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Genome-wide association studies have yielded thousands of associations for many common diseases and
disease-related complex traits. The identified associations made it possible to identify the causal risk fac-
tors underlying diseases and investigate the causal relationships among complex traits through
Mendelian randomization. Mendelian randomization is a form of instrumental variable analysis that uses
SNP associations from genome-wide association studies as instruments to study and uncover causal rela-
tionships between complex traits. By leveraging SNP genotypes as instrumental variables, or proxies, for
the exposure complex trait, investigators can tease out causal effects from observational data, provided
that necessary assumptions are satisfied. We discuss below the development of Mendelian randomiza-
tion methods in parallel with the growth of genome-wide association studies. We argue that the recent
availability of GWAS summary statistics for diverse complex traits has motivated new Mendelian ran-
domization methods with relaxed causality assumptions and that this area continues to offer opportuni-
ties for robust biological discoveries.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Great interest has developed in inferring causal relationships
between complex traits, i.e., traits that seemingly are not inherited
in a Mendelian fashion, in observational human genetics studies.
Discovery of such relationships is crucial to enhancing our under-
standing of the biology of health and disease. Inferring causal rela-
tionship in genetics is often carried out through Mendelian
randomization (MR) analysis. MR analysis is a form of instrumental
variable analysis in which genetic markers, typically single nucleo-
tide polymorphisms (SNPs), serve as instruments, or proxies, for
inferring causal effects of an exposure variable on an outcome vari-
able [1–7].

MR analysis is facilitated by the development of genome-wide
association studies (GWAS), which present unique opportunities
for discovery of causal relationships via MR [8]. A GWAS interro-
gates millions of single nucleotide polymorphisms (SNPs) to infer
which are associated with the trait [9,10]. In the nearly 17 years
since publication of early studies, researchers have reported thou-
sands of novel SNP-trait associations from GWAS [10–13]. Ever lar-
ger sample sizes in GWAS have enhanced statistical power to
detect associations and have refined our understanding of human
health and disease. The association results from many large-scale
GWAS are nowadays readily available, often in the form of sum-
mary statistics that include the marginal SNP p-values and/or their
effect size estimates and standard errors [14]. The identified SNP
associations are used as the main input for MR analysis and thus
the wide availability of GWAS summary statistics clear the way
for effective MR analysis in complex genetics studies.

Effective MR analyses are enabled by many MR methods devel-
oped in recent years. Methods for and uses of MR have appeared at
a rapid and accelerating pace since the publication of the early
GWAS (Fig. 1). The overall trend of the methodology development
is in the direction of increasingly sophisticated modeling of hori-
ig. 1. Upward trend in article counts by year for Google Scholar keyword searches:
. Mendelian randomization and 2. Genome-wide association study.
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zontal pleiotropy including both independent and correlated hori-
zontal pleiotropy while attempting to maintain scalability and
computational efficiency in the presence of multiple correlated
SNPs.

Here, we present a comprehensive review on 47 MR methods,
primarily in the context of GWAS summary statistics, to help prac-
titioners to choose which MR methods to use in applied data anal-
ysis. We discuss the basics form of MR analysis, the causality
assumptions in MR, and how recent MR methods are developed
to ensure robust results in the presence of assumption violations.
We discuss in detail methods advances before briefly summarizing
applications and directions for future research. Different from
existing MR reviews [15–17], we discuss in detail recent methods
developments that enable modeling of horizontal pleiotropy and
correlated horizontal pleiotropy and place these developments in
the larger context of MR analysis with GWAS data. We present
these recent methods developments for an audience of both statis-
ticians and epidemiologists. We hope our review will facilitate the
further advance of MR methods and their wide application on
GWAS data.
2. Assumptions of Mendelian randomization

Mendelian randomization uses genetic markers in the form of
SNP genotypes as the proxy (‘‘instrument” or ‘‘instrumental vari-
able”) for the ‘‘exposure,” a complex trait, and asks whether the
‘‘exposure” variable is causal for the ‘‘outcome” variable, which is
typically a second complex trait. The exposure and outcome vari-
ables can be binary, a count, a time to event, or a continuous vari-
able. For brevity and simplicity, we focus on continuous exposures
and outcomes before considering other classes of outcome vari-
ables in a later section. Most MR studies use the ‘‘two-sample”
MR design, in which one cohort of subjects has measurements
for the exposure, while a second cohort has measurements for
the outcome, with both cohorts sharing the same set of SNP instru-
ments [18]. We focus on the two-sample MR design before consid-
ering the one-sample design and the partial two-sample design
where samples are partially overlapped between the two cohorts.

MR aims to infer the causal effect of the exposure variable on
the outcome variable in observational studies. The proper causal
interpretation in an MR study requires the SNP instruments to sat-
isfy three causality assumptions. The first assumption states that
SNP instruments are associated with the exposure. If the first
assumption, about the association between the SNP instruments
and the exposure, holds, but this association is weak, then an
amplification of biases, such as those due to violations of assump-
tions 2 and 3, may result [19]. Indeed, bias in causal estimates can
increase with decreases in the strength of association between the
SNP instrument and exposure [20]. The second assumption
requires independence, conditional on the exposure and all mea-
sured and unmeasured confounders, between the SNP instruments
and the outcome. The second MR assumption, often termed the
exclusion restriction assumption, can also be stated as the need
for the SNP instruments to affect the outcome only through the
exposure. In a causal diagram, this means that the only path from
the SNP instruments to the outcome is that containing the expo-
sure. The last of the three assumptions states that the SNP instru-
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ments are independent of all (measured and unmeasured) con-
founders of the relationship between exposure and outcome. The
third assumption ensures that the SNP instruments are indepen-
dent of all confounders of the exposure-outcome relationship.

When the three MR assumptions hold, one may use instrumen-
tal variable statistical methods, with the genetic marker data, the
exposure data, and the outcome data, to estimate and to test the
causal effect of the exposure on the outcome [7,21,22]. In practice,
careful evaluation of the assumptions is needed. Because assump-
tions 2 and 3, which involve absence of certain types of confound-
ing, can’t be verified, practitioners must be cautious when planning
MR analyses. Sensitivity analysis is highly recommended as a way
to assess robustness of estimates in the presence of possible
assumption violations [19]. We will discuss these sensitivity anal-
yses in more detail in a later section and consider their evaluation
in MR studies [19].

The causal assumptions of MR also help one to understand the
origin of the term ‘‘Mendelian randomization.” Recall Mendel’s
inheritance laws [23], under the assumption that alleles segregate
randomly from parent to offspring, the offspring genotypes are
unlikely to be associated with confounders of the exposure-
outcome relationship. Additionally, reverse causation from the
outcome or exposure to the genotypes is unanticipated since
germ-line genotypes are fixed at conception and, thus, precede
realization of other observed variables. Therefore, using SNP
instruments in the instrumental variable analysis is often referred
to as Mendelian randomization.

