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ABSTRACT: This paper presents the novelty on a nonlinear
proportional integral derivative (NPID) controller developed from
the gain values obtained using the Lyapunov-based nonlinear
model predictive controller (LyNMPC). The tuning parameters of
the proposed controller are taken from the dynamics of the
nonlinear system, and these parmeters are dynamic with their value
varying according to the error in the system. In this article, the
authors have considered two highly nonlinear systems, namely,
batch polymerization reactor and quadrotor unmanned aerial
vehicle systems. The nonlinear mathematical modeling of the batch
reactor as well as the quadrotor system considered from the past
literature of authors. The acrylamide polymerization reaction under
consideration is an exothermic reaction, thereby making the temperature profile tracking and control a challenging task. The primary
aim of this article is to develop the NPID controller based on the LyNMPC algorithm and to validate the NPID on a batch reactor
bench-scale plant and on an hardware-in-the-loop platform for the quadrotor hardware. A comparative study of trajectory tracking
and control capabilities of LyNMPC on derived non-linear models of the batch reactor and quadrotor system is presented. The
system mathematical models are obtained with the help of the first-principle energy balance equation for the batch reactor and with
the nonlinear dynamics of the quadrotor which is derived based on Newton−Euler formulations. With LyNMPC, the stability of the
nonlinear systems can be improved because the error sensitivity is considered in the cost function.

■ INTRODUCTION
The batch reactors are highly nonlinear and non-steady
systems with the primary objective to maintain the reactor
temperature with respect to the temperature profile. If the
reactor temperature is not maintained with respect to optimal
trajectory formed, the reactor may face thermal runaway
issues,1−5 which in-turn is due to the sudden conversion of a
polymer into a monomer. Hence the optimal control of
coolant flow-rate should be used as a manipulated variable
with constant heater supply in this experimental study. The
highly nonlinear batch reactor stability needs to be ensured
while tracking the trajectory to avoid the byproduct
formation and thermal runaway. Similarly, unmanned aerial
vehicles (UAVs) or drones have been under a rapidly
growing field of research. The applications of UAVs have
been growing day-by-day and can be categorized as scientific,
commercial, or military applications. Micro-UAVs or micro
aerial vehicles (MAVs) are classified as miniature UAVs of
different build configurations, which vary from the tiny insect
sized aircrafts to the small quadrotors and the fixed wing
aircrafts. The MAVs due to their smaller size range are more
useful in the remote missions, show similarities with their

UAV counterparts in various characteristics but differ in
terms of the magnitude of the aerodynamic forces
experienced, and are more susceptible to external forces
due to their smaller size and lower inertia. Hence, the
problem of tracking and control of the MAVs is a much more
challenging task to achieve.

Model predictive control (MPC) is a sophisticated control
method which has various applications in the chemical and
petroleum industries, where the physical hard constraints can
be handled effectively. The MPC is a finite-boundary iterative
optimization technique very useful in situ technique where
the plant requirements vary with time. The MPC algorithm
determines the control variables from the values obtained
previously. Linear MPCs are the most common form of
control used in the applications of MPC with the feedback
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mechanisms due to the mismatch in the model and the
process to be controlled. However, there are several
instances, where the linear MPCs can be inaccurate, leading
the way to modifying the algorithms to control the system in
the non-linear scheme. The NMPC, which uses the direct
optimal control, is an MPC that uses the nonlinear system
model for the predictive function. Similar to MPC, the
NMPC also uses the finite boundary conditions for the
iterative process, but handles the hard constraints efficiently.

■ BACKGROUND STUDY
The theory of optimal control has been developing since the
1700s. Today the process industries of the world have begun
the use of the optimal control strategies such as MPC and its
derivatives for the control and optimization of the process
performance. In ref 2, the authors have described the
modeling of the batch polymerization reactor along with the
reaction dynamics-based Wiener neural network (WNN).
The authors have modeled the batch reactor using the
recorded open-loop input−output data set with the help of
the WNN algorithm and designed a linear generalized
predictive controller (GPC) for the experimental validation.

