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Abstract Forced transcription factor expression can transdifferentiate somatic cells into other

specialised cell types or reprogram them into induced pluripotent stem cells (iPSCs) with variable

efficiency. To better understand the heterogeneity of these processes, we used single-cell RNA

sequencing to follow the transdifferentation of murine pre-B cells into macrophages as well as their

reprogramming into iPSCs. Even in these highly efficient systems, there was substantial variation in

the speed and path of fate conversion. We predicted and validated that these differences are

inversely coupled and arise in the starting cell population, with Mychigh large pre-BII cells

transdifferentiating slowly but reprogramming efficiently and Myclow small pre-BII cells

transdifferentiating rapidly but failing to reprogram. Strikingly, differences in Myc activity predict

the efficiency of reprogramming across a wide range of somatic cell types. These results illustrate

how single cell expression and computational analyses can identify the origins of heterogeneity in

cell fate conversion processes.

DOI: https://doi.org/10.7554/eLife.41627.001

Introduction
Elucidating the transcriptional programs that determine cell identity during development and regen-

eration is one of the major goals of current stem cell research. In the past decade, several groups

have demonstrated cell plasticity, meaning that a variety of somatic cells can be converted into

either pluripotent cells or into other specialised cells by overexpression of specific transcription fac-

tors (TFs) (Graf and Enver, 2009; Jopling et al., 2011). For example, the Yamanaka factors Pou5f1,

Sox2, Klf4 and Myc (OSKM) can reprogram somatic cells into induced pluripotent stem cells (iPSCs)

(Takahashi and Yamanaka, 2006), while lineage-instructive TFs can prompt the transdifferentiation

of mouse and human cells into other specialised cell types such as muscle, neural or hematopoietic

cells (Vierbuchen et al., 2010; Xie et al., 2004; Davis et al., 1987; Graf, 2011). In all cases one

gene expression program is erased and a new one established. Typically only a small fraction of cells

successfully acquire a new fate after TF-overexpression (Hochedlinger and Plath, 2009). For

instance, the efficiency of conversion into iPSCs in response to OSKM of diverse primary adult cells

such as fibroblasts, keratinocytes, liver cells, neural precursor cells, pancreatic b cells and granulo-

cyte/macrophage progenitors (GMPs) varies widely, ranging between 0.01% for T-lymphocytes and
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25% for GMPs (Eminli et al., 2009; Kim et al., 2008; Stadtfeld et al., 2008; Aoi et al., 2008;

Aasen et al., 2008) for unclear reasons. Identifying the transcriptional signature that render a

somatic cell type more amenable to transdifferentiation or reprogramming would teach us about the

general mechanisms that control cell fate.

Mechanistic studies of transdifferentiation and reprogramming have established that these are

complex processes, where multiple players synergistically establish new transcriptional networks, dis-

rupt old ones and remove epigenetic barriers (Buganim et al., 2013). Among the factors that have

been shown to affect the efficiency and kinetics of reprogramming are proteins involved in cell cycle

progression, chromatin remodelling, and posttranscriptional regulation (Di Stefano et al., 2016;

Krizhanovsky and Lowe, 2009; Chen et al., 2013; Doege et al., 2012; Cheloufi et al., 2015;

Brumbaugh et al., 2018; Li et al., 2017; van Oevelen et al., 2015; Wapinski et al., 2013). Despite

these insights, many details about cell fate conversion processes remain unclear. Do cells convert

fates as homogeneous populations or through a diversity of paths? Do all cells convert with the

same speed? And what are the determinants of variation in the speed and path of cell fate conver-

sion? More fundamentally, if an individual cell is more susceptible for conversion into one fate, is it

also more susceptible to conversion into alternative fates? Major obstacles to tackling these ques-

tions are the use of bulk samples for analysis, which obscures transcriptional variability in both the

starting cell population and during fate conversion, as well as the typically small proportion of

responding cells.

To overcome these bottlenecks we employed high-throughput single cell RNA-sequencing

(MARS-Seq (Jaitin et al., 2014)) to analyse two highly efficient cell conversion protocols applied to

the same starting cell population: i) the transdifferentiation of pre-B cells into macrophages induced

by the TF C/EBPa (Xie et al., 2004) and, ii) the reprogramming of pre-B cells into iPSCs, based on

the transient expression of C/EBPa followed by the induction of OSKM (Di Stefano et al., 2014).

This revealed that both processes, despite their very high efficiency, show heterogeneity for the

speed and path of cell fate conversion: cells do not all convert at the same rate and along the same

path to the two terminal fates. We computationally predicted and experimentally validated that this

heterogeneity arises in the starting cell population. Cells with low Myc activity transdifferentiate into

macrophages efficiently and directly but fail to reprogram. In contrast, cells with high Myc activity

reprogram at a very high efficiency but have a lower propensity to transdifferentiate and do so by a

more indirect path. Strikingly, Myc levels correlate with the reprogramming efficiency of diverse

hematopoietic and non-hematopoietic cell types. These results illustrate how single cell analysis can

characterise heterogeneity in cell fate conversion processes and identify its underlying causes.