3. Statistical models and methods for MR with one instrument

We begin our discussion of Mendelian randomization in GWAS
data by considering the simplest case, where there is a single SNP
instrument and a single outcome variable. Approaches to MR with
one SNP instrument can be classified into four categories: ratio of
coefficients method, two-stage methods, likelihood-based meth-
ods, and semiparametric methods [15]. We discuss each of these
before turning to methods that leverage multiple SNP instruments.

3.1. Ratio of coefficients method

The ratio of coefficients method, also known as the Wald
method, estimates the causal effect of the exposure X on the out-
come Y by using a single SNP instrument [24]. For a continuous
outcome, the causal effect estimator, (1).

bcWald ¼
bbYZbbXZ

In Eq. (1), bbYZ and bbXZ are the slope estimates from the regres-
sions of the outcome and exposure, respectively, on the SNP instru-
ment. Since the Wald method requires only the regression
coefficients, it can be used with summary data. However, the Wald
method doesn’t accommodate multiple SNP instruments, which
limits its direct use in the GWAS setting as will be discussed later.

3.2. Two-stage methods

A two-stage statistical model involves two regression models
[15,25]. For a continuous outcome, one may perform ‘‘two-stage
least squares,” which involves two linear regressions. First, the
exposure variable is regressed on the instrument (i.e., the SNP
genotypes) (Equation (2)). We denote each subject’s exposure vari-
able value as xi in Equation (2), while a0 denotes an intercept term
and a1 is the slope. zi denotes the SNP instrument genotype for
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subject i, while �i, the error term, is assumed to be independent
among subjects and normally distributed with a shared common
variance and mean zero.

The resulting fitted values for the exposure variable from Eq. (2)
are the independent variable in the second linear regression, where
the outcome is the dependent variable. The causal effect estimate,

then, is the coefficient bb1 obtained from the second regression
analysis (Eq. (3)). Note also that the random errors in Eq. (3) are
assumed independent of those in Eq. (2). Like the �i in Eq. (2),
the si are assumed independent and identically distributed normal
random errors.

xi ¼ a0 þ a1zi þ �i

yi ¼ b0 þ b1bxi þ si

Note that the uncertainty in the fitted values from the first
regression is not considered when performing the second regres-
sion. For this reason, the variance of the estimator is incorrect in
two-stage calculations [15,26]. This and other observations led
researchers to develop likelihood-based MR methods.

3.3. Likelihood-based methods

Likelihood-based MR methods, unlike two-stage methods, pro-
vide maximum likelihood estimates with their many desirable
properties [27]. Limited information maximum likelihood from
econometrics is the earliest approach for likelihood-based infer-
ence in MR [28,29]. Limited information maximum likelihood with
a single SNP instrument is modeled with two equations (Eqs. (4)
and (5)), where the random errors follow a bivariate normal distri-
bution [15].

xi ¼ a0 þ a1zi1 þ �Xi

yi ¼ b0 þ b1xi þ �Yi

Limited information maximum likelihood is sometimes called
the maximum likelihood counterpart of two-stage least squares,
and it yields the same causal estimate as two-stage least squares
and the ratio method when used with a single SNP instrument.
Additionally, the limited information maximum likelihood frame-
work can accommodate more than one SNP instrument by replac-

ing a1zi1 with the sum
PK

k¼1akzik.
One may also use Bayesian methods to obtain likelihood-based

estimators [30]. Kleibergen [31] examined a model that is similar
to that from the limited information maximum likelihood frame-
work (Eq. (6)). The Bayesian model differs from the limited infor-
mation maximum likelihood model in that the causal effect
parameter, b1 represents the effect between the true means for
the exposure and the outcome. In the limited information maxi-
mum likelihood model, the causal effect is that of the measured
effect on the measured outcome.

Xi

Yi

� �
� N2

ni
gi

� �
;R

� �
ni ¼ a0 þ a1zi1
gi ¼ b0 þ b1ni

For each subject i, the exposure and outcome values come from
a bivariate normal distribution. The mean of the exposure distribu-
tion is assumed linear in the SNP instrument, and the mean of the
outcome distribution is linear in the mean exposure [15,32].
Kleibergen [31] demonstrated that the Bayesian model, with weak
instruments, outperforms the limited information maximum like-
lihood model in terms of frequentist coverage levels.
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3.4. Semiparametric methods

Semiparametric instrumental variable methods, which feature
parametric and nonparametric components, typically assume a
parametric model connecting the exposure and outcome, but don’t
impose distributional assumptions on the errors [15]. Compared to
fully parametric models, semiparametric models often are more
robust to model misspecification [15,33]. We follow Burgess [15]
by discussing three semiparametric strategies, generalized method
of moments, continuous updating estimator, and G-estimation of
structural mean models.

Generalized method of moments can be viewed as a more flex-
ible form of two-stage least squares that handles heteroscedastic
errors and nonlinearity in the two regressions [15]. Before specify-
ing the model, we introduce notation. E Y _ do X ¼ xð Þð Þ is the con-
ditional expectation of Y if we forced X to take value x for every
subject [34]. The generalized method of moments equations, with
a single SNP instrument, then, can be written as in Eq. (7).P

i yi � f xi;bð Þð Þ ¼ 0P
izi yi � f xi; bð Þð Þ ¼ 0

The GMM estimate is the value of the vector b that satisfies Eq.
(7), where f xi; bð Þ ¼ E Y _ do X ¼ xð Þð Þ. Pearl [35] developed numer-
ical methods for obtaining estimates from Eq. (7).

Another semiparametric estimation method is G-estimation of
a structural mean model [15,36,37]. We follow Burgess [15] by
defining the potential outcome Y xð Þ as the outcome value that
we would have observed had we set the exposure value X to x.
For example, Y 0ð Þ denotes the observed outcome had we set the
exposure to zero instead of its observed value x. The structural
mean model for a continuous outcome is displayed in Eq. (8).

E Y xð Þ � Y 0ð ÞjX ¼ x; Z ¼ zð Þ ¼ b1x

The causal effect parameter is b1. Burgess [15] derives the esti-
mating equations for b1, after noting that the conditional expecta-
tion, E Y 0ð ÞjX ¼ x; Z ¼ zð Þ is independent of Z and reasoning that the
causal effect is that value of b1 that yields zero covariance between
Z and E Y 0ð Þ _ X ¼ x; Z ¼ zð Þ (Eq. (9)).X

i
zik � zkð Þ yi � b1xið Þ ¼ 0

Note that k indexes SNP instruments and ranges from 1 to K in
Eq. (9).