The input feed along with the initiator is charged all together
at a time into the reactor to initiate the reaction, and the
reactor temperature needs to be maintained in line with the
optimal temperature profile. The objective in this part is to
train the neural network to efficiently track the nonlinear
temperature profile that is generated optimally by considering
the batch reaction time. The second part is designing a GPC
using the data obtained from modeling the reactor to
successfully track any arbitrary temperature profile. Therefore,
this work presents the experimental modeling of a batch
reactor and validation of a WNN-based GPC for temperature
profile tracking. In ref 1, the authors have presented an
efficient nonlinear model based control for the trajectory
tracking of the batch reactor and also compared the
performance characteristic of the control system with that
of a nonlinear model predictive control algorithm. The
experiments have been conducted in real-time for a batch
acrylamide polymerization reaction. In ref 3, the authors have
defined nonlinear ARX- and NARX-based models which have
been derived based on the open-loop real-time data from the
batch reactor. The authors have compared the performance
of conventional linear controllers with that of the proposed
controllers. The shortcomings of the conventional controller
(PID-based) have been claimed to be addressed with the
proposed controllers. In ref 5, the authors have presented a
study on a proposed PI controller tuning method using
extended predictive control (EPC). The PI controller
parameters are claimed to be calculated using an EPC-
based controller output and its closed-loop response. The
proposed tuning process can be applied to single-input-single-
output and multi-input-multi-output stable processes. In ref 4,
the authors have addressed the energy consumption problem
of a distillation process through an actuator. This has been
achieved using an EPC-PI control algorithm. The authors
have presented experimental validation of EPC-PI control
algorithm and analysis of distillate purity of a lab-scale
distillation column. The PI control scheme uses closed-loop
data of extended predictive controller (EPC) that has been
performed through off-line simulation. The performance of
the control method is compared with different schemes such
as Hagglund’s one-third rule and Skogestad’s overshoot
method. It is noted that the controllers have been

Figure 1. Bench-scale batch reactor setup available in Advanced
Process Control Lab, ICE Dept., MIT, Manipal.

Figure 2. Schematic of the bench-scale batch reactor.
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implemented for a linear model of the batch distillation
column.4,5 Due to its own advantages in handling the soft
and hard constraints, the use of predictive control and other

optimal control strategies have been used in the aerospace
industry/batch reactor for trajectory tracking problems. This
trend is evident by the increase in the literature available in

Figure 3. Simulation: temperature profile tracking of the batch reactor using the LyNMPC.

Figure 4. Simulation: manipulated variable (coolant flow rate in percentage) of the LyNMPC.
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Figure 5. Experimental: temperature profile tracking of the batch reactor using the LyNMPC in three different trials.

Figure 6. Experimental: manipulated variable (coolant flow rate in percentage) of the LyNMPC in three different trials.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c05542
ACS Omega 2022, 7, 42418−42437

42421

https://pubs.acs.org/doi/10.1021/acsomega.2c05542?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05542?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05542?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05542?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05542?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05542?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05542?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05542?fig=fig6&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c05542?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the use of optimal control in autopilot design for multirotor
aircrafts, especially, quadrotor systems.6−16 The use of a
quadrotor system for real-time experiments with nonlinear
model predictive7−14 and simulations6,15,16 for the trajectory
tracking problem of the quadrotor system have been
presented.

The nonlinear model predictive control strategy involves
the use of an optimization algorithms such as particle swarm
optimization,6 quadratic programming-based optimiza-
tion,7−9,12,14−16 improved continuation/generalized minimal
residual (iC/GMRES) algorithm,10 neural networking-based
optimization,11 reinforcement learning based optimization,12

Laguerre function-based optimization,15 and so forth. The
optimization algorithm in each case is used to minimize the
cost function of the predictive algorithm to generate the
optimal control input. Cost function of the optimal control
problem of the quadrotor system is derived based on the
error in the system, which is dependent on the reference
trajectory and the actual system output, and the control
action on the system. NMPC algorithms are well known for
their constraint handling capabilities. This is crucial in the
case of the quadrotor trajectory tracking problem. Literature
provides different types of predictive control algorithms of
both linear6,9,11,14−16 and non-linear7,8,10,12,13 nature.