Results

Single cell analysis of highly efficient transdifferentiation and
reprogramming from the same cell population
We isolated CD19+ pre-B cells from the bone marrow of reprogrammable mice carrying a drug-

inducible reverse tetracycline trans-activator (M2rtTA; hereafter abbreviated as rtTA) in the Rosa26

locus, a polycistronic expression cassette in the collagen type I (Col1a1) locus, which contains four

mouse derived cell reprogramming genes (Pou5f1, Sox2, Klf4 and Myc, OSKM) separated by three

sequences encoding 2A self-cleaving peptides, and the POU5F1-GFP transgene (Di Stefano et al.,

2014; Carey et al., 2010). Pre-B cells were then infected with a C/EBPaER-hCD4 retrovirus, sorted

for hCD4 expression and induced to either transdifferentiate into macrophages or reprogram into

iPSCs. To induce the macrophage fate, we treated the cells with beta-estradiol (E2), which activates

C/EBPa. To induce the iPSC fate, we first incubated them with E2 for 18 hr to transiently activate C/

EBPa, generating a ‘poised state’, washed out the compound and then added doxycycline to induce

OSKM (Di Stefano et al., 2016; Di Stefano et al., 2014). For transdifferentiation, we collected cells

before (0 hr) and after 6 hr, 18 hr, 42 hr, 66 hr and 114 hr of C/EBPa induction; for reprogramming,

samples were prepared at days 2, 4, 6 and 8 after OSKM induction of 18 h C/EBPa-pulsed cells

(Figure 1a), to be consistent with our previous bulk studies (Di Stefano et al., 2016; Di Stefano

et al., 2014). We collected two pools of 192 cells at each time point and sequenced their RNA using

MARS-Seq (Jaitin et al., 2014). After quality control and filtering, we obtained expression profiles

for 17,183 genes in 3,152 cells. After performing dimensionality reduction and correction for global
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Figure 1. Single cell gene expression analysis of B cell to macrophage transdifferentiation and B cell to iPSC

reprogramming. (a) Overview of the experimental design, showing time points analysed. (b) Single cell projections

onto the first two diffusion components (DC1 and DC2). c-f, as in b, with top 50% of cells expressing selected

markers for B cells in red (c) GMP/granulocytes in orange (d) monocytes in purple (e) macrophages in light blue (f)

and pluripotent cells in orange-red (g). (h-i) Projection of transdifferentiating cells onto B cell-, macrophage-, and

monocyte-specific independent components (h) and reprogramming cells onto, B cell-, mid- and late-

pluripotency specific independent components as defined in Figure 1—figure supplement 2a (i).

DOI: https://doi.org/10.7554/eLife.41627.002

The following figure supplements are available for figure 1:

Figure supplement 1. Data pre-processing, batch correction and independent component analysis.

DOI: https://doi.org/10.7554/eLife.41627.003

Figure 1 continued on next page
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batch effects (Figure 1—figure supplement 1a–c) we used independent component analysis (ICA)

to extract specific gene expression signatures (Supplementary files 1–2 and Figure 1—figure sup-

plement 1d). We then compared independent components from our data with components

extracted from a comprehensive atlas of 272 murine cell types (Hutchins et al., 2017) (Figure 1—

figure supplement 2a–c). The components were further characterised by Fisher’s test-based gene

set enrichment analysis (GSE, Supplementary files 3–4). Finally, we reconstructed batch corrected

gene expression data using selected components (Figure 1—figure supplement 2d–e).

Cell conversion trajectories suggest that transcription factor induced
transdifferentiation and reprogramming are deterministic
Visualising the data using diffusion maps (Haghverdi et al., 2015) revealed branching between

transdifferentiation and reprogramming at the 18 hr time-point, with cohorts of cells moving along

two distinct trajectories and reaching homogeneous final cell populations consisting of either

induced macrophage (iMac) or iPSC-like cells, respectively (Figure 1b, Figure 1—figure supplement

2f, Figure 1—figure supplement 3a). We observed no branching into alternative routes, in contrast

to what has been described for the transdifferentiation of fibroblasts into neurons (Treutlein et al.,

2016), muscle cells (Cacchiarelli, 2017) or iPSCs (Guo, 2017; Schiebinger, 2017). Our findings

therefore support the notion that both transcription factor-induced transdifferentiation and reprog-

ramming represent deterministic processes. However, we observed that D2-D4 cells transit through

a state that partially resembles neuronal cell types (Figure 1—figure supplement 3a) although the

significance of this is unclear as D2 and D4 cells are overall quite dissimilar to any cell type within the

mouse cell reference atlas (Hutchins et al., 2017) (Figure 1—figure supplement 3b). Of note, D6

cells are more similar to inner cell mass cells (ICM) at the blastocyst stage than D8 cells, which are in

turn more similar to ESCs (Figure 1—figure supplement 3a). This observation is reminiscent of

recent findings showing that cells at intermediate stages of mouse embryo fibroblast (MEF) to iPSC

reprogramming exhibit an increased ability to generate diverse somatic tissues upon injection into

tetraploid blastocysts (Amlani et al., 2018).

C/EBPa expression silences the B cell program and induces a progenitor
state followed by a monocyte/macrophage program
Already 6 h hours after C/EBPa expression cells strongly downregulated B cell-specific transcripts,

such as Cd19 that encodes a B lineage transmembrane protein; Cd79a, Cd79b, Vpreb1, Vpreb2,

Vpreb3 and Blnk that are involved in signalling of the B cell receptor complex; and Blk that encodes

a B lymphocyte specific kinase. Subsequently, after 18 hr they started to transiently express the gran-

ulocyte/GMP restricted genes myeloperoxidase (Mpo) and the serine neutrophil protease 3 (Prtn3).

Finally, after sustained C/EBPa expression additional myeloid markers become expressed, including

the macrophage specific colony stimulating receptor gene (Csf1r), lysozyme (Lyz1 and 2), granulo-

cyte collagenase 8 (Mmp8), macrophage scavenger receptor (Msr1), myeloid restricted serine prote-

ase C (Ctsc) and the myeloid cytokine dependent chemokine 6 (Ccl6) (Figure 1c–f, Figure 1—figure

supplement 3c–j, Supplementary files 6 and 7).