3.5. Mendelian randomization with multiple independent SNP
instruments

While using a single SNP instrument for MR analysis can be
effective, Greenland [38] recognized that many genetic variants
individually explain a small proportion of the variation in a trait,
and, thus, sufficient statistical power of MR analysis with a single
SNP instrument would require sample sizes in the tens of thou-
sands [39,40]. Schatzkin [41] resolved this issue by proposing use
of multiple SNP instruments in MR analysis. In particular, Palmer
[42] reasoned that a single causal estimate derived from a collec-
tion of causal SNPs would have greater precision than an estimate
derived from only one SNP [39]. Recognition of complex traits’
diverse genetic architectures has thus fueled development of
two-sample MR methods with multiple SNP instruments [42-45].

There are two important considerations for MR analysis with
multiple SNP instruments. The first consideration is how to choose
a subset of the available SNPs to serve as instruments. The solution
to this task differs among published methods and majority of MR
methods chose a set of independent SNPs as instruments [46,47].
The independent SNPs may be selected through linkage disequilib-
rium (LD) clumping [48]. The second consideration is how to make
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use of GWAS summary statistics for MR analysis, as sharing of
GWAS summary statistics was encouraged and became a common
practice [49]. [50] recognized that one could calculate the Wald
ratio estimate of the causal effect from GWAS summary statistics,
and [39] devised a strategy for determining a single causal effect
from summary statistics for a collection of independent SNPs.
Below, we discuss a number of MR methods that make use of mul-
tiple independent SNP instruments.
4. Statistical models and methods for MR with multiple
instruments

4.1. Methods with Individual-level data

One approach to integrating multiple SNP instruments into a
MR framework is through calculation of allele scores [51]. Harbord
[51] calculate an unweighted score as the number of exposure-
increasing alleles in the subject’s genotypes. They also calculate a
weighted allele score by using the exposure effects as weights.
For example, a subject with gk copies of exposure-increasing alleles

for SNP k has an unweighted allele score z ¼ PK
k¼1gk and a

weighted allele score z ¼ PK
k¼1wkgk. Harbord [51] found that when

weights are obtained from external data or from cross-validation
or jackknife approaches applied to the analysis data, the allele
score functions as a single instrumental variable and greatly
diminishes the bias compared to that of the two-stage least
squares estimator [15,52].

Angrist [53] developed a LASSO-based method, sisVIVE, to iden-
tify invalid SNP instruments [54]. sisVIVE’s advantage over earlier
methods is that it doesn’t require the analyst to know which SNP
instruments are valid. Instead, it requires that at least 50% of the
instruments be valid. sisVIVE outperforms two-stage least squares
in many ways and performs similar to oracle two-stage least
squares. Simulations and data analysis results reveal that sisVIVE
is robust to possibly invalid instruments.

Tibshirani [55], building on the research from [53], imple-
mented an adaptive LASSO-based estimator after recognizing that
sisVIVE misclassifies valid SNP instruments as invalid when the
invalid SNP instruments have strong effects on the exposure. Con-
sistent selection of invalid SNP instruments, they found, depends
on SNP instrument correlations. To address this issue, Tibshirani
[55] proposed a median estimator with consistency that doesn’t
depend on SNP instrument-exposure association strength or the
SNP instrument correlation structure. They then applied methods
from Windmeijer [56] to achieve a consistent estimator with the
same asymptotic distribution as the oracle two-stages least
squares. One important limitation of this thread of research is that
both Angrist [53] and Tibshirani [55] require individual-level data.

Zou [57], working with individual-level GWAS data, share naive
and smoothed constrained instrumental variable methods. Central
to their work is the proposal to create a new instrumental variable
as a linear combination of genotype data from a collection of SNP
instruments. They require that the new instrumental variable be
standardized to have norm 1 and be orthogonal to potentially ver-
tically pleiotropic traits. For a collection of SNPs, they choose the K-
vector that meets these criteria and maximizes the correlation
with the exposure. To obtain their second estimator, Zou [57] apply
a l0 penalty to constrain the number of SNP instruments that are
given nonzero weights in the calculation of the new instrumental
variable. They then compare their method with sisVIVE and allele
score methods. Zou [57] find that both the smoothed version of
their estimator and the allele score method are unbiased in their
simulation settings.

Jiang [58] and Spiller [59] present a method, MR-GxE, that
exploits gene by environment interactions to detect and to adjust
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for bias due to horizontal pleiotropy. Spiller [59] treat a SNP-
covariate interaction as an instrumental variable, and, by so doing,
they impose assumptions on that interaction. Together, these
assumptions require that MR-GxE assume that horizontal pleio-
tropy effects are constant across the study cohort. The authors
devise a three-step inferential procedure for two-sample MR with
GWAS summary statistics. First, they estimate the SNP-exposure
and SNP-outcome associations at a range of covariate values. Sec-
ond, they regress the SNP-outcome estimated associations on the
SNP-exposure estimated associations. Third, they treat the result-
ing slope as the causal effect estimate and the intercept as the
mean horizontal pleiotropy effect.
Fig. 3. Causal diagrams for MR. A. Scenario where the genetic variant affects an
intermediate variable on the pathway to the exposure. Because the intermediate
affects the outcome through a pathway that doesn’t involve exposure, this scenario
violates the exclusion restriction assumption. B. Scenario where the genetic variant
affects an exposure, which in turn affects an outcome, possibly in the presence of
unmeasured confounding. C. Correlated horizontal pleiotropy occurs when the
genetic variant affects the exposure, which in turn affects the outcome, and the
genetic variant affects the unobserved confounder, which in turn affects the
exposure and the outcome independently.
4.2. Methods with summary data

The proliferation of publicly available GWAS data accelerates
the development of MR methods with multiple SNP instruments
that make use of GWAS summary statistics for model fitting. Our
timeline highlights some of the many multi-instrument MR meth-
ods with GWAS summary statistics, with an increasing density of
methods over time in the last three years (Fig. 2). These methods
include the inverse variance weighted MR [39], MR-Egger [43],
weighted median estimation [60], Bayesian weighted MR [61],
robust adjusted profile score [62], MRMix [63], CAUSE [64], and
MRAID [65]. These methods differ in their approaches to three con-
siderations that include instrument selection (from among the
available SNPs), modeling and controlling for horizontal pleiotropy,
and statistical inference procedure. We summarize some of these
MR methods that use independent or correlated SNP instruments
below. We will cover the remaining MR methods that model hor-
izontal pleiotropy in a later section.