The quadrotor dynamic model in the literature is of two
types: Newton−Euler formalism-based6−15 and Newton−
Quaternion-based formalism.16 The Newton−Euler formalism
involves the use of Newtonian physics in the derivation of the
translational subsystem and Eulerian formulations for the
rotational subsystem. On the other hand, the Newton−
Quaternion formalism involves the use of Newtonian physics,
similar to the previous case, but the rotational subsystem is
derived based on Quaternion formulation for the rotational
dynamics of the system.

In refs 17−19, the authors have presented a design and
analysis of different nonlinear robust control techniques,
including the scheme of SMC, for a quadrotor UAV. In ref
19, the authors have addressed the control problem based on
the nonlinear robust adaptive hierarchical SMC for a
quadrotor governed by the thrust constraints and influenced
by the inertial parametric uncertainties to gain significant
trajectory tracking capabilities. In ref 20, the authors have

presented a nonlinear ASMC based on back stepping control
strategy for a quadrotor UAV attitude control. The adaptive
technique used may not necessitate the upper limits of the
parametric uncertainty. In ref 21, the authors have addressed
the problem of attitude control in the quadrotor UAV with
the internal and the external disturbances by implementing a
fuzzy logic-based gain-scheduling (AFGS)-SMC.

In ref 22, the authors have addressed the use of a scheme
of MPC to map the trajectory and control of a quadrotor-
based UAV. In ref 23, the author has proposed a robust
nonlinear MPC strategy for the trajectory control and
tracking of a quadrotor, where the attitude and the position
are controlled by an SMC algorithm. In ref 18, the authors
have addressed the use of a model predictive control
technique to solve the quadrotor trajectory detection and
the control issue. In ref 24, the authors have presented a brief
overview of a few types of techniques of obstacle avoidance
for the unmanned aerial vehicles with the higher priority for
avoiding the proximal obstacle. In ref 25, the authors have
presented a model predictive control algorithm that uses the
fewer variables for prediction requiring the lower computa-
tional capacity to control a micro aerial vehicle (MAV). In ref
21, the authors have addressed the trajectory monitoring
problem for quadrotors in real-time scenarios and is solved
using the robust sliding mode observer based on an explicit
NMPC (ENMPC) scheme. The control algorithm was
derived based on the mathematical model derived from
Newton−Euler formulations. In ref 26, authors derived the
mathematical model for the UAV using Lagrangian and
Eulerian formulation. In ref 27, the authors have introduced a
hybrid MPC strategy in combination with a scheme of fuzzy
logic. In ref 28, the authors have addressed the problem in
controlling the attitude of MAVs, exposed to unknown
atmospheric disturbances, with the help of a Lyapunov-based
non-linear tracking and control method. In ref 29, the authors
have addressed the problem of controlling the states of a
micro aerial vehicle by developing a neuro-adaptive controller
and fine-tuned using multi-agent optimization techniques. In
ref 30, to deal with the aircraft’s nonlinear behavior, the
author explained the construction of a nonlinear control
system for a quadrotor micro-UAV based on a division into a
loop in loop structure and feedback linearization.

In ref 31, the authors have described the derivation and
study of a mode switching control strategy for a VTOL UAV
with hovering and level flight capability of a micro UAV
structure. In ref 32, the authors have presented an adaptive
control technique that has been developed for the stability
and trajectory control of a quadrotor UAV subjected to
parametric deviations. In ref 20, the authors have
implemented a novel approach for the position and the

Table 1. Tuning Parameters of the LyNMPC Algorithm for
the Bench-Scale Batch Reactor

Wy Wu c c1

simulation 10 0.01 100 0.009
trial 1 0.9 48 0.1 0.01

experimental trial 2 0.8 55 0.2 0.1
trial 3 0.8 55 0.2 0.15

Table 2. Tuning Parameters of the Proposed Algorithm for the Bench-Scale Batch Reactor

tuning parameters of i = 1 i = 2 i = 3 i = 4

proportional (cP,i) β = 0.001845 UA = 27.0283 =T mb
V

54a m2 = 0.000045

differential (cD,i) =
Q

T
0.00961s

c
V = 0.5 =

c

Q
0.8p4

c
cp6 = 0.49

integral (cI,i) R/UA = 0.3076 =
p

0.093285
0

=
Q

p
0.0012s

0
ϵ = 0.5
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attitude tracking control of a quadrotor UAV exposed to

parametric and external perturbations.