OSKM expression in C/EBPa-pulsed cells further accelerates B cell
silencing and leads to the sequential upregulation of the pluripotency
program
After OSKM induction of 18 h C/EBPa-pulsed cells, endogenous Pou5f1 (Oct4) is activated at day 2,

followed by expression of Nanog and Sox2 at days 6 and 8, respectively (Figure 1g, Figure 1—

Figure 1 continued

Figure supplement 2. Characterisation of independent components, gene expression reconstruction and

diffusion maps.

DOI: https://doi.org/10.7554/eLife.41627.004

Figure supplement 3. Single cell analysis of reprogramming and transdifferentiation.

DOI: https://doi.org/10.7554/eLife.41627.005

Figure supplement 4. Gene expression distribution of markers during reprogramming and transdifferentiation.

DOI: https://doi.org/10.7554/eLife.41627.006
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figure supplement 3g–i). This is consistent with the sequential expression of the three key pluripo-

tency factor genes revealed by RNA sequencing of bulk populations during reprogramming in our

system (Di Stefano et al., 2016; Stadhouders et al., 2018). OSKM induction further downregulates

B cell genes and inflammatory genes and upregulates biosynthetic pathway and energy metabolism

genes at D2 (Figure 1—figure supplement 3k, Supplementary files 6–7). This is followed by activa-

tion of proliferation and cell cycle genes at D6 and histone deacetylase and methylase genes at D8

(Figure 1—figure supplement 3l, Supplementary files 6–7. In short, OSKM expression in C/EBPa

pulsed cells further induces B cell silencing and activates pluripotency genes in a sequential manner.

Heterogeneity at intermediate time points suggests asynchrony in
transdifferentiation timing
Visualising single cells in diffusion maps (Figure 1b) or in the expression space spanned by B cell,

monocyte and macrophage programs (Figure 1h) shows that at intermediate time points some cells

are highly similar to cells at earlier time points while others are similar to cells at later time points.

For example, at 42 hr after C/EBPa induction there are three clusters of cells that are spread along

the transdifferentiation trajectory (Figure 1h, magenta). Consistently, the expression of key marker

genes at 42 hr of transdifferentiation is highly variable, with some cells expressing levels comparable

to cells at earlier time points and others expressing levels comparable to cells at later time points

(Figure 1—figure supplement 4a). These observations suggest heterogeneity in the speed of trans-

differentiation conversion (i.e. asynchrony) among single cells despite the fact that transdifferentia-

tion results in a quite homogeneous final cell population.

Rapid transdifferentiation into macrophages is associated with low Myc
component
To identify potential causes of this apparent asynchronous behaviour, we define each cell progres-

sion towards a macrophage state as the genome-wide similarity of its transcriptome to the bone-

marrow-derived-macrophage (BMDM) transcriptome from the reference atlas (Hutchins et al., 2017)

(see Methods). We can observe also using this metric that at 42 hr some cells already resemble mac-

rophages while others are still quite dissimilar, which is consistent with asynchrony in transdifferentia-

tion (Figure 2a). We then determined which gene expression signature extracted from our single

cell expression data correlates best with the progression towards the macrophage state (Figure 2a)

at each time-point (excluding the cell type-specific signatures directly involved in transdifferentiation,

that are the B cell, monocyte, granulocyte, and macrophage programs). The most correlated compo-

nent is highly enriched in Myc target genes (component five in Figure 1—figure supplement 2,

henceforth called ‘Myc component’, see Fisher’s test-based enrichment analysis of Molecular Signa-

ture database hallmark gene set collection (Liberzon et al., 2015) in Supplementary file 4) and neg-

atively correlates with the progression of cells at intermediate time points of transdifferentiation

(Figure 2b, Figure 2—figure supplement 1). The Myc component varies extensively across cells

within each time point but overall changes little during transdifferentiation (Figure 2c). These data

therefore suggest that cells with lower Myc component transdifferentiate more rapidly into

macrophages.

Cells with high Myc component transdifferentiate via a pronounced
GMP-like cell state
We next tested how the Myc component relates to the loss of the B cell state during transdifferentia-

tion. For each cell’s transcriptome, we therefore computed its similarity to the pre-B cell state and

compared this with its similarity to the macrophage state. This shows that low Myc component is

more strongly associated with a rapid gain of the macrophage state than with a rapid loss of the B

cell state (the cells go from high Myc to low Myc component mainly from left to right along the mac-

rophage axis rather than from top to bottom along the pre-B cell axis; Figure 2d). Similarly, we

explored the acquisition of a transient GMP-like state during transdifferentiation. This shows that

high Myc component cells (green/blue) resemble GMPs up to 42 hr after C/EBPa induction whereas

low Myc component cells (yellow/orange) only show moderate similarity to GMPs at 18 hr after

induction, suggesting that higher Myc component is associated with a larger and more persistent

induction of a GMP-like state (Figure 2e). However, this is not the case for the induction of a
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Figure 2. Myc activity correlates with differences in single cell transdifferentiation and reprogramming trajectories.

(a) Distribution of gene expression similarity between single cells and reference bone marrow derived

macrophages (Hutchins et al., 2017) (acquisition of macrophage state) during transdifferentiation. (b) Correlation

between the Myc component and acquisition of macrophage state from a; start and end time points were omitted

to improve clarity (they are presented in Figure 2—figure supplement 1a). (c) Myc component at the various

transdifferentiation time points. d-f, Single cell trajectories of the B cell state (d), the GMP state (e) and the

Figure 2 continued on next page
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transient granulocyte-like state (Figure 2f). Taken together, these analyses suggest that high Myc

component cells acquire the macrophage fate more slowly than low Myc component cells, passing

through a more pronounced induction of a GMP-like state.

