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The role of borosilicate glass 
in Miller–Urey experiment
Joaquín Criado‑Reyes1, Bruno M. Bizzarri2, Juan Manuel García‑Ruiz1*, 
Raffaele Saladino2* & Ernesto Di Mauro2

We have designed a set of experiments to test the role of borosilicate reactor on the yielding of the 
Miller–Urey type of experiment. Two experiments were performed in borosilicate flasks, two in a 
Teflon flask and the third couple in a Teflon flask with pieces of borosilicate submerged in the water. 
The experiments were performed in CH4, N2, and NH3 atmosphere either buffered at pH 8.7 with 
NH4Cl or unbuffered solutions at pH ca. 11, at room temperature. The Gas Chromatography-Mass 
Spectroscopy results show important differences in the yields, the number of products, and molecular 
weight. In particular, a dipeptide, multi-carbon dicarboxylic acids, PAHs, and a complete panel of 
biological nucleobases form more efficiently or exclusively in the borosilicate vessel. Our results offer 
a better explanation of the famous Miller’s experiment showing the efficiency of borosilicate in a 
triphasic system including water and the reduced Miller–Urey atmosphere.

The 1953’s publication of the Miller–Urey experiment opened the door to the scientific investigation of the origin 
of life1. In this brilliant experiment, Miller and Urey demonstrated that electrical sparking a mixture of methane, 
ammonia, and hydrogen in the presence of water produces amino acids within a variety of organic compounds. 
The impact of these results was so high that its mind-opening relevance hardly fades over time2. Different gas 
mixtures have been explored3–7, and the yielding and molecular diversity were confirmed with modern analytical 
techniques8, including original sample remnants of early Miller experiments9,10. Variations of the original Miller 
apparatus have been used, but the experiments were always performed within borosilicate flasks. Interestingly, 
the initial pH of most of the canonical mixtures aiming to mimic the early Earth atmosphere in Miller–Urey 
experiments is highly alkaline. As reported by Miller1,3, under these alkaline conditions, silica dissolves: the 
higher the pH and temperature, the higher the solubility of silica (Fig. S1). Therefore, it could be expected that 
upon contact of the alkaline water with the inner wall of the borosilicate flask, even this reinforced glass will 
slightly dissolve releasing silica and traces of other metal oxides, offering silanol groups to the gas phase and the 
liquid water and vapor. Motivated by the biomimetic role of silica in mineral self-organized structures, such as 
silica-carbonate biomorphs11–13 and its catalytic role in prebiotic chemistry14,15, we designed a set of experiments 
to test the possible influence of silica on the classical Miller experiments.

Results
Figure 1 shows the experimental concept. Three types of experiments were carried out under two different 
chemical conditions, one unbuffered with a starting pH value of ca. 11, the other buffered at pH 8.7. One of the 
experiments was performed in a borosilicate reactor (hereafter BSR unbuffered and BSRB buffered) as used in 
Miller-type experiments. A second was performed in a Teflon reactor (TFR unbuffered and TFRB buffered), a 
third in a Teflon reactor with centimeter pieces of borosilicate glass submerged in the water (TFBSR unbuffered 
and TFBSR/B buffered). After proceeding with the electrical discharges, the differences in color of the collected 
samples were visually evident (Fig. S2). In what follows, we describe the results of these experiments.

We used a single flask Miller-Urey apparatus where electrodes, water, and the components of the atmosphere 
were joined in one single reaction flask made either of borosilicate or Teflon. The borosilicate flask (Duran) 
had a volume of 3 L, the Teflon flask of 1.5 L (Fig. S3). A Tesla coil provided the 30 kV to ignite the electric arc 
between the tungsten electrodes. The flasks were filled with water to a volume of 200 mL, so the sparking took 
place in the gas phase (Figure S4 and S5). All the experiments were performed at room temperature, with a water 
vapor pressure of ca. 24 mbars, to remove thermal effects for a more effective comparison (see further details in 
SI# 1). We selected one of the most effective Miller atmospheres made of ammonia (200 ± 20 mbar), methane 
(200 ± 20 mbar), and nitrogen (100 ± 20 mbar). Ammonia and nitrogen are considered ubiquitous components 
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of the early atmosphere16,17. The initial pH value of the water was ca. 11.1, and it decreased during the run by 
almost two units in the borosilicate flask and one unit in the Teflon reactor. The experiments with the NH4Cl 
buffer were aimed to keep the pH constant in the region where the speciation is not only H4SiO4