Smith [39] termed their method ‘‘inverse variance weighting”
(IVW) because each causal SNP’s effect is weighted by the inverse
of the variance of the ratio estimator, and the overall causal effect
is the sum of the weighted SNP causal effects. Specifically, Smith
[39] combined causal effect ratio estimates from independent SNPs
by using Eq. (10).
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Spiller [60], noting that consistency with IVW MR is not robust
to invalid instrument use, developed a method for consistent MR
analysis with weighted median-based estimators, building on
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research from [66]. Its breakdown point is 50%, meaning that up
to 50% of SNP instruments can be invalid while maintaining consis-

tency in estimation [67]. Specifically, let ebj denote the jth ordered
ratio estimate statistic, from least to greatest. If an odd number,
say 2K ¼ 1, of SNP instruments is used, then the simple median
estimator is defined as the K þ 1 ordered ratio estimate. For an
even number, say 2K , number of SNP instruments, choose the mid-
point between the two middle-ranking ordered ratio estimates,ebKþebKþ1

2 .
Due to the inefficiency of the simple median estimator, Spiller

[60] define the weighted median estimator. To construct this esti-
mator, order the ratio estimates from least to greatest, as with the
simple median estimator. The weighted median estimator, then is

the median of a distribution defined by having ebj as the pj ¼ 100

percentile, where wj is the weight assigned to the jth ordered ratio
estimate. In this setting, the simple median estimator is seen to be
the weighted median estimator when all weights are equal.
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Spiller [60] also studied the penalized weighted median estima-
tor. They defined the penalized weights, wi ¼ wj

0 �min 1;20qj

� �
,

where qj is the p-value resulting from the comparison of

Qj ¼ wj
0 ebj � bbIVW

� �2
to a v2

1 distribution [60,68]. The penalized

weighted median estimator leaves most variants unaffected, but
downweights those with outlying Wald ratio estimates. While
the above MR methods all use independent SNP instruments, using
independent instruments may not be ideal when there are multi-
ple causal SNPs in linkage disequilibrium with each other. In this
setting, discarding some of the causal SNPs may only capture a
small proportion of trait variance explained by the exposure and
lead to a power loss in MR [15,39,69,70]. Consequently, many
MR methods have been recently developed to model multiple cor-
related instruments.

Cochran [69] developed methods for using correlated SNPs in
IVW MR by inserting a covariance matrix into the standard IVW
formulation. However, many MR methods use a set of pre-
selected SNPs as instruments. Typically, these SNPs are selected
to be statistically independent. This restriction to independent
SNPs is needed for valid inference in methods like standard inverse
variance weighting MR [39].

4.3. Assumption violations and sensitivity analysis

It is worthwhile to consider ways in which the standard MR
assumptions may be violated and strategies for identifying such
violations. Let’s first consider the exclusion restriction assumption
(assumption 2 above). It states that the SNP instrument must affect
the outcome only through the exposure (Fig. 3B). The causal dia-
gram in Fig. 3A illustrates a scenario that violates this assumption
[19]. Bias in causal effect estimation would result. However, if the
intermediate is measured and treated as the exposure, then an
unbiased estimate of causal effect is possible, since the intermedi-
ate captures the two pathways, intermediate -> outcome and inter-
mediate -> exposure -> outcome, through which the SNP
instrument affects the outcome Y [19].

Recognition of the many ways that the MR assumptions may be
violated has inspired methods advances that enable assumption
relaxations and has motivated use of sensitivity analysis to quan-
tify the impact of possible assumption violations. Sensitivity anal-
ysis is recommended and widely used in MR studies because of the
inability to verify the three MR assumptions with observational
data. The goal of a sensitivity analysis is to gain insight into how
the results might differ if the assumptions be violated. Because
not all confounding variables are known or measured, assumptions
2 and 3 are not fully verifiable in MR studies. Recognition of this
fact has inspired the development of sensitivity analysis tools.
While we can’t assess whether a SNP instrument is associated with
every confounder of the exposure-outcome association, it is possi-
ble to examine the associations of the SNP instrument with the
measured covariates. While absence of such associations doesn’t
guarantee satisfaction of the assumption, presence of SNP-
covariate associations must be investigated carefully, as they
may constitute assumption violations [71].

Burgess [71] considered a collection of sensitivity analysis
methods when working with GWAS summary statistics. Burgess
[71] presented methods for both assessing the MR assumptions,
to the extent possible, and performing robust analyses. For exam-
ple, they used measured covariates to assess for possible associa-
tions with the SNP instruments. While they can’t rule out the
possibility of unmeasured confounding, they can study the possi-
bility of measured covariates serving as confounders.

To illustrate their approach, Burgess [71] shared a case study
in which they examined the causal effect of C-reactive protein
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(CRP) levels on coronary artery disease risk with four genetic vari-
ants in the CRP gene region and 17 other genetic variants that
affect coronary artery disease risk. They used measured covariates
to probe for SNP-covariate associations, and followed it up with
scatter plots and Cochran’s Q test on the causal estimates to
inquire about whether the SNP instruments all identify the same
causal parameter [72–74]. Additionally, Burgess [71] suggested
using a funnel plot, like those in the meta-analysis literature, to
visualize possible evidence of directional pleiotropy, where the
average pleiotropic effects of the SNP instruments is nonzero
[75]. Additionally, Egger regression can be useful in this setting
[43,76-78].

Spiller [59] point out that MR-GxE can be used as a sensitivity
analysis tool to choose a set of valid SNP instruments from a collec-
tion of SNPs in settings where there may be a violation of the con-
stant pleiotropy assumption.

MR-GENIUS is a framework for two-sample MR analysis when
individual-level data are available [79]. Bowden [79] focused
efforts on relaxing the exclusion restriction assumption and build-
ing on existing G-estimation methods to create an estimator that is
robust to violations of the exclusion restriction and to additive
unmeasured confounding [80]. They observe that their estimator,
in some settings, reduces to that of [81], which is widely used in
econometrics, but not in the MR literature.

4.4. Explicit modeling of horizontal pleiotropy

Besides sensitivity analysis, several methods have been devel-
oped to directly model horizontal pleiotropy to ensure the validity
of MR assumptions. Pleiotropy, where a single genetic variant
affects multiple traits, has a long history of study in genetics
and complex traits [82–84]. In MR setting, horizontal pleiotropy
occurs when a SNP instrument affects the outcome through at
least one pathway that bypasses the exposure variable [46]. The
presence of horizontal pleiotropy constitutes a violation of the
standard MR assumptions and can lead to biased causal effect
estimates and diminished statistical power. Watanabe [46] docu-
mented widespread horizontal pleiotropy in GWAS. We discuss
approaches to modeling and accounting for horizontal pleiotropy
below.

In the short time since publication of [46], researchers have rec-
ognized two types of horizontal pleiotropy [65]. The first occurs via
exposure-independent paths. The resulting horizontal pleiotropic
effects are independent of the SNP-exposure relationships. The sec-
ond type of horizontal pleiotropy manifests in the presence of
unobserved exposure-outcome confounding. It induces correlation
between horizontal pleiotropic effects and SNP-exposure effects.
Both types of horizontal pleiotropy violate standard MR modeling
assumptions and can bias causal effect estimates and can increase
false discoveries [65]. Early MR analyses avoided confounding from
horizontal pleiotropy by discarding instrumental SNPs that might
be associated with the outcome [46,47]. More recent methods have
attempted to model horizontal pleiotropy [64,65,85]. CAUSE [64]
and MRMix [63] both use a mixture of normal distributions to con-
trol for both types of horizontal pleiotropy. Modeling both types of
horizontal pleiotropy is particularly challenging because the MR
model likelihood often involves an integral that can’t be solved
analytically. Because of this issue with the model likelihood, both
MRMix and CAUSE use other, non-likelihood-based methods for
inference.