Efficient reprogramming correlates with high Myc component
Next, as we did for the transdifferentiation, we define each cell progression towards pluripotency as

the genome-wide similarity of its transcriptome to the ESC transcriptome from the reference atlas

(Hutchins et al., 2017) (see Methods). At intermediate time points (D2 and D4) the similarity to ESC

is quite variable, with cells that already resemble ESCs and others that are still quite dissimilar

(Figure 2g), suggesting an asynchronous behaviour during reprogramming as well. We then

searched for expression signatures that best correlate with the progression of individual cells toward

pluripotency within each time-point during reprogramming. The Myc component again correlates

best with progression of cell fate conversion, especially at early stages. However, in contrast to what

was observed during transdifferentiation, high Myc component positively correlates with a more

advanced state of reprogramming (Figure 2h, Figure 2—figure supplement 2). Moreover - and

also different to what was observed during transdifferentiation - the Myc component increases dur-

ing reprogramming (Figure 2i).

We next explored how the Myc component relates to the loss of B cell program during reprog-

ramming (Figure 2j). As for transdifferentiation cells go from low Myc to high Myc component from

left to right along the similarity to ESC (x axis) rather than from top to bottom along the similarity to

pre-B cells (y axis), suggesting that high Myc component correlates more with the gain of pluripo-

tency rather than with the loss of the B cell program. As mentioned before, D6 cells are more similar

to early embryonic stages than D8 cells. However, exploring how Myc component relates to the sim-

ilarity to inner cell mass (ICM) cells during reprogramming shows that cells with high Myc component

maintain a high similarity to ICM cells at D8. In contrast, cells with low Myc component show low

similarity to ICM cells at D8 (Figure 2k, Figure 2—figure supplement 3g). Interestingly, low Myc

component cells also acquire a placental-like signature at D8 (Figure 2l, Figure 2—figure supple-

ment 3h), suggesting that low Myc component cells may eventually branch out towards this extra-

embryonic lineage.

Together, our findings reveal a correlation between high Myc component and cell susceptibility

to reprogramming towards pluripotency. They also suggest that a subset of low Myc component

cells along this trajectory acquires properties of extraembryonic cells.

Variation in Myc component reflects pre-existing variation in the
starting cell population
What is the origin of the Myc component heterogeneity? Is it due to a differential response of line-

age instructive transcription factors of an essentially homogenous population or to a heterogeneity

in the starting population? Examining the uninduced pre-B cells shows a variable Myc component

Figure 2 continued

granulocyte state (f) related to the acquisition of the macrophage state during transdifferentiation. The cells at the

respective time points are coloured according to Myc component levels. (g) Distribution of expression similarity

between single cells and reference embryonic stem cells (ESCs) during reprogramming. (h) Correlation between

Myc component and acquisition of pluripotency from g. (i) Myc component at the various reprogramming time

points. (j-l) Single cell trajectories of the B cell state (j), GMP state (k) and inner cell mass state (l) related to the

acquisition of the pluripotent state (ESCs) (see also Figure 3—figure supplement 1).

DOI: https://doi.org/10.7554/eLife.41627.007

The following figure supplements are available for figure 2:

Figure supplement 1. Predicting the speed of transdifferentiation.

DOI: https://doi.org/10.7554/eLife.41627.008

Figure supplement 2. Predicting the speed of reprogramming.

DOI: https://doi.org/10.7554/eLife.41627.009

Figure supplement 3. High Myc component correlates with faster route towards reprogramming also when

factoring out Myc component and cell cycle components before the computation of the similarity score.

DOI: https://doi.org/10.7554/eLife.41627.010
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Figure 3. Two types of pre-B cells exhibit distinct cell conversion plasticities. (a) Heatmap showing the expression of Myc target genes, G1/S and G2/M

specific genes in the starting pre-B cells sorted by Myc component. (b) Pearson’s correlation between total mRNA molecules per cell and Myc

component. (c) Similarity score of single cells binned by Myc component (bottom 20%, mid and top 20%) with reference large and small pre-BII cells. (d)

Representative FACS plot of starting pre-B cells showing forward (FSC) and side scatter (SSC). (e) Representative FACS analysis of Myc levels detected

in the 30% largest and the 30% smallest pre-B cell fractions. (f) FACS plots of myeloid marker (Mac-1) and B cell marker (CD19) expression during

induced transdifferentiation of sorted large and small pre-BII cells. (g) Quantification of the results shown in f (n = 3 biological replicates, error bars

indicate mean ± s.d. Statistical significance was determined using multiple t-test with 1% false discovery rate). (h) Visualisation of iPSC-like colonies

(stained by alkaline phosphatase) 12 days after OSKM induction of sorted large and small pre-BII cells. (i) Quantification of the results shown in h (n = 10

biologically independent samples (cell cultures) for large and n = 9 biologically independent samples (cell cultures) for small cells, with error bars

indicating mean ±s.d. Statistical significance was determined using a two-tailed unpaired Student’s t-test). (j) Scatterplot showing the correlation

between Myc expression (Jaitin et al., 2014) in different starting hematopoietic cell types (x-axis) and their corresponding (logit transformed)

reprogramming efficiency (y-axis). GMP: granulocyte monocyte progenitor, CMP: common myeloid progenitor, CLP: common lymphoid progenitor, LT-

HSC: long term hematopoietic stem cells, HSC-P: short term hematopoietic stem cells. (k) Correlation between Myc component and reprogramming

efficiency in various somatic cell types, including the hematopoietic cells shown in j.