= silicic acid 
but also has a small contribution of H3SiO4

-. They also mimic the presumptive presence of the ammonium ion 
NH4

+ in the primitive ocean18 and optimize the synthesis of amino acids by the Strecker condensation19. The 
crude was analyzed by gas chromatography associated to mass spectrometry (GC–MS) after derivatization of 
the sample to corresponding trimethylsilyl ethers (TMS), the yield of reaction products was reported as both 
micrograms of product per 1.0 mg of crude and mg of product per total amount of crude (SI#1). The structure 
of reaction products was tentatively assigned by comparison of the mass fragmentation spectra with the original 
one deposited in the database and further confirmed, when the similarity index was lower than 98%, by the co-
injection method with original standards (SI#3). The most abundant reaction products are described in Fig. 2 
and Table S2 (buffered condition) and Table S3 (unbuffered condition), the mass to charge (m/z) ratio values 
and relative peak abundances of products are in SI#2 (Table S4), while GC chromatograms and original m/z 
fragmentation spectra are in SI#3 and SI#4, respectively. As shown in Fig. 2 and Tables S2-S3, a large panel of 
elemental prebiotic chemical precursors (ECP) 1–4, amino acids and alkyl amines 5–24, carboxylic acids 25–35, 
RNA and DNA nucleobases 36–40, and aromatic and heteroaromatic derivatives 41–48 were tentatively assigned 
in different yield and selectivity depending on the specific experimental conditions. The total yield of compounds 
1–48 grouped per chemical class similarity is reported in Table 1. In spite of these circumstantial indications, in 
our opinion the possibility exists that there could still be in principle an effect exerted by the size and shape of 
the reactor, even though we consider unlikely that these could significantly modify the selectivity and efficiency 
of the observed reaction pathways. The same applies for the electrode gap variation. The correlation between 
product distribution and variation of electrode geometry has been discussed7. 

Overall, these results confirm the visual assessment that the brown broth obtained in the borosilicate experi-
ments contained much more organic compounds than those of the Teflon experiments, irrespective of the 
buffering (Fig. S2; Table 1, entry 7). A larger panel of reaction products was obtained in borosilicate with respect 
to Teflon alone (48 compounds versus 31; Tables S2-S3), and several amino acids, a dipeptide, carboxylic acids 
and aromatic miscellanea (for a total of 17 compounds) were produced only in the presence of borosilicate 
(Tables S2-S3) (Fig. 3A).

Borosilicate increased the yield of ECP 1–4 relative to Teflon alone (Table 1, entry 1). Ab initio atomistic 
simulation of the Miller-Urey experiment postulated the barrier-less formation of 1 and 2 from a reducing 
atmosphere20, and traces of these compounds of key importance in prebiotic chemistry21 were recently detected 
by mimicking a meteoritic impact in the pristine atmosphere22. DAMN 4 is a common intermediate in the syn-
thesis of nucleobases from HCN and 1, while 3 is a component of the organic pool in the primitive Earth23. A 
total of 17 amino acids 5–21, a dipeptide 22, and two simple amines 23–24, were detected in the crude (Fig. 2). 

Figure 1.   The experimental design. Six electric discharge experiments were performed in two different flasks, 
one made of borosilicate glass, the other of Teflon. Three experiments were performed to test the effect of the 
borosilicate glass. One in the borosilicate reactor, one in the Teflon reactor, a third one in the Teflon reactor 
containing pieces of borosilicate glass. The three experiments were repeated with NH4Cl buffer at pH 8.7 and 
without buffer at pH ca. 11.
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The total yield of amino acids was higher in the borosilicate flasks than in Teflon alone (Table 1, entry 2). In addi-
tion, amino acids 6–7, 12–13, and 17, and the dipeptide 22, formed exclusively in the presence of borosilicate 
(Fig. 2, Tables S2-S3).

The synthesis of 22, as well as that of formylated amino acids 20–21 (Fig. 2), is of prebiotic relevance and 
was probably favored by the formation of carbodiimide from 1, a borosilicate-catalyzed process24. Once formed, 
carbodiimide can activate amino acids towards the formation of the peptide bond with contemporaneous release 
of urea25. Carboxylic acids 25–35 (from C-1 to C-9) were also tentatively identified in the reaction mixture 
(Fig. 2), the highest total yield being obtained in the presence of borosilicate (Table S3, entry 3). Carboxylic 
acids 25, 30–31, 32, and 35 were absent in the experiment performed in Teflon alone (Tables S1-S2). The ben-
eficial role of borosilicate was further confirmed in the synthesis of nucleobases. In this latter case, borosilicate 
systems afforded the complete set of nucleobases 36–40, while only 36, 39, and 40 were detected in the Teflon 
flask (Tables S2-S3). Again, the total yield of nucleobases was highest in the presence of borosilicate (Table 1, 

