical data.

The latency study shows that the scheme can handle real-time queries in healthcare IoT settings, where 
delays might jeopardize important healthcare choices. Rates of false positives show how well the access control 
mechanism identifies valid users compared to possible attackers, which affects the scheme’s dependability. By 
comparing processing times, this study can see that OACS can efficiently process high-frequency access requests 
on a broad scale. Using multi-key authentication adds another degree of security by lowering the probability of 
unauthorized access and increasing resistance to several attack vectors by necessitating many types of verification 
before allowing access. Incorporating context-aware checks makes the system even more resilient. These checks 
make the access control mechanism more dynamic and responsive by evaluating the user’s role, device type, and 
AT, among other factors. Thanks to these upgrades, OACS can now easily adapt to the complicated and ever-
changing healthcare IoT settings, even when various scenarios call for varying degrees of access and security.

To better handle massive datasets and frequent access requests, sharding divides the blockchain into smaller, 
more manageable pieces, enabling parallel processing of transactions and drastically lowering the burden on 
individual nodes. To overcome blockchain’s storage limits, off-chain storage moves massive healthcare data sets, 
including patient records and sensor logs, to an external location while retaining necessary information on-
chain. This keeps the blockchain lightweight. The Random Forest model is essential for access control because it 
examines requests using context and past patterns, including user behaviour and the request time. This paradigm 
allows sharding to be easily identified and allocated, and off-chain storage can be managed effectively, resulting 
in fewer unwanted data retrievals.

Security analysis
Improving IoT healthcare services’ security, dependability, and scalability can be as simple as integrating an 
RF method with a blockchain that relies on an access control scheme. Some of its advantages were robustness, 
precise forecasting, and the ability to handle complex data. User role, request context, and previous access 
history are some criteria for training RF to decide whether to allow or deny access. They can flag abnormal access 
behaviours as potential security breaches.

The security analysis may differ from formal security analysis because it focuses on behavioural patterns 
and practical performance metrics like throughput, AT and FPR rather than mathematical proofs of security 
properties. Formal security analyses typically outline desired security outcomes (like availability, confidentiality, 
or integrity) and test the system’s compliance using adversary models, model checking, or security games under 
predetermined conditions. Formal studies require additional cryptographic or theoretical proofs, but this work 
uses simulations and practical evaluations to demonstrate the OACS’s operational effectiveness.

RF model integration with the OACS is crucial to access control decision management. The OACS 
framework’s RF model uses critical features to inform decisions about access control in healthcare IoT settings. 
The specifics of feature selection are based on the user Role, which establishes permissions according to the user’s 
position. Medical records are classified using data sensitivity criteria. Details about the request, including the 
context in which the data is accessed. Requests, rejections, and past access revocations are detailed in the access 
history. Factors influencing access permissions include the requestor’s location. The level of security provided 
by the device being utilized for access. The security and compliance needs of healthcare settings are the primary 
considerations when selecting these features. RF model uses weights assigned by past data to each feature, which 
factor into the model’s ultimate decision.

The training data comprises healthcare system access logs, including both approved and refused attempts. 
This data includes details regarding access patterns, past actions, and patterns of emergency access requests 
compared to routine access.

These varied datasets are used to train the RF to detect unusual requests and normal access behaviours. The 
model learns from authorized and unauthorized attempts using a decision tree-based technique to generalize 
patterns in access requests.

The model uses these methods to avoid over fitting and adapt to new access patterns:

Methods TLE-FGAC EMC LSAS OACS

False Rate 0.0926 0.0706 0.0533 0.0367

Processing Time (ms) 764.72 631.71 563.35 347.058

Failure 17 11 7 4

Table 9. Comparative analysis results for average delegation factor.
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 (1)  Retraining the RF model with new access data is regular. Retraining ensures the model can adapt to new 
user roles, security threats, and healthcare IoT device kinds.

 (2)  Ensemble learning with many decision trees prevents the RF from becoming too dependent on one path. 
Train each tree on a randomly selected sample of data to reduce bias and ensure the model covers all access 
scenarios.

 (3)  To handle dynamic access requests, the system monitors new ones and compares them to trends. The model 
can prevent illegal access by identifying questionable activity for further inspection, such as a request out-
side work hours. New patterns allow the model to update its categorization criteria in real-time constantly.

 (4)  The OACS’s RF model may provide flexible and dependable access control without over fitting to old or 
infrequent access patterns using these methods.

The security level is executed to address needs and data for defendable service forwarding. RF tree is used 
to classify the access grant and revocation. We decide on the defendable access control based on Eq.  (5). 
Authorization is determined by classifying the various services. Patients have permission to use the service, 
view the anonymous submissions and download data. IoT healthcare services employ an RF model for access 
request classification rather than interacting with users directly. This means that different aspects of each access 
request are considered to decide whether to approve or reject the request. The analysis is carried out for the 
secure sharing of service to the appropriate user in IoT, and based on this, relevant service is determined. The 
anonymous entries and data download are defined, and the access-level security is stated.

Conclusion
The research presented an OACS, which uses a mix of blockchain and machine learning techniques to efficiently 
and securely improve healthcare IoT system performance and safety. Utilising blockchain and machine learning, 
the OACS improves security and access management. Scalability and latency are issues, especially with frequent 
access requests. The system employs RF to avoid latency by making real-time access decisions based on user 
behaviour and access history. Although consensus delays may occur, blockchain technology ensures safe and 
tamper-proof state changes. Enhancing blockchain consensus processes, storing frequently requested data, 
and parallel processing can reduce high-frequency access requests and maintain system responsiveness during 
heavy loads. Compared to more conventional access control forms, the primary results show that the OACS 
considerably reduces processing times and false-positive rates. The system allows users access to resources 
according to their requirements while ensuring their safety through analytics on user behaviour and dynamic 
delegation histories. These findings have important real-world consequences; the OACS provides a solid 
foundation for controlling who has access to private healthcare records, which speeds up responses to patients’ 
demands while keeping their information secure. The proposed technique achieves an 11.74% lower false rate, 
13.1% higher access rate, 12.36% faster access, 13.23% faster processing, and a 9.94% lower failure rate. The 
OACS also reduces the false rate by 10.64%, the processing time by 15.62%, and the failure rate by 10.95%. The 
suggested remedy, though, does have its restrictions. As the number of devices and users grows, the reliance on 
simulated performance measures could not adequately portray the intricacies of real-world IoT environments. 
Additionally, the scalability of the blockchain component could provide issues. Furthermore, constant retraining 
and adaptation to changing access patterns are required since machine learning models can overfit past data. 
To overcome these limitations, future studies should evaluate the OACS’s performance in various healthcare 
contexts through rigorous real-world testing. It is possible to increase the system’s resilience by looking into 
different machine-learning approaches and ways to make the blockchain more scalable.
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