DOI: https://doi.org/10.7554/eLife.41627.011

Figure 3 continued on next page
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which also partially correlates with higher expression of both G1/S and G2/M phase cell cycle genes

(Figure 3a). Visualising transcriptomes of uninduced pre-B cells using t-SNE indeed revealed sub-

structure associated with the Myc component (Figure 3—figure supplement 1a). In addition, the

Myc component in our single pre-B cells scales with the total mRNA content of each cell which varies

over a three-fold range (Figure 3b). This suggests a Myc-associated heterogeneity in cell size in the

starting cell population. During B cell development in the bone marrow, large pre-BII cells undergo

a proliferation burst and following activation of the pre-B cell receptor differentiate into quiescent

small pre-BII cells via Bcl6-induced transcriptional repression of Myc (Hoffmann et al., 2002). These

events constitute an important immunological checkpoint, required for the initiation of light chain

immunoglobulin rearrangements (Nahar et al., 2011). Thus, we hypothesised that the heterogeneity

in the starting pre-B cell population could reflect variability along this B cell developmental transi-

tion. To test this hypothesis, we compared our single cell data with bulk expression data of cells at

various stages of B cell development (Hoffmann et al., 2002; Painter et al., 2011). This revealed

that cells with higher Myc component are indeed more similar to large and cycling pre-BII cells, while

cells with lower Myc component are more similar to small and non-cycling pre-BII cells (Figure 3c,

Figure 3—figure supplement 1b).

Taken together, our analyses suggest a pre-existing heterogeneity in the starting cell population,

corresponding to large and small pre-BII cells. Moreover, they suggest that small pre-BII cells should

transdifferentiate faster but reprogram more slowly, while large pre-BII cells should transdifferentiate

more slowly but reprogram faster.

Large and small pre-B cells differ reciprocally in their respective
transdifferentiation and reprogramming propensities
To test these hypotheses, we analysed our starting pre-B cell population by flow cytometry and

found that it can be resolved into two discrete subpopulations, with 72% large and 25% small cells

(Figure 3d). Intracellular staining of Myc monitored by flow cytometry confirmed that the large cells

express abundant levels of the transcription factor while the smaller cells are essentially Myc nega-

tive (Figure 3e, Figure 3—figure supplements 1c and 2a). The two subpopulations also showed

the known difference in cycling between large and small pre-BII cells (Nahar et al., 2011), with the

large cells incorporating 400 times more EdU within 2 hr than the small cells (Figure 3—figure sup-

plements 1d and 2b).

To determine whether the two types of B cell progenitors differ in their plasticity, we isolated

them from reprogrammable mice and tested their conversion ability into either macrophages or

iPSCs. In response to a continuous exposure to C/EBPa the small pre-BII cells upregulated the mac-

rophage marker Mac-1 faster and downregulated CD19 slightly more rapidly than large pre-BII cells

(Figure 3f–g, Figure 3—figure supplement 2c). Similarly, the small cells acquired higher granularity

and a slightly increased volume compared to the large cells, both markers of mature myeloid cells

(Figure 3—figure supplement 1e). In stark contrast, when 18 hr pulsed cells (also designated Ba’

cells (Di Stefano et al., 2016; Di Stefano et al., 2014)) were tested for reprogramming ability in

response to OSKM induction, large pre-BII cells generated 30x times more iPSC colonies than small

pre-B cells (Figure 3h–i), which, as opposed to large pre-B cells, die out during the reprogramming

time course (Figure 3—figure supplement 1f).

Previous work testing different times of C/EBPa induction in pre-B cells before OSKM induction

showed that an 18 hr treatment elicited a maximal enhancement of the cells’ reprogramming effi-

ciency (Di Stefano et al., 2014). Longer exposures, driving the cells into a macrophage-like state,

decreased the efficiency (Di Stefano et al., 2014), raising the possibility that an accelerated transdif-

ferentiation of the small cells towards macrophages moves them out of the time window required

Figure 3 continued

The following figure supplements are available for figure 3:

Figure supplement 1. Experimental data relevant for Figure 3.

DOI: https://doi.org/10.7554/eLife.41627.012

Figure supplement 2. Gating strategies for FACS analyses.

DOI: https://doi.org/10.7554/eLife.41627.013
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for high responsiveness. If this was the case, a shorter pulse of C/EBPa should increase the reprog-

ramming responsiveness of the small cells. However, when testing the effect of a 6 h C/EBPa pulse

we found that the small cells remained highly resistant to reprogramming, exhibiting fewer iPSC col-

onies than with the 18 hr pulse (Figure 3—figure supplement 1g). Taken together, our results indi-

cate that large and small pre-BII cells exhibit intrinsic differences in their cell conversion plasticities.

Reprogramming susceptibility correlates with high Myc levels in a
broad variety of somatic cell types
The observed correlation between high Myc levels and the propensity of pre-B cells for reprogram-

ming into iPSCs could reflect a peculiarity of lymphoid progenitors. We therefore asked whether

Myc activity also correlates with the reprogramming efficiency of other somatic cells, examining

existing datasets of 9 hematopoietic and 11 non-hematopoietic cell types (Takahashi and Yama-

naka, 2006; Eminli et al., 2009; Kim et al., 2008; Stadtfeld et al., 2008; Aasen et al., 2008). Strik-

ingly, we found that high Myc expression levels in the starting cell type strongly correlate with a high

iPSC reprogramming efficiency across all nine different hematopoietic cell types (R = 0.93,

p<0.0001, Figure 3j), with GMPs and multipotent progenitors (MPPs) exhibiting the highest levels of

Myc component and highest reprogramming efficiencies (Figure 3k). Furthermore, Myc component

levels also correlate with the reprogramming efficiency of various non-hematopoietic cell types

(R = 0.66, p=0.0016). These findings show that high Myc expression levels are strongly predictive for

the reprogramming susceptibility of a broad variety of somatic cell types.