Case Study 1: Experimental Validation of LyNMPC
and Proposed NPID. Batch reactor is widely used in
production of polymers, catalysts, in treatment of sewage and

Figure 7. Simulation: temperature profile tracking of the batch reactor using the proposed NPID.

Figure 8. Simulation: manipulated variable (coolant flow rate in percentage) of the proposed NPID.
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oil refineries, where work volume is less or demand for
variety is high. It is an example for the closed loop system,
where the total volume of reactants remains constant
throughout the process. The energy required by the reactants
is supplied through a heating element and a stirrer makes
sure of uniform spread of heat. The cooling station that
circulates coolant to the reactor through jacket/cooling coil
helps in removing the excess heat. The temperature is

maintained as per the desired profile by manipulating the
flow rate of the coolant. Failing to track the desired
temperature leads to undesirable products or thermal
runaways due to the exothermic nature of batch reactions.
The system dynamics of a batch reactor, involves the
kinematics of the reaction of interest, reactor, and jacket
temperature dynamics. The acrylamide polymerization
reaction under consideration is an exothermic reaction
thereby making the temperature profile tracking and control
a challenging task.

Figure 1 shows the bench-scale batch reactor based on
which the dynamic model has been derived, and Figure 2 is a
schematic diagram of the batch reactor showing the
components involved. The reaction considered in this case
study is acrylamide polymerization, which uses ammonium
per-sulfate as an initiator [I] and acrylamide as monomer
[M] which are represented by the equations1 below

[ ] = [ ] +I
t

A I
d
d

e E R T
d

( / ( 273.15))d r

(1)

[ ] = [ ] +M
t

A I
d

d
e E R T

p
( / ( 273.15))d r

(2)

The reactor temperature Tr and jacket temperature Tj
dynamics are given by the equations below

= + +m c
T
t

Q UA T T Q Q Q
d
d

( )r pr
r

R r j h s loss (3)

=m c
T

t
UA T T F c T T

d

d
( ) ( )r pr

j
r j c pc r c (4)

where

= [ ]
Q

M
t

V H
d

dR p (5)

=Q p n ds 0
3 5

(6)

=Q T T( )loss r amb (7)

=
=

m c m c
i

i ir pr
1

6

p
(8)

=
=

m c m cj j
i

i ip
1

8

p
(9)

The overall energy transfer coefficient U is calculated based
on the time constant of the batch reactor, and the heat loss
coefficients α and β. The parameters of the nonlinear model
of batch reactor was estimated using the input/output data
collected from the 1 L capacity bench-scale batch reactor.
The bench-scale setup and schematic diagram of the batch
reactor are shown in Figures 1 and 2, respectively. For
parameter values of the constants used in the nonlinear
model of the batch reactor in eqs 1−9, one can refer.1

Control Formulation. The control formulation of the
batch reactor is based on Lyapunov stability criterion and
basic NMPC algorithm. The controller design involves the
selection of a Lyapunov function to mathematically quantify
the energy flow in the system. The NMPC cost function is
solved for the minimization of the cost function using the
MATLAB function “fmincon”. There are several other
optimization functions which are also available. One can

Figure 9. HEXSOON EDU 450 quadrotor setup available in
Advanced Process Control Lab, ICE Dept., MIT, Manipal.

Figure 10. Quadrotor model representing the reference coordinates
along with the forces and moments.

Table 3. Parameters of HEXSOON Edu 450 Quadrotor

symbol parameters value unit

m mass 1.516 kg
l length of the arm 0.225 m
Ixx moment of inertia about x axis 0.0060427 kg m2

Iyy moment of inertia about y axis 0.0070262 kg m2

Izz moment of inertia about z axis 0.00023 kg m2

Jr rotor moment of inertia 0.007559 kg m2

CD coefficient of drag 0.01328
CT coefficient of thrust 0.1939
g acceleration due to gravity 9.81 m s−2
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select the optimization based on the specific problem in
hand. The controller cost function that defines as given below
in eq 10

= +
=

J W V t W U tmin ( ( )) ( ( ))
i

n

LyNMPC
1

y
2

u
2

(10)

where

= +V t ce s( )
1
2

( )1
2 2

(11)

=e T t T t( ( ) ( ))1 r,sp r (12)

=e T t T t( ( ) ( ))2 r,sp r (13)

Figure 11. Three-dimensional response plot for the LyNMPC controlled Quadrotor system.