Pierce [43] adapted Egger regression, originally developed to
detect bias in meta-analyses, to detect bias from horizontal pleio-
tropy in two-sample MR studies with GWAS summary statistics or
individual-level data [76]. Their approach is termed MR-Egger.
They formulate their model as
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Xi ¼
PJ

j¼1cjGij þ Ui þ �Xi

Yi ¼
PJ

j¼1ajGij þ bXi þ Ui þ �Yi

where U designates confounders, X and Y denote the exposure and
outcome, respectively, G is a SNP instrument, and �X and �Y are the
zero-mean, normally distributed random errors.

Pierce [43] then write the outcome in terms of the SNP instru-
ment j and the effects defined in Eq. (11) and define the new
parameter Cj ¼ aj þ bcj (Eq. (12)).

Yi ¼ aj þ bcj
� �

Gij þ �0Yij
¼ CjGij þ �0Yij

In Eq. (12), aj ¼ 0 when SNP j is a valid instrument.
MR-Egger fits the regression model in Eq. (13).

bCj ¼ b0E þ bEbcj

The notation in Eq. (13) could be a little misleading. The inde-

pendent and dependent variables are bcj and bCj, respectively, while
the regression parameters are b0E and bE.

The slope coefficient bbE estimates the causal effect of the expo-
sure on the outcome. Under the assumption that the SNP-exposure
relationship is independent of the SNP’s pleiotropic effects, Egger’s
test offers a valid test of the null causal hypothesis and consistently
estimates the causal effect, even if all SNPs are invalid instruments
[43]. In efforts to detect the presence of horizontal pleiotropy in
two-sample MR studies with GWAS summary data, [72] developed
the between-instrument heterogeneity test. In a meta-analysis of
MR Wald ratio estimates, one per SNP instrument, they calculate
Q in Eq. (14).

Q ¼
XK

k¼1
wk

bb kð Þ
XY � lF

� �2

In Eq. (14), wk is the inverse variance of the Wald estimator, and

lF ¼
PK

k¼1
wk
bb kð Þ

XYPK

k¼1
wk

.

While the Q test tends to be conservative in small sample sizes,
its power increases with increasing sample size and increasing
degree of pleiotropy [72].

Yuan [86], working in the setting of two-sample MR with sum-
mary GWAS data, recognized that measurement error in outcome
and exposure can give misleading results with the inferred causal
arrow in the wrong direction. To work around this issue, they
extended MR with a method that infers the causal direction
between two traits. Specifically, Yuan [86] adapt Steiger’s Z test
for a difference in correlations [87] to assess which of the two traits
in an analysis has the stronger correlation with the SNP instru-
ment. That with the stronger correlation is treated as the exposure.
Yuan [86] applied their test in a study of DNA methylation and
gene expression, where either direction of causality is plausible,
and found that many methylation traits cause changes in gene
expression.

Steiger [88] developed a weighted mode-based MR causal effect
estimation method for two-sample MR analysis with GWAS sum-
mary data. They first calculate Wald ratio estimates for every
instrumental SNP. They then apply smoothing to the empirical dis-
tribution of ratio estimates. The mode of this smoothed distribu-
tion is the simple mode-based estimate of the causal effect [88].
The inverse variance-weighted mode-based estimate is obtained
by weighting the empirical distribution of ratio estimates by the
inverse variance of each estimate. Steiger [88] compared their
weighted and unweighted mode-based estimators with weighted
and unweighted median-based estimators, MR Egger regression,
and IVW. They found that their mode-based estimators demon-
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strated less bias and lower type I error rates than other estimators
in some simulation settings. The mode-based estimators possessed
lower statistical power to detect a causal effect compared to the
IVW and weighted median-based methods, but their power
exceeded that of MR Egger regression [88]. The mode-based esti-
mators consistently estimated the causal effect when the mode
across SNP instruments of the horizontal pleiotropy effects was
zero [88]. In this manner, the mode-based estimators demon-
strated a greater robustness to horizontal pleiotropy than did the
other estimators.

Hartwig [89] approached the challenge of horizontal pleiotropy
by developing three new methods for two-sample MR analysis
with GWAS summary data: robust regression, penalized weights,
and LASSO penalization. The first two can be viewed as modifica-
tions of MR-Egger and IVW methods. Together, they offer three
strategies for downweighting or excluding variants with heteroge-
neous causal estimates. Recall that MR-Egger offers consistent cau-
sal effect estimates when there is no horizontal pleiotropy or when
the horizontal pleiotropy effects adhere to the ‘‘Instrument
Strength Independent of Direct Effect” (InSIDE) assumption [43].
The InSIDE assumption is satisfied when there is no correlation
between the pleiotropic SNP instrument-outcome effects and the
SNP instrument-exposure effects. Hartwig [89] uses MM estima-
tion, which is one technique for robust linear regression [90], to
formulate an estimator with high breakdown point and high effi-
ciency. The second estimation method, with penalized weights, is
much like the penalized median estimator, from above, except that
the second argument in the minimum function is, instead of the
above. Finally the LASSO-based method fashions an estimator by
applying a penalty to the objective function from MR-Egger to
get Eq. (15) as the objective function.
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Hartwig [89] studied two procedures for choosing k: a hetero-
geneity stopping rule and a cross-validation rule. Taken together,
these three methods offer additional contributions to a suite of
sensitivity analysis tools that practitioners should consider.

Koller [91] introduced the contamination mixture method for
robust and efficient MR analysis with hundreds of SNPs, some of
which may be invalid instruments by violating one or more of
the three core MR assumptions. Working in the setting of two-
sample MR with GWAS data, they begin by considering a collection
of candidate SNP instruments, which may contain some invalid
SNP instruments. For each candidate SNP instrument, they calcu-
late theWald ratio estimate of the causal effect. With the collection
of Wald ratio estimates, Koller [91] reason that the set of valid SNP
instruments have Wald ratio estimates that arise from a normal
distribution centered on the true causal parameter with variance
equal to that of the Wald ratio estimator. The invalid instruments,
however, are assumed to follow a normal distribution centered at
zero with a variance greater than that of the Wald ratio estimator.
They then work with profile log likelihood over a grid of causal
parameter values to make inferences.