Discussion
Here we have described the transdifferentiation and cell reprogramming trajectories of pre-B cells

into either macrophages or iPS cells at the single cell level. The observed high frequencies of both

cell type conversions are consistent with deterministic processes. However, our experiments also

revealed unexpected heterogeneity among cells in the speed and paths by which transcription fac-

tors induce transdifferentiation and reprogramming. Our computational analyses made non-trivial

predictions about the origins and the consequence of this heterogeneity, predicting an inverse rela-

tionship between the ability of cells to either transdifferentiate or to reprogram. These predictions

could be experimentally validated, showing the presence of two distinct cell subsets in the starting

pre-B cell population, corresponding to previously described large pre-BII cells and small pre-BII

cells, into which they normally differentiate. Surprisingly, we found that these two cell types differ in

their cell conversion plasticities: while large pre-BII cells efficiently reprogram into iPSCs through a

GMP-like cell state but transdifferentiate more slowly into macrophages, small pre-BII cells repro-

gram much less efficiently into iPSCs but transdifferentiate more rapidly (Figure 4).

The finding that cell propensity for transdifferentiation and reprogramming are inversely coupled

suggests that the two types of plasticity are intrinsically different. Moreover, the Myc component

Figure 4. Summary of the main findings.

DOI: https://doi.org/10.7554/eLife.41627.014
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correlates with both types of plasticity and in a reciprocal manner. Strikingly, high Myc levels corre-

late with high reprogramming efficiencies not only in hematopoietic progenitors but also in a wide

range of other somatic cell types. Consistent with our findings, it has been reported that expression

of endogenous Myc is essential for efficient reprogramming of MEFs into pluripotent cells

(Hirsch et al., 2015; Zviran et al., 2019). Together, our observations suggest an important role of

Myc for the plasticity of both hematopoietic and non-hematopoietic cells. We also discovered that a

subset of low Myc component cells at D8 of reprogramming resembles extra-embryonic cell types,

reminiscent of an earlier report (Parenti et al., 2016).

The Myc effect could be mediated at least in part by one of the different activities reported for

the factor, or a combination thereof. These include its ability to induce cell proliferation

(Dang, 2012), its association with global chromatin changes (Knoepfler et al., 2006; Kieffer-

Kwon et al., 2017), its capacity to transcriptionally activate and amplify genes, including those

essential for proliferation (Lin et al., 2012) and its induction of metabolic changes (Dang, 2012). The

unique features of Myc are also likely central for its capacity to act as a major driver of cancer

(Dang, 2012) and for its role in early embryonic development (Scognamiglio et al., 2016). However,

high Myc expression in somatic cells is not sufficient to enable their efficient OSKM-induced reprog-

ramming, as we found that large pre-BII cells must still be primed by the transient expression of C/

EBPa (Di Stefano et al., 2014). This might be related to C/EBPa’s multiple functions including its

ability to act as a pioneer transcription factor (van Oevelen et al., 2015; Zhu et al., 2018), to acti-

vate key pluripotency TFs such as Klf4, to recruit chromatin related factors including LSD1/Kdm1a,

Hdac1, Brd4 and Tet2 (Di Stefano et al., 2016; Sardina et al., 2018) and/or to induce changes in

genome topology preceding pluripotent transcription factor expression (Stadhouders et al., 2018).

A similar scenario may also play out during OSKM-induced MEF to iPSC reprogramming: here pluri-

potency factors first target and inactivate enhancers of specific somatic TFs, including Cebpa,

Cebpb, Fra1 and Runx1, before engaging pluripotency gene enhancers (Chronis et al., 2017). It

therefore appears that efficient reprogramming of somatic into pluripotent stem cells requires three

waves of transcription factor activity: i) Expression of high Myc levels in the starting cells, ii) transient

expression of specific lineage regulators and iii) activation of key pluripotency transcription factors. It

is tempting to speculate that similar transcriptional waves are also required for some of the earliest

developmental decisions such as for the formation of pluripotent and extraembryonic cells during

pre-implantation embryo development.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Gene
(Mus musculus)

cebpa NA Ensembl:
ENSG00000245848

Strain, strain
background
(Mus musculus)

Pou5f1GFP transgenic
mouse

Boiani et al., 2002 NA Strain: C57Bl
/6 � DBA/2

Strain, strain
background
(Mus musculus)

Gt(ROSA)26Sortm1
(rtTA*M2)Jae Col1a1tm3
(tetO-Pou5f1,-Sox2,-
Klf4,-Myc)Jae/J

The Jackson Laboratory Cat# 011004;
RRID:IMSR_JAX:011004

Strain:
(C57BL/6 � 129S4/
SvJae)F1

Strain, strain
background
(Mus musculus)

Pou5f1-GFP
OSKM-reprogrammable

Jaitin et al. (2014),
Di Stefano et al. (2016)

NA Strain: C57BL
/6 � 129

Cell line
(Homo sapiens)

PlatE retroviral
packaging cell line

Cell Biolabs Cat# RV-101;
RRID: CVCL_B488

Cell line
(Mus musculus)

S17 stromal cell line From Dr. Dorshkind,
UCLA.
(Collins and Dorshkind, 1987)

RRID: CVCL_E226

Cell line
(Mus musculus)

Mouse Embryonic
Fibroblasts, Irradiated

GIBCO Cat# A34180

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Recombinant
DNA reagent

pMSCV-Cebpa-IRES-hCD4 Produced in-house,
(Bussmann et al., 2009)

NA

Antibody Mouse monoclonal
APC Anti-human
CD4 (RPA-T4)

BD Biosciences Cat# 555349;
RRID: AB_398593

Dilution
used = 1:400

Antibody Mouse monoclonal
biotin anti-human
CD4 (RPA-T4)

eBioscience Cat# 13–0049;
RRID:AB_466337

Dilution
used = 1:400

Antibody Rat monoclonal
Anti-Mouse CD16/CD32
(Mouse BD Fc Block)

BD Biosciences Cat# 553142;
RRID: AB_394654

Dilution
used = 1:400

Antibody Rat monoclonal
Pe-cy7 Anti-mouse
CD19 (1D3)