Figure 12. Individual state variable response plot for the X-coordinate using LyNMPC.
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= +s c e e1 1
2

2 (14)

where n = 6 is the number of output variables and Wy and
Wu are weighting functions. The Lyapunov function formed
for the LyNMPC is given in eq 11, which is derived based on

the sliding manifold, s, given by eq 14. The values of Wy and
Wu are selected such that they are positive definite.

Results. The batch reactor has been simulated with the
nonlinear optimal profile formed toward the acrylamide
polymerization process. The LyNMPC results with a smooth

Figure 13. Individual state variable response plot for the Y-coordinate using LyNMPC.

Figure 14. Individual state variable response plot for the Z-coordinate using LyNMPC.
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manipulated variable, which is the coolant flow rate in this
case study. The simulations obtained are illustrated in Figures
3 and 4. Figure 3 shows the closed-loop response of the
LyNMPC for the temperature profile of the polymerization
reaction. Figure 4 shows the optimal control signal generated

by the LyNMPC. It is observed with the minimum variations
in the control signal (coolant flow rate), that is, say less than
10% makes the process variable (reactor temperature) to
track the desired trajectory in a closed-loop, as shown in
Figure 3 and the results recorded. The closed-loop response

Figure 15. Individual state variable response plot for the roll angle using LyNMPC.

Figure 16. Individual state variable response plot for the pitch angle using LyNMPC.
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of the LyNMPC is better compared to the NMPC designed
using the data driven model for the same batch reactor
bench-scale setup.3 Also, the experimental validation of the
LyNMPC has been carried out in the bench-scale batch
reactor setup. The temperature profile tracking of the batch
reactor using the LyNMPC is given in Figure 5 for the
acrylamide polymerization reaction and the manipulated
variable, that is, the flow-rate of the coolant in the jacket is
given in Figure 6. Due to plant-model mismatch the tuning
parameters used for simulation is not valid for the real-time
experiment in the bench-scale batch reactor, and hence, the
experimental validation has been perform in multiple trials
with various tuning parameters. The trials with maximum
tracking performance have been presented below and their
respective tuning parameters have been presented in Table 1.

The experimental validation of the LyNMPC algorithm
results are shown in Figures 5 and 6. The temperature profile
tracking in the real-time experimental results shows a raise in
the temperature at the beginning of the process, as shown in
the Figure 5. This is due to the sudden heating resulting from
the heater supply of 12 mA at the initial state (45 °C). This
is counter acted by the coolant flow-rate as shown in Figure
6, and the Tr profile follows the trajectory in the forthcoming
time period. Among multiple experimental trials, three were
considered to be the most optimized temperature profiles.
The third trial shows better performance compared to the
other trials due to minimum control effort and better tracking
performance.

In both the simulation and the real-time experimentation
of the batch reactor system, the prediction and control

horizon of the LyNMPC algorithm has been chosen as 5 and
3, respectively.

Proposed Controller for Batch Reactor: LyNMPC-Based
NPID Control. The proposed NPID controller is based on the
controller gain values of the LyNMPC along with the tuning
parameters which is related to the plant dynamics. Also, the
proposed NPID control structure is given below

= + +( )U K e K e t K e( ) d ( )NPID P Tr I Tr D Tr (15)

where

= | |K f e esign( )c
D D Tr Tr

D,4 (16)

=
+

f U
c

c (1 e )c eD LyNMPC
D,1

D,2
D,3 Tr

2

(17)

= ( )K f e t e td sign d
c

I I Tr Tr

I,4

(18)

=
+( )

f U
c

c 1 ec e tI LyNMPC
I,1

I,2
dI,3 Tr

2

(19)

= | |K f e esign( )c
P P Tr Tr

P,4 (20)