Zhao [62] presented MR-RAPS, a method that leverages a robust
adjusted profile score to accomplish statistical inference in two-
sample MR analyses with GWAS summary data. Dividing pleiotro-
pic effects into systematic and idiosyncratic, they model the sys-
tematic pleiotropy with random effects. In so doing, no SNP
satisfies the exclusion restriction assumption. Adjusting their pro-
file likelihood estimator from the setting without pleiotropy, [62]
obtain an estimator with consistency and asymptotic normality
[92]. Idiosyncratic pleiotropy is addressed through robustification
of the adjusted profile score [93]. They then demonstrate the prop-
erties of their estimator by analyzing simulated and real data [62].
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Huber [94], working with a collection of SNP instruments, rea-
soned that if all three MR assumptions are satisfied, then the col-
lection of Wald ratio estimates should be homogeneous; thus,
any departures from homogeneity may signal a violation of one
or more assumptions. They reported modified weights, in addition
to studying weights derived from first order and second order
approximations to the variance. Their modified weights lead to
an estimator that is useful for quantifying heterogeneity and
detecting outliers.

Bowden [95] developed the MR-TRYX framework for exploiting
horizontal pleiotropy to identify alternative causal pathways. They
did this by positing that, for a collection of putative SNP instru-
ments, any heterogeneity in the Wald ratio estimates may be due
to horizontal pleiotropy. Once they identify a SNP with outlying
ratio estimates, they search GWAS results by querying the MR-
Base database to identify complex traits (in other studies) that
associate with the outlying SNP [96]. They follow up promising
trait associations to account for their observations with multiple
causal pathways.

Hemani [97] recognized that in someMR studies, the Wald ratio
estimates for different SNP instruments may form clusters, and
these clusters may represent distinct causal mechanisms and
may identify the SNPs that are involved in them. They devised a
method to detect these clusters in the collection of Wald ratio esti-
mates and found SNP instruments that point to distinct causal
pathways of biological importance [97].

Fang [98] sought a probabilistic model that accounts for both
linkage disequilibrium among SNP instruments and horizontal
pleiotropy. They termed their method MR-LDP. Using an approach
from [99,98] derived an approximate likelihood for their regression
models of the exposure and outcome on the SNP instruments.
Incorporation of a random effect into their models accounted for
the variance in causal effect estimates due to horizontal pleiotropy.
They situate inference within an empirical Bayesian framework
and present a parameter-expanded variational Bayes
expectation–maximization algorithm for estimation [100]. By
jointly modeling the distribution of GWAS summary statistics
and causal effects, [98] efficiently accommodates multiple SNP
instruments in linkage disequilibrium. One limitation of MR-LDP
is its reliance on the InSIDE assumption and resulting inability to
accommodate correlated horizontal pleiotropy.

Liu [101] present IMRP, a method for causal effect estimation
and horizontal pleiotropy detection. They describe a test to distin-
guish vertical pleiotropy from horizontal pleiotropy. By combining
this test with two-sample MR analysis of GWAS summary statis-
tics, they develop an iterative procedure for estimating the causal
effect of exposure on outcome and test for presence of horizontal
pleiotropy in the SNP instruments. The iterative procedure alter-
nates between 1) updating the estimate of the causal effect and
2) testing for horizontal pleiotropy with the included SNP instru-
ments. At each test for horizontal pleiotropy, some SNP instru-
ments may be discarded if they demonstrate evidence of
horizontal pleiotropic effects. The procedure ends when there
remain only SNP instruments that don’t exhibit horizontal pleio-
tropy. In the authors’ simulations and data analysis sections, their
new method performs about as well as GSMR, IVW, and MR-
PRESSO in the settings with and without balanced pleiotropy and
with and without satisfaction of the InSIDE assumption [101].
Finally, the authors note that IMRP is three orders of magnitude
faster than simulations-based MR-PRESSO.

Zhu [102] build on research from Grant [103] to present a
method that applies a l1 penalty to coefficients of covariates in
two-sample MR with GWAS summary statistics. Importantly, their
method doesn’t penalize the SNP-exposure association. Instead, it
shrinks towards zero those coefficients for covariates that demon-
strate little pleiotropy. In so doing, they extend work from [104]
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and [105] to get a causal effect estimator that needs no valid SNP
instruments and is robust to measured vertical pleiotropy and
more statistically efficient than previous MR methods.

Burgess [106] consider two classes of horizontal pleiotropy with
their method, MRCIP. They partition horizontal pleiotropic effects
into correlated or idiosyncratic horizontal pleiotropy. Idiosyncratic
horizontal pleiotropy is that with a large effect size, while corre-
lated horizontal pleiotropy, like its definition elsewhere in our
manuscript, refers to correlation between the effects of the SNP
instruments on the exposure and the effects of the SNP instru-
ments on the outcome. MRCIP relaxes both the exclusion restric-
tion assumption and the InSIDE assumption by directly modeling
the correlated horizontal pleiotropy with random effects. Further-
more, to accommodate the idiosyncratic pleiotropy, the authors
downweight SNP instruments that demonstrate strong direct
effects on the outcome. They find that their MRCIP provides valid
causal inference even when there are no valid SNP instruments
(i.e., when all SNP instruments are invalid) and when the InSIDE
assumption is violated [106]. Their PRW-EM algorithm adds a
reweighting step to the traditional expectation maximization algo-
rithm to estimate the causal effect parameter in MR analysis [107].
Finally, they compare MRCIP to other MR methods with both sim-
ulated and real data sets [106], like the developers of MR-RAPS,
assume that the horizontal pleiotropy is balanced, i.e., that the
mean horizontal pleiotropic effect is zero. One direction for future
study is to augment MRCIP to permit unbalanced horizontal
pleiotropy.

Dempster [108] build on other research using mixture models
in the two-sample MR setting with GWAS summary statistics. Like
MR-Clust, MR-PATH, as the method from [108] is called, works
with the Wald ratio estimates from multiple SNP instruments.
Coining the term ‘‘mechanistic heterogeneity” to refer to the distri-
bution of Wald ratio estimates due to SNP involvement in distinct
causal pathways, [108] specify a J-component normal mixture
model. They use an expectation maximization algorithm to fit
the model parameters (the component weights and the parameters
for each of the J normal distributions) and suggest a Bayesian infor-
mation criterion-based approach to choosing J [109].

Schwarz [110] propose causal effect test statistics that are
robust under weak instrument asymptotics [111]. Specifically, they
extend three econometric methods to two-sample MR with GWAS
summary statistics [112–114] and study the theoretical properties
and the performance in applications. Schwarz [110] extend their
methods to demonstrate conditions under which their estimators
are equivalent to those in works from [62,55], and [94].

Moreira [115] developed BayesMR, a Bayesian framework for
two-sample MR with individual-level data and discuss an approx-
imation for use with GWAS summary statistics. Unlike many MR
methods, BayesMR both aims to control for horizontal pleiotropy
and to quantitatively assess the possibility of reverse causation,
where the putative exposure is actually caused by the putative out-
come. For independent SNP instruments, Moreira [115] permit
each SNP instrument to have both a direct effect on the exposure
and a horizontally pleiotropic direct effect on the outcome. Instru-
ment effects and horizontally pleiotropic effects are assumed inde-
pendent. Note that this is the Bayesian analog of the InSIDE
assumption. After specifying the model, they present a nested sam-
pling scheme [116–118] that simultaneously computes the model
evidence for both causal directions (i.e., exposure causes outcome
and outcome causes exposure) and acquires samples from the pos-
terior distribution for Bayesian statistical inferences.