BD Biosciences Cat# 552854;
RRID:AB_394495

Dilution
used = 1:400

Antibody Mouse monoclonal
APC Anti-mouse
CD11b (44)

BD Biosciences Cat# 561015;
RRID:AB_10561676

Dilution
used = 1:400

Antibody Rat monoclonal
biotin Anti-mouse
CD19 (1D3)

BD Biosciences Cat# 553784;
RRID: AB_395048

Dilution
used = 1:400

Antibody Rabbit monoclonal
[Y69] to c-Myc

Abcam Cat# ab32072;
RRID:AB_731658

Dilution
used = 1:76

Antibody Goat Polyclonal
Anti-Rabbit IgG
H and L Alexa Fluor 647

Life technologies Cat# A32733;
RRID:AB_2633282

Dilution
used = 1:2000

Strain, strain
background
(Escherichia coli)

E. coli: BL21(DE3)
Competent

New England Biolabs Cat# C2527I

Peptide,
recombinant
protein

Recombinant
murine IL-7

Peprotech Cat# 217–17

Peptide,
recombinant
protein

Recombinant
murine IL-4

Peprotech Cat# 214–14

Peptide,
recombinant
protein

Recombinant
murine IL-15

Peprotech Cat# 210–15

Peptide,
recombinant
protein

ESGRO Recombinant
mouse LIF protein

Merk Millipore Cat# ESG1106

Commercial
assay or kit

Click-IT EdU
Cytometry assay kit

Invitrogen Cat# C10425

Commercial
assay or kit

miRNeasy mini kit Qiagen Cat# 217004

Commercial
assay or kit

SYBR Green QPCR
Master Mix

Applied Biosystems Cat# 4309155

Commercial
assay or kit

Alkaline Phosphatase
Staining Kit II

Stemgent Cat# 00–0055

Commercial
assay or kit

High Capacity
RNA-to-cDNA kit

Applied Biosystems Cat# 4387406

Chemical
compound, drug

17b-estradiol Merck Millipore Cat# 3301

Chemical
compound, drug

MEK inhibitor
(PD0325901)

Selleckchem Cat# S1036

Chemical
compound, drug

Doxycycline hyclate Sigma-Aldrich Cat# D9891

Continued on next page

Francesconi et al. eLife 2019;8:e41627. DOI: https://doi.org/10.7554/eLife.41627 12 of 22

Research article Computational and Systems Biology Stem Cells and Regenerative Medicine

https://scicrunch.org/resolver/AB_398593
https://scicrunch.org/resolver/AB_466337
https://scicrunch.org/resolver/AB_394654
https://scicrunch.org/resolver/AB_394495
https://scicrunch.org/resolver/AB_10561676
https://scicrunch.org/resolver/AB_395048
https://scicrunch.org/resolver/AB_731658
https://scicrunch.org/resolver/AB_2633282
https://doi.org/10.7554/eLife.41627


Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Chemical
compound, drug

L-Ascorbic Acid Sigma-Aldrich Cat# A92902

Chemical
compound, drug

GSK3b inhibitor
(CHIR-99021)

Selleckchem Cat# S1263

Other DMEM Medium Gibco Cat# 12491015

Other RPMI 1640 Medium Gibco Cat# 12633012

Other Knockout-DMEM Gibco Cat# 10829018

Other Neurobasal Medium Gibco Cat# 21103049

Other DMEM-F12 Medium Gibco Cat# 12634010

Other Fetal Bovine Serum,
E.U.-approved, South
America origin

Gibco Cat# 10270–106

Other Embryonic stem-cell
FBS, qualified, US origin

Gibco Cat# 10270–106

Other KnockOut
Serum Replacement

Gibco Cat# A3181502

Other Pen Strep Gibco Cat# 15140122

Other L-Glutamine (200 mM) Gibco Cat# 25030081

Other Sodium Pyruvate (100 mM) Gibco Cat# 11360070

Other MEM Non-Essential
Amino Acids Solution (100X)

Gibco Cat# 11140068

Other 2-Mercaptoethanol Invitrogen Cat# 31350010

Other N-2 Supplement (100X) Gibco Cat# 17502048

Other B-27 Serum-Free
Supplement (50X)

Gibco Cat# 17504044

Other TrypLE Express
Enzyme (1X)

Gibco Cat# 12605010

Other Trypsin-EDTA (0.05%) Gibco Cat# 25300054

Other MACS Streptavidin
MicroBeads

Miltenyi Biotec Cat# 130-048-101

Other MACS LS
magnetic columns

Miltenyi Biotec Cat# 130-042-401

Software, algorithm R R Project for Statistical
Computing
http://www.r-project.org/

RRID:SCR_001905

Mice and cell cultures
We used ‘reprogrammable mice’ containing a doxycycline-inducible OSKM cassette and the tetracy-

cline transactivator (Carey et al., 2010). CD19+ pre-B cells were isolated from the bone marrow of

these mice using monoclonal antibody to CD19 (clone 1D3, BD Pharmingen #553784) and MACS

sorting (Miltenyi Biotech). Cell purity was confirmed to be >98% CD19+by FACS using an LSRII

machine (BD). After isolation, B cells were grown in RPMI medium supplemented with 10% FBS and

10 ng/ml IL-7 (Peprotech), L-glutamine, nonessential amino acids, b-mercaptoethanol (Life Technolo-

gies) as well as penicillin/streptomycin. Mouse embryo fibroblasts (MEFs) were isolated from E13.5

mouse and expanded in DMEM supplemented with 10% FBS, L-glutamine and penicillin/streptomy-

cin. Cultures were routinely tested for mycoplasma contamination. Animal experiments were

approved by the Ethics Committee of the Barcelona Biomedical Research Park (PRBB) and per-

formed according to Spanish and European legislation.
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Transdifferentiation and reprogramming experiments
For transdifferentiation pre-B cells were infected with C/EBPaER-hCD4 retrovirus produced by the