Figure 2.   Overall view of the organic compounds produced during the six electric discharge experiments 
performed in borosilicate glass and Teflon flasks. Formamide 1, formic acid 2, urea 3, diaminomaleonitrile 4, 
glycine 5, alanine 6, valine 7, leucine 8, proline 9, serine 10, asparagine 11, aspartic acid 12, glutamic acid 13, 
lysine 14, histidine 15, β-alanine 16, iso-valine 17, α-amino isobutyric 18, γ-aminoisobutyric acid 19, N-formyl 
glycine 20, N-formyl leucine 21, glycylglycine 22, n-butanamine 23, 2-methylpropanamine 24, glycolic acid 25, 
oxalic acid 26, pyruvic acid 27, lactic acid 28, fumaric acid 29, malic acid 30, oxaloacetic acid 31, α-ketoglutaric 
acid 32, n-hexanoic acid 33, n-nonanoic acid 34, gentisic acid 35, adenine 36, guanine 37, uracil 38, cytosine 39, 
thymine 40, parabanic acid 41, 3,5-diamino-1,2,4-triazole 42, 1(H)-indole-3-methanamine 43, 9-acridinamine 
44, 1-hydroxynaphtalene (naphtol) 45, 1,8-dihydroxynaphtalene 46, methylnaphthalene 47, acenaphthylene 48, 
guanidine 49, succinic acid 50, 2,4-diamino-6-hydroxypyrimidine 51, hypoxanthine 52, anthracene 53, crysene 
54, pyrene 55, and dibenz(a,h)anthracene 56.
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Table 1.   Total yield of products grouped for chemical class: ECP elemental prebiotic chemical precursors 
compounds, amino acids, carboxylic acids, nucleobases, aromatic miscellanea, amines. BSRB borosilicate 
in buffer, TFRB Teflon in buffer, TFBSR/B Teflon in buffer in the presence of pieces of borosilicate, BSR 
borosilicate without buffer, TFR Teflon without buffer, TFBSR Teflon without buffer in the presence of pieces of 
borosilicate, ECP elemental prebiotic chemical precursors.

Entry Class

BSRB TFRB TFBSR/B* BSR TFR TFBSR*

Yield (µg product/1.0 mg of crude)

1 ECP 122.96 31.29 100.91 129.64 35.46 90.18

2 Amino acids 159.45 27.1 60.53 111.19 51.20 87.41

3 Carboxylic acids 36.65 11.91 26.49 46.3 28.21 80.89

4 Nucleobases 14.01 7.34 5.83 16.3 4.69 14.02

5 Aromatic miscellanea 26.95 7.14 10.86 23.07 48.25 33.58

6 Amines 33.80 33.50 34.79 77.07 78.19 69.06

7 Total amount 393.82 118.28 239.41 403.57 246 375.14

Figure 3.   Reaction products obtained in the experiments. (A) Comparison of molecular diversity among 
the three experiments. Note that amino acids, carboxylic acids, and nucleobases were always produced in the 
presence of borosilicate in total percentage higher than other products (C-1 chemical precursors and amines), 
thus favoring the mass balance towards the formation of compounds that are, in principle, useful intermediates 
for molecular evolution. (B,C) Optical micrographs of the wet (B) and dry (C) organic film covering the inner 
wall of the borosilicate flask; (D) infrared spectra of the organic skin; (E) Raman spectra of the organic skin after 
carbonation, showing D and G peaks. (F) EDX mapping of the organic film; (G) EDX elemental composition of 
the particle shown in (H) showing the existence of silicon in the film.
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entry 4). A slightly different behavior was observed in the formation of aromatic miscellanea 41–48, including 
polycyclic aromatic derivatives 45–48 (PAHs) (Fig. 2, Tables S2-S3). PAHs are important contributors to the 
overall pool of organic carbon in the universe and potential candidates in the “aromatic world” hypothesis26. 
Aromatic derivatives prevailed in the borosilicate flask under buffered conditions, but this trend was reversed 
in the absence of the buffer, in which case the highest total yield was obtained in Teflon alone (Table 1, entry 
5). The effect of the buffer in the selectivity of the reactions and possible reaction pathways for the formation of 
compounds 1–48 are discussed in Supplementary text SI#5.