=
+

f U
c

c (1 e )c eP LyNMPC
P,1

P,2
P,3 Tr

2

(21)

The control for the proposed LyNMPC based NPID
controller has three parts, namely, proportional part given
in eqs 20 and 21, differential part given in eqs 16 and 17, and

Figure 17. Individual state variable response plot for the yaw angle using LyNMPC.
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integral part given in eqs 18 and 19. The proportional,
integral, and differential gains are a function of the LyNMPC
gain values and the error in the system, which makes the PID

controller nonlinear as its gain values vary with the error in
the system. The proposed controller gains (Kp, Kd, and Ki)
are dynamic in nature with their value updated every

Figure 18. Controller U1 response plot for the LyNMPC-controlled quadrotor system.

Figure 19. Controller U2 response plot for the LyNMPC-controlled quadrotor system.
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consequent time instant with the change in error. The values
of the control tuning parameters are given in Table 2.

Results. The batch reactor has been simulated with the
nonlinear optimal profile formed toward the acrylamide
polymerization process. In the simulation, the proposed
NPID results with smooth manipulated variable, which is the
coolant flow rate in this case study. The simulations obtained
are illustrated in Figures 7 and 8. Figure 7 shows the closed-
loop response of the NPID for the temperature profile of the
polymerization reaction. Figure 8 shows the optimal control
signal generated by the NPID. Figure 9 and Figure 10 show
the Quadrotor setup and its schematic diagram respectively.
Case Study 2: Quadrotor Control Using LyNMPC

and Proposed Controller: Simulation. Non-Linear
Mathematical Model of the Quadrotor. The system
mathematical model is developed by analyzing the dynamic
equations of a quadrotor system, under increasingly provi-
sional simulation assumptions:

1. The inertial characteristics of the system change with
time, and

2. The quadrotor fuselage is symmetrical and rigid, and
the rotating bodies are the thin circular plates.

Based on the formulations of Newton and Euler, the
equations of the quadrotor have been developed with the
help of the above assumptions. These models can be used to
derive the state space model of the quadrotor MAV, which,
in turn, will be implemented in the consequent design of the
controller for the system.

Kinematic Model. The initial step in deriving the
quadrotor kinematic and dynamic equations is to fix the
reference frames for the linear and angular measurements,
which are the North−East−Down coordinate reference and
the standard body-fixed coordinate reference.

The direction cosine matrix R facilitates the conversion of
coordinates from the body frame to the inertial coordinate
frame which provides for the attitude of the MAV. The
attitude of the MAV is represented by the Euler angles (ϕ; θ;
and ψ) denoting the rotational motion about the linear
coordinate axes. The matrix R is obtained by considering a
set of principle rotational motions, as given below.

=
+

+

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

R

cos cos sin sin cos cos sin cos
sin sin

cos sin sin sin sin
cos cos

cos sin sin
sin cos

sin sin cos cos cos
(22)

The control vector, U, is obtained from the quadrotor forces
and moments, given by

= [ ]U U U U U T
1 2 3 4 (23)

where

= + + +U K ( )1 f 1
2

2
2

3
2

4
2

(24)

Figure 20. Controller U3 response plot for the LyNMPC-controlled quadrotor system.
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Representing the control inputs in a matrix form
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U1, U2, U3, and U4 is the resultant control inputs from the
four propellers that account for the altitude and attitude
variations of the quadrotor and its time derivatives. The
control vector (U), thus, decouples the rotational subsystem
from the translational subsystem, resulting in the individual
control of the attitude and altitude of the quadrotor system
through the respective control inputs.

Using the equations of angular rotational acceleration,
equations, and those of translational equations, the complete
quadrotor mathematical model, can be written as follows in a
representation of state space
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where

Table 4. Tuning Parameters of the Proposed Algorithm for
the Bench-Scale Batch Reactor

tuning parameters of i = 1 i = 2 i = 3 i = 4

Roll Control

proportional (cP,i)
b
b
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3

a
b
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1

b
b
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a
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b
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1 3

1 b
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Pitch Control
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The above matrix equation represents the generalized
quadrotor non-linear state space representation. The system
constants are given below which has been obtained from
physical measurements and later verified using the particle
swarm optimization method (Table 3).