Handley [119] present BMRE, a Bayesian implementation of MR
Egger. They apply weakly informative priors to the horizontal
pleiotropy effect estimator in efforts to increase statistical power
to detect a nonzero slope, i.e., the coefficient of the SNP instrument.
They develop their method for two-sample MR with individual-
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level data. Simulations demonstrate that BMRE outperforms the
MR Egger method while maintaining type I error rates in the exam-
ined scenarios. The authors emphasize a potential role for BMRE in
MR sensitivity analysis.

Schmidt [120] found that multivariable MR, where multiple
exposures jointly cause an outcome, consistently estimates the
effect of the exposures on the outcome. They examined multivari-
able MR with both individual-level data and GWAS summary
statistics. Schmidt [120] also develop a generalized version of
Cochran’s Q test for quantifying SNP instrument strength and
validity. However, this test requires knowledge of the covariances
between the effects of the SNP instruments on the exposures.
While these covariances could be estimated from individual-level
data, such data are often unavailable in the GWAS setting. Impor-
tantly, the authors note that the estimands for multivariable MR
and MR differ; multivariable MR estimates the direct causal effects
of each exposure on the outcome, while MR estimates the total
causal effect of an exposure on the outcome.

MR-link, reported by Sanderson [121], aims to account for
unobserved pleiotropy and linkage disequilibrium by using
individual-level data on the outcome variable and summary statis-
tics for the exposure. MR-link uses a three-step procedure to esti-
mate causal effects.

Use GCTA-COJO to obtain SNP instruments [122].
Prune all SNPs in linkage disequilibrium with the SNP instru-
ments to obtain a set of ‘‘tag” SNPs with correlations less than
0.95.
Solve for the causal effect estimate with ridge regression of the
outcome on the matrix resulting from concatenation of the SNP
instrument genotypes matrix and the tag SNPs genotypes
matrix.

Note that in step 3, ridge regression is preferred to ordinary
least squares due to the limited statistical power of ordinary least
squares in this setting. Presumably, this is due to collinearity in the
matrix of tag SNP genotypes.

4.5. Correlated horizontal pleiotropy

The second type of horizontal pleiotropy, from above, is some-
times called ‘‘correlated horizontal pleiotropy.” Correlated hori-
zontal pleiotropy occurs when a SNP affects both the exposure
and a variable that confounds the relationship between exposure
and outcome (Fig. 3C). CAUSE and MRAID are two methods that
aim to model correlated horizontal pleiotropy [64,65]. Their
approaches to modeling correlated horizontal pleiotropy differ in
important ways that ultimately affect performance. CAUSE allows
for a proportion of SNPs to exhibit correlated pleiotropy, which
[64] models as an effect on a shared, unobserved factor. The
remaining SNPs are independent of this unobserved factor. Every
SNP can have a nonzero pleiotropic effect on the outcome, and
these pleiotropic effects are uncorrelated with the variant effects
on the exposure. The model, then, is written as a mixture of
biavariate normal distributions, and inference proceeds by borrow-
ing ideas on adaptive shrinkage from [123]. Finally, [64] compares
two models to determine whether the GWAS summary statistics
are consistent with a causal effect of the exposure on the outcome.
Specifically, they estimate the difference in the expected log point-
wise posterior density for the model with causal effect fixed at zero
and the model that permits a nonzero causal effect [124].

Morrison [65] found that MRMix is not robust to misspecifica-
tion of SNP effect sizes and often is biased. CAUSE, they found,
yields overly conservative p-values [65]. These observations moti-
vated [65] to develop a new method, MRAID. MRAID accommo-
dates both individual-level data and GWAS summary statistics
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[65]. We focus on the approach that uses GWAS summary statis-
tics. Two equations are central to MRAID modeling (Eqs. (16) and
(17)).

cbX ¼ R1bþ excbY ¼ aR2bþ R2g0 þ R2g1 þ ey

The estimated marginal effects for the p SNP instruments on the

exposure are denoted by bbX , while bbY represents the estimated
effects of the same SNPs on the outcome. The p by p SNP instru-
ment correlation matrices for the exposure and outcome are writ-
ten as R1 and R2, respectively. R1 and R2 can be estimated with
1000 Genomes Project data, for example, by choosing a subset of
1000 Genomes Project subjects that have similar ancestry [125].
The p-vector error terms, ex and ey, follow multivariate normal dis-

tributions with mean zero and variances R1
r2
X

n1�1 and R2
r2
Y

n2�1, respec-

tively. Morrison [65] then constructs a Gibbs sampler to make
likelihood-based inferences [126]. To facilitate computations, the
investigators make several assumptions about the collection of
SNPs:

Relatively small proportion of SNPs have nonzero effects on the
exposure
A relatively small proportion of SNPs demonstrate horizontal
pleiotropy.
The chosen instrumental SNPs are more likely to display hori-
zontal pleiotropy than are non-instrumental SNPs.
Those SNPs that display horizontal pleiotropy are more likely to
demonstrate uncorrelated horizontal pleiotropy than correlated
horizontal pleiotropy.

By encoding these assumptions in prior distributions, Morrison
[65] enables the inferential procedures to accommodate the
observed data in the context of the assumptions on SNPs.

4.6. Binary, count, and time-to-event outcomes and exposures

While we’ve focused above on continuous outcomes and con-
tinuous exposures, some data are more naturally treated as binary,
count, or time-to-event variables. MR methods for non-continuous
outcomes and exposures is an active area of research. Kleibergen
[31] and Geman [127] developed MR strategies for binary expo-
sures and binary outcomes. Kleibergen [31] extended methods
from Mendel [24] by fitting two logistic regressions, one for the
outcome and one for the exposure. They then calculated the causal
effect estimator as the ratio of the two logistic regression coeffi-
cient estimators. Geman [127] devised a new MR method for bin-
ary outcome and binary exposure by drawing on [128] and treating
the exposure and outcome as correlated binary random variables.
They implemented an iterative optimization algorithm to simulta-
neously infer the causal effect parameter and other parameters.

Researchers have also leveraged other generalized linear mod-
els for analysis in MR studies [129]. However, this area is relatively
unexplored. Nelder et al. [130] treated hospitalizations as a count
variable and modeled it with quasi-Poisson methods. Hazewinkel
et al. [131] characterized statistical properties, including bias and
power, with simulations of count random variables and binary ran-
dom variables. With growing interest in modeling counts in
biomedical data, where molecular phenotyping technologies now
acquire RNA molecule counts and protein abundances, there may
be opportunities for methods innovations in a generalized linear
models framework for MR studies [132-135].