Discussion
Our results demonstrate that the wall of the reactors plays a crucial role in the synthesis of organic compounds in 
the Miller-Urey experiment. As summarized in Fig. 3A, the molecular diversity is minimal in the Teflon reactor, 
increases when submerging pieces of borosilicate glasses in the water of the Teflon reactor, and it reaches a maxi-
mum in both molecular variety and yielding in the borosilicate reactor. Furthermore, few hours after sparking, 
the wall of the borosilicate flask is covered by a thin brown film of organic matter. Noticeably, this film only forms 
on the part of the wall above the water level of the reactor. The color of the solution in the borosilicate reactors 
is yellow–brown and is full of brown organic particles visible to the naked eye. In none of the Teflon reactors, 
the formation of this organic film was observed. However, in the experiment performed with a Teflon reactor 
“seeded” with pieces of borosilicate glass, brown particles were noticed inside the solution.

The silanol groups on the surface of the glass, and traces of metal that could be released by dissolution under 
the alkaline conditions of the experiment may contribute to the observed reactivity27,28. The presence of Si–O–H 
groups enhanced by the alkaline conditions facilitates the absorption of the organic molecules synthesized in the 
gas and the liquid water in contact with the glass29. This could explain the formation of the brown film covering 
the inner surface of the borosilicate flask. The film appears as a translucent orange matrix under the optical micro-
scope (Fig. 3B,C). The infrared and Raman spectra of the freshly formed film (Fig. 3D,E) show the characteristic 
absorption bands for HCN oligomers30. GC–MS confirms that the film is mainly made of HCN oligomers, in 
accordance with previously reported data. It also shows that it works as a matrix embedding and concentrating 
organic molecules, including urea 3, glycine 5, lactic acid 28, adenine 36, cytosine 39, guanidine 49, succinic 
acid 50, 2,4-diamino-6-hydroxypyrimidine 51, hypoxanthine 52, and four polycyclic aromatic hydrocarbons, 
namely anthracene 53, chrysene 54, pyrene 55, and dibenz(a,h) anthracene 56 (Fig. 2, Table S5). Among them, 
49–56 were not previously detected in the liquid fraction of the experiment. As a general trend, the total yield of 
these latter compounds was found to increase after acid hydrolysis31, highlighting the possibility that the treat-
ment favored their extraction from the solid matrix (See supplementary information Table S5 condition A vs. 
condition B). The EDX analysis of the film reveals the existence of a significant amount of silica (Fig. 3F,H and 
Figure S8). The formation of organosilicon compounds is most likely responsible for the incomplete mass bal-
ance relative to the crude (Table 1). In addition, the highest total yield for the reaction products observed under 
unbuffered conditions is in accordance with a possible role of borosilicate as a catalyst for prebiotic processes 
(Table 1, entry 7).

From the initial bet of Bernal and Goldsmichdt for montmorillonite32, many other minerals have been pro-
posed to speed up the synthesis of specific molecules required for life as we know it, namely other clays, zeolites, 
sulfides, iron oxide, layered hydroxides, silica, etc.15,33,34. Experimental and theoretical work has been published 
to support these claims35. In particular, simple variations in environmental mineral composition lead to dif-
ferentiation of distinct chemical pathways36, encompassing the role of mineral surface in the prebiotic origin of 
amino acids37 and peptides38, mechanochemical solid-state transformations39, and borosilicate-mediated formose 
condensation in the synthesis and stabilization of biologically relevant four and six-carbon sugars38. However, 
we still miss a good understanding of the structural reasons why and how mineral surfaces catalyze reactions 
relevant to prebiotic chemistry and the origin of life40. The importance of our results lies in the fact that, for the 
first time, the role of borosilicate has been experimentally demonstrated in a type of synthesis of the utmost 
relevance for the inorganic generation of organic compounds from scratch. The famous Miller-Urey synthesis 
triggered by sparking would be highly efficient at any place of the universe, provided a mineral surface is available. 
Noteworthy, silica and silicates also trigger the formation of insoluble organic matrices that serve as niches for the 
preservation and concentration of forming prebiotic molecules. These abiotic organic films may have formed in 
Earth-like planets and moons as Mars and several moons of the solar system41–43. For instance, a large fraction of 
the organic matter found in Archean rocks and to be found in the robotic exploration of Mars might reasonably 
be of inorganic origin. The putative role of the organic film triggered by the borosilicate reactors as a milieu for 
absorption and concentration of organic molecules should be further investigated. And indeed, the formation 
and properties of these organic films must be explored with different mineral surfaces and different atmospheres.

Conclusion
The experiment is especially important in the framework of the new ideas about the Hadean Earth in which 
the concomitance of a reduced atmosphere, electrical storms, silicate-rich rocky surfaces, and liquid water is 
expected31,44. Our results demonstrate that silica and silicates drastically enhance Miller’s prebiotic synthetic 
routes affording important differences in the yields, in the number of products, and in their increased chemi-
cal information described by the number of carbon and nitrogen atoms composing the molecules, which are 
obtained starting from 1-carbon atom and 1-nitrogen atom precursors. Irrespective of the possible lack of 
correspondence45,46 of the early Earth atmosphere with that originally proposed by Miller-Urey, these results 
show the efficiency and the prebiotic worth of the borosilicate/spark discharge system. The presence of high 
molecular weight products is exemplified by the presence of a dipeptide, of multi-carbon atoms dicarboxylic 
acids, of PAHs47, of a complete panel of biological nucleobases, and, markedly, by the rich variety of different 
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classes of compounds. In summary, Miller recreated in his experiments the atmosphere and waters of the primi-
tive Earth. The role of the rocks was hidden in the walls of the reactors.

Methods
The electric discharge was performed under unbuffered and buffered solution (NH4Cl, 0.05 M, pH 8.7) in a Teflon 
apparatus and compared with a classical borosilicate reactor as a reference (these experiments will be indicated 
in the follow as TFR Teflon reactor unbufered, TFRB Teflon buffered, BSR borosilicate reactor unbuffered and 
BSRB borosiclicate reactor buffered) (detailed experimental set-up is in SI#1). Two more experimental conditions 
were studied: (i) the electric discharge in the absence of the buffer; and (ii) the electric discharge in the Teflon 
apparatus in the presence of borosilicate bits (17 g), under both buffered (TFBSR/B) and unbuffered (TFBSR) 
conditions. After the work-up, the reaction was lyophilized and immediately analyzed by GC–MS. The samples 
stored at −80 °C for one or two weeks (to replicate analysis) showed the same composition of freshly analyzed 
counterparts. This control was performed in order to rule out possible ageing-related variations of the reaction 
products at −80 °C, a possibility that was previously highlighted48. In detail, in a round bottom flask N,N-bis-
trimethylsilyl trifluoroacetamide (420 µL; Merck > 99%) and a solution of pyridine (200 µL; Merck > 99%) were 
added to 10 mg of crude of the reaction. The mixture was left under magnetic stirring at 90 °C for 4 h. Thereafter 
the solution was cooled down to 25 °C and 2.0 µL of the solution were used for the GC–MS analysis. Chromato-
graphic conditions: CP8944 column (WCOT fused silica, film thickness 0.25 μm, stationary phase VF-5 ms, Øί 
0.25 mm, length 30 m), injection temperature 280 °C, detector temperature 280 °C, gradient 100 °C × 2 min, then 
10 °C/min for 60 min. GC–MS fragmentation spectra were recovered by using a triple quadrupole MS analyzer 
as full scan and single ion research modes, and compared with commercially available electron mass spectrum 
libraries. The libraries we used (NIST 2020 libraries; NIST/EPA/NIH Mass Spectral Library: c3oh_ci, c4h10_ci, 
ch4_all, ch4_drug, ch4_fda, libr_gp, libr_tr, libr_tx) are settled to contain more than 1.3 million spectra includ-
ing most of the compounds of biological relevance and known products deriving from the chemistry of HCN 
and formamide49. These libraries also include isomeric structures. They tentatively identify unknown structure 
on the basis of the crossing of multiple experimental parameter values (i.e., retention time, m/z distribution and 
intensity of the corresponding fragmentation peaks)50. All products have been recognized with a similarity index 
(S.I.) greater than 98%. In the case of valine (7) isovaline (17), α-NH2-isobutyric acid (18), γ-NH2-butiric acid 
(19), butanamine (23) and isobutylamine (24), for which the similarity index was encompassed between 97 and 
98%, the qualitative assignment was performed by co-injection method, repeating the GC–MS analysis after the 
addition of 0.1 µmol of appropriate standard compounds before the derivatization procedure (original co-injected 
chromatograms are in SI#3). The yield of reaction products was calculated in triplicate as micrograms of product 
per 1.0 mg of the crude and mg of product per total amount of the reaction crude, using the calibration line 
procedure, or in alternative (for compounds 17–19 and 23–24) the internal standard method in the presence of 
betulinic acid (3β-hydroxy-20(29)-lupaene-oic acid) as internal standard (0.2 mg, 0.00045 mmol) (the general 
description of calibration line procedure and internal standard method is in SI#7).

Data availability
All data is available in the main text or the supplementary materials.
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