Control Formulation. This section of the report is a case
study based on the reference, where an NMPC control
algorithm has been employed for the trajectory tracking and
control of a batch reactor.33 A similar inspired NMPC
algorithm has been employed to achieve the results obtained
in this case study.

The objective function used in the LyNMPC strategy is
defined as:

= +
=

J q V t q U t U tmin ( ( )) ( ( ) ( 1))
i

n

x UNMPC
1

2 2

(31)

where

= +V t c e s( )
1
2
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2 2

(32)

=e y y t( ( ))i i i,1 ,sp (33)

=e y y t( ( ))i i i,2 ,sp (34)

= +s c e ei i i i,1 ,1
2

,2 (35)

where n = 6 is the number of output variables and qx and qU
are weighting functions. The values of qx and qU are selected
such that they are positive definite. The values of qx and qU
as per the simulations, are given below
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Figure 21. Controller U4 response plot for the LyNMPC-controlled quadrotor system.
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In the cost function JNMPC, the first term, V includes
component that reduces the cross interference that is induced
due to the fact that the intense oscillating or pulsating
behavior of the inputs. This can cause damages to the
hardware in real-time fast operating applications. The

objective function is said to be under the influence of the

following input constraints

U U Ui i i,min ,max (38)

Figure 22. Three-dimensional response plot for the LyNMPC-based NPID-controlled Quadrotor system.

Figure 23. Individual state variable response plot for X-coordinate for the LyNMPC-based NPID-controlled Quadrotor system.
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The objective function is a function of the output variables
(x, y, z, ϕ, θ, and ψ) and the control inputs (U1, U2, U3, and
U4). The prediction horizon used is 120 time units and
control horizon is 20 time units.

Calculation of the Hard Input Constraints. The input
constraints are calculated based on the maximum and
minimum force and moments that can be produced by the
quadrotor motors in conjunction with the propellers. The
calculation of each input constraint is given below

• Altitude control constraint (U1,max and U1,min)
• The maximum thrust from one of the motor in terms

of mass, Fi = 12.684 N or 1.293 kg
• The maximum total thrust produced

= × ×

= × ×
=

U F4 ( 9.81)

4 (1293 9.81)

51.797916 N

i1,max

(39)

The minimum thrust produced, U1,min = 0 N, because the
motors can be powered down, thus producing 0 thrust.

• Roll control constraint (U2,max and U2,min)

= = × [ ]

= × [ × ]
=

U U F2 torque from a single motor,

2 12.684 0.225

17.341233 Nm

i2,max 2,min

(40)

• Pitch control constraint (U3,max and U3,min)
• The pitch control is attained similar to roll control,

hence the value of
= =U U 5.7078 Nm3,max 3,min (41)

• Yaw control constraint (U4,max and U4,min)
• The yaw control of the quadrotor is obtained with all

the motor working to produce differential torque. This
can be mathematically represented as follows

= = [ ]
+ [ ]

=

U U maximum torque by 2 motors
minimum torque by 2 motors

1.1876822 Nm

4,max 4,min

(42)

Hence, the hard input constraints on the cost
function,JNMPC, presented as per eq 38 are as follows

U0 51.79791 (43)

U5.7078 5.70782 (44)

U5.7078 5.70783 (45)

U2.3599 2.35994 (46)

Results. The results obtained for the non-linear model of
the quadrotor system controlled using the LyNMPC
algorithm have been illustrated in Figures 11−21 below.
Figure 11 represents the three-dimensional response plot for
the quadrotor system along with the reference trajectory. The
three-dimensional plot of the LyNMPC algorithm shows the
use of an ascending spiral trajectory as reference trajectory
with the system output tracking the reference in closed
proximity.

Figures 12−14 represent the respective X, Y, and Z
position response of the quadrotor using the LyNMPC
control along with the reference trajectories. The individual

translational and rotational subsystem plots ensure the better
understanding of the individual output variable response to
the reference trajectory.

Figures 15−17 represent the attitude response of the
quadrotor using the LyNMPC algorithm.

Figures 18−21 represent the control efforts produced by
the LyNMPC algorithm to maintain trajectory tracking and
control of the quadrotor.

The control efforts for the individual output variable are
significantly low for the reference trajectory provided to the
system. This is evident in the control effort plots shown
above. The initial large variation in the control effort signifies
the initial threshold at which the drone takes off from the
ground. This threshold is as a result of the mass and its
associated inertia in the system.

Proposed Control Algorithm: LyNMPC-Based Nonlinear
Three-Mode (PID) Controller. The proposed controller is
based on the computed gain values of the Lyapunov-based
nonlinear control algorithm described in the previous section.
The control inputs (gain values) are conditioned to derive
the control law for a nonlinear PID controller. The control
law is derived as given below.

Position Control. The position control of the quadrotor is
derived based on the position error, that is, difference in the
actual output of the system with the desired reference value.
The position control is attained by the controller indirect
method through attaining control over the angular positions
ϕ and θ, that is, through U2 and U3.

= [ ]x u x u xarcsin sin cosx y1 5 5 (47)
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3
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where x1 and x3 are the state variables representing ϕ and θ,
respectively.
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Attitude Control. The rotational control of the quadrotor
system is attained through the directional control by
differential thrust from the rotors due their relative angular
velocity. The final control law that affects the system is the
sum of the proportional, differential, and integral control
inputs. The initial iteration of the control input produced by
the algorithm is given below

= + +U K K K( ) ( ) ( )NPID P P I I D D (51)

where

= eD (52)

= e tdI (53)

= eP (54)

= | |K f sign( )c
D D D D

D,4 (55)
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f U
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Figure 24. Individual state variable response plot for Y-coordinate for the LyNMPC-based NPID-controlled quadrotor system.

Figure 25. Individual state variable response plot for Z-coordinate for the LyNMPC-based NPID-controlled quadrotor system.
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Similar to the control law mentioned in case study 1 for the
proposed NPID for the batch reactor system, the control
structure has a proportional, differential, and integral parts.
Here, the terms βP, βI, and βD represent the proportional,
differential, and integral errors in the system based on which
the control signals are generated. The tuning parameters used
for the control algorithm are given below in Table 4.

The calculation of the terms a1 to a5 and b1 to b3 are given
in eq 30, which are functions of the moment of inertia of the
quadrotor.

■ RESULTS
The simulation results obtained for the quadrotor system
controlled using the NPID algorithm is illustrated below.
Figure 22 represents the three-dimensional response plot for
the quadrotor system along with the reference trajectory. The
performance of the proposed control for the quadrotor is not
properly optimized. This can be achieved for the same using
an appropriate optimization algorithm and fine tuning the
control system.

Figures 23−25 represent the respective X, Y, and Z
position response of the quadrotor along with the reference
trajectory.

■ CONCLUSIONS
In this research article, the proposed NPID controller based
on the LyNMPC algorithm is simulated for the highly
nonlinear models of batch reactor and quadrotor systems and
also validated the LyNMPC algorithm on the batch reactor
polymerization process. The nonlinear dynamic equations of
the quadrotor and batch reactor systems have been presented
under case studies 1 and 2. The detailed results and its
discussion are shown in case studies 1 and 2. From the
simulation results, it can be concluded that LyNMPC-based
NPID algorithms promise to be better at handling constraints
in the system dynamics via the smooth manipulated variables.
This can be seen in terms of the trajectory tracking with
respect to the temperature profile in the batch reactor as well
as the trajectory tracking with respect to the reference flight
trajectory in quadrotor. The control efforts of NPID is
minimal, that is, the magnitude of the control signal is well
within 20%, and on other hand, the linear PID control results
with ON/OFF kind for a highly nonlinear process. The initial
observation of the proposed NPID algorithm stabilizes the
nonlinear system, and by fine-tuning the tuning parameters,
tight tracking of the trajectory with minimum error is
possible.

■ FUTURE WORK
The future work for this research includes the experimental
validation of the NPID control algorithm on the bench-scale
setup for the acrylamide polymerization in batch reactor and
quadrotor trajectory tracking with manual control input via

radio transmitter using Pixhawk 2.1. Both the mentioned
works are under progress. Comparison of the performance of
the proposed controller with other benchmark control scales
can establish its validity.
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