PlatE retroviral packaging cell line (Cell Biolabs, # RV-101). The cells were expanded for 48 hr on

Mitomycin C-inactivated S17 feeders grown in RPMI medium supplemented with 10 ng/mL each of

IL-7 (Peprotech) and hCD4+ were sorted (FACSaria, BD). For transdifferentiation C/EBPa was

induced by treating the cells with 100 nM b-Estradiol (E2) in medium supplemented with 10 ng/mL

each of IL-7, IL-3 (Peprotech) and human colony-stimulating factor 1 (hCSF-1, kind gift of E. Richard

Stanley). For reprogramming hCD4+ cells were plated at 500 cells/cm2 in gelatinised plates (12 wells)

on irradiated MEF feeders in RPMI medium and pre-treated for 18 hr with E2 to induce C/EBPa.

After E2 washout the cultures were switched to serum-free N2B27 medium supplemented with 10

ng/ml IL-4, IL-7 and IL-15 (Peprotech) at 2 ng/ml and treated with 2 mg/ml of doxycycline to activate

OSKM. From day two onwards the N2B27medium was supplemented with 20% KSR (Life Technolo-

gies), 3 mM CHIR99021 and 1 mM PD0325901 (2i medium). A step-by-step protocol describing the

reprogramming procedure can be found at Nature Protocol Exchange (https://www.nature.com/pro-

tocolexchange/protocols/4567).

Myc expression by flow cytometry
CD19 positive B cells were washed and fixed in Fix and Perm fixative (Life Technologies) for 15 min,

then washed and permeabilised in Fix and Perm saponin-based permeabilisation buffer for 15 min.

After permeabilisation, cells were incubated in 1x PBS/10% normal goat serum/0.3M glycine to

block non-specific protein-protein interactions followed by Myc antibody at 1/76 dilution for 30 min

at room temperature. The secondary antibody used was Goat Anti-Rabbit IgG H and L (Alexa Fluor

647) (Life technologies) at 1/2000 dilution for 30 min. A rabbit IgG was used as the isotype control.

Cells were analysed on a BD LSRII flow cytometer. The gating strategy is described in Figure 3—fig-

ure supplement 2.

Cell cycle analysis by EdU incorporation
For cell cycle analyses cells were treated for 2 hr with EdU (Life Technologies). EdU staining was per-

formed using the Click-IT EdU Cytometry assay kit (Life Technologies) at room temperature follow-

ing the manufacturer’s instructions. Briefly, cells were washed in PBS and fixed in Click-iT fixative for

15 min. After washing they were permeabilised in 1 � Click iT saponin-based permeabilisation buffer

for 15 min. The EdU reaction cocktail (PBS, CuSO4, Alexa Fluor 488 azide and buffer additive as per

manufacturer’s protocol) was added to the cells for 30 min and then washed in 1% BSA/PBS. After

staining, cells were analysed on a BD LSRII flow cytometer. The gating strategy is described in Fig-

ure 3—figure supplement 2.

FACS analyses of transdifferentiation
B cell to macrophage transdifferentiation was monitored by flow cytometry using antibodies against

Mac-1 (clone 44, BD Pharmingen) and CD19 (1D3, BD Pharmingen) labelled with APC and PeCy-7,

respectively. After staining, cells were analysed on a BD LSRII flow cytometer. The gating strategy is

described in Figure 3—figure supplement 2.

RNA extraction
To remove the feeders, cells were trypsinised and pre-plated for 30 min before RNA isolation with

the miRNeasy mini kit (Qiagen). RNA was eluted from the columns using RNase-free water and

quantified by Nanodrop. cDNA was produced with the High Capacity RNA-to-cDNA kit (Applied

Biosystems). qRT-PCR analyses qRT-PCR reactions were set up in triplicate with the SYBR Green

QPCR Master Mix (Applied Biosystems). Reactions were run on an AB7900HT PCR machine with 40

cycles of 30 s at 95˚C, 30 s at 60˚C and 30 s at 72˚C.

Viral vector and infection
Production of the C/EBPaER-hCD4 retroviral vector and B cell infection were performed as before

(Di Stefano et al., 2016; Di Stefano et al., 2014).

Francesconi et al. eLife 2019;8:e41627. DOI: https://doi.org/10.7554/eLife.41627 14 of 22

Research article Computational and Systems Biology Stem Cells and Regenerative Medicine

https://www.nature.com/protocolexchange/protocols/4567
https://www.nature.com/protocolexchange/protocols/4567
https://doi.org/10.7554/eLife.41627


Alkaline Phosphatase (AP) staining
AP staining was performed using the Alkaline Phosphatase Staining Kit (STEMGENT) following the

manufacturer’s instructions.

Library preparation and sequencing
Single-cell libraries from polyA-tailed RNA were constructed applying massively parallel single-cell

RNA sequencing (MARS-Seq; Jaitin et al., 2014) as described in Guillaumet-Adkins et al. (2017).

Single cells were FACS isolated into 384-well plates with lysis buffer and reverse-transcription pri-

mers containing the single-cell barcodes and unique molecular identifiers (UMIs). Each library con-

sisted of two 192 single-cell pools per time point (pool a and pool b). Multiplexed pools were

sequenced in an Illumina HiSeq 2500 system. Primary data analysis was carried out with the standard

Illumina pipeline following the manufacturer’s protocol.

Data pre-processing
Quality check of sequenced reads was performed with the FastQC quality control tool

(Andrews, 2010). Samples that reached the quality standards were then processed to deconvolute

the reads to cell level by de-multiplexing according to the pool and the cell barcodes, wherein the

first read contains the transcript sequence and the second read the cell barcode and the UMI.

Samples were mapped and gene