Recently, multiple teams of investigators have analyzed time-
to-event traits in MR studies [136-140]. He et al. [140], for exam-
ple, studied post-diagnosis survival time in women with breast
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cancer. They treated survival as a time-to-event outcome, which
enabled them to model it with a proportional hazards model
[141] in two-stage MR with individual-level data. Similarly, Tikka-
nen [139], in a study of cardiovascular disease, applied propor-
tional hazards regression when examining time to stroke as an
outcome variable. In very recent work, Bowden [79] reported
methods, MR GENIUS, that are robust to violations of the exclusion
restriction assumption (under many assumed MR data generating
processes). They considered binary, continuous, and time-to-
event outcomes within their framework. We are unaware of MR
studies that treat the exposure variable as a time-to-event, but
it’s conceivable that future research will consider time-to-event
traits as exposures in MR analyses.
5. Recent findings

5.1. Omnigenic MR

Recent research on the omnigenic hypothesis, which posits that
every SNP’s effect on a trait is nonzero, has informed MR methods
development [142]. Boyle [143] recognized the limitations of pre-
vious MR methods in the context of the omnigenic hypothesis. In
response, Boyle [143] developed a MR method that uses all
genome-wide SNPs as instruments. Using GWAS summary statis-
tics as inputs, their method relies on a composite likelihood frame-
work for scalable computation and allows for horizontal
pleiotropy. Boyle [143] used extensive simulations, including those
with model misspecifications, to characterize their method’s statis-
tical power and robustness. Finally, they applied the new method
to identify multiple complex traits that affect coronary artery dis-
ease and asthma. These causal relationships highlight the impor-
tant roles of plasma lipids, blood pressure, and the immune
system in CAD susceptibility and those of obesity and the immune
system in asthma development.
5.2. Sample overlap in biobanks

The issue of overlapping samples in the two-sample MR with
GWAS summary data has recently received attention in the pub-
lished literature. Hemani [97], working with data from the UK Bio-
bank, found that SNP instruments derived from overlapping
samples explained a higher proportion of the variance compared
to those derived from non-overlapping samples. They argue that
block jackknife resampling MR enables causal inference while
avoiding bias due to overlapping samples. Wang [144] analyzed
2514 traits from the UK Biobank and evaluated the impact of win-
ner’s curse on MR analysis. Winner’s curse, they found, amplifies
weak instrument bias without inflating the false discovery rate.
This finding led the authors to design a pseudoreplication process
that reduces bias in MR studies. Sadreev [145] proposed a Bayesian
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approach for one-sample MR analysis where SNP instruments are
permitted to exhibit pleiotropic effects on the outcome. Working
in the setting of one-sample MR with individual-level data, they
construct their model with a shrinkage prior, so that many SNP
instruments have no horizontal pleiotropic effects. Their method
relaxes the exclusion restriction assumption to permit horizontal
pleiotropy (for some SNP instruments) and permits correlated
SNP instruments, unlike many frequentist methods. Posterior
inference proceeds by Markov chain Monte Carlo sampling. They
also elaborate their model for a univariate exposure into that for
a bivariate exposure to analyze the causal effects of body mass
index and serum phenylalanine levels on blood pressure.

5.3. Bi-directional causal inference with MR to account for reverse
causation

Reverse causation occurs when the outcome at an early time
point has a causal effect on the exposure variable. While reverse
causation is often assumed to not occur in MR study designs,
[146] points out several scenarios where this assumption may
not hold [147]. In recognition of this observation, [148] developed
a framework, GRAPPLE, for performing two-sample MR with weak
and strong instruments. Using GWAS summary statistics as inputs,
GRAPPLE extends MR-RAPS and can detect presence of horizontally
pleiotropic pathways, infer the causal direction, and perform mul-
tivariable MR. Central to the GRAPPLE framework is the observa-
tion that a horizontally pleiotropic pathway often gives rise to an
additional mode in the profile likelihood. GRAPPLE uses the pres-
ence of multiple profile likelihood modes to diagnose horizontal
pleiotropy with effects that are grouped by pathway. GRAPPLE
facilitates identification of SNP instruments that contribute to the
additional profile likelihood modes. A researcher using GRAPPLE
may then recognize a confounding factor for each mode. With
additional GWAS summary data with traits that reflect the con-
founding factors, GRAPPLE can fit multivariable MR models when
the InSIDE assumption holds for the remaining horizontally pleio-
tropic effects [148].
5.4. Practice recommendations

We now turn attention to the question of how to choose among
the MR methods for a given analysis. We focus on the two-sample
setting where only GWAS summary statistics are available. The
large number of two-sample MR methods with summary statistics
may challenge a practitioner seeking to develop an analysis plan.
Early considerations include:

assessing the plausibility of the MR assumptions
determining which questions to address with sensitivity
analysis
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assessing causal directionality between exposure and outcome
variables

Detailed examplesmay be found in [149,150], and [151]. In some
settings, a practitioner may address these questions by a careful
study of the relevant scientific literature. For example, there may
be experimental studies that suggest a causal direction for the rela-
tionship between exposure and outcome. If both causal directions
are plausible, then a bidirectional MR analysis may be needed. If
the bidirectional MR analysis (and supporting scientific evidence)
is consistent with a single causal direction, then a practitioner
may proceed with unidirectional MR methods. Given the pervasive
nature of horizontal pleiotropy and its potential impact on MR, we
recommend using one or more MR methods explicitly model hori-
zontal pleiotropy. Recent methods, such as CAUSE and MRAID, go
a step further by modeling correlated horizontal pleiotropy [64,65].

Other MR methods can be used in sensitivity analysis to assess
robustness of findings to possible violations of MR assumptions.
Methods like MR-clust have the potential to reveal additional rela-
tionships among genes that share a biological pathway [152]. The
STROBE-MR statement has additional practice recommendations
[153].
6. Summary and outlook

Open research questions remain in the MR field. We have high-
lighted above three recent findings: omnigenic MR, methods for
sample overlap in biobanks, and methods for bidirectional causal
inference. While we discussed initial findings in these three areas,
many opportunities for methods enhancements remain. For exam-
ple, as biobank sizes grow in number of subjects and number of
measured traits, there is increasing demand for MR methods that
scale efficiently with large sample sizes. Development of methods
for two-sample MR with overlapping samples opens opportunities
to study rich biobank data, and we anticipate that this question -
how to accommodate overlapping samples – will continue to be
an active area of research.

In summary, we have presented a comprehensive review on 47
methods for MR analysis in GWAS (Fig. 4). The overall trend of the
methodology development for MR analysis is in the direction of
increasingly sophisticated modeling of horizontal pleiotropy
including both independent and correlated horizontal pleiotropy
while attempting to maintain scalability and computational effi-
ciency in the presence of multiple correlated SNPs. We hope our
detailed review would benefit both methodology developers and
applied analysts to further advance the development of MR meth-
ods and aid in their applications towards large, biobank-scale data-
sets, thus offering the possibility of discovering even more causal
relationships among complex traits [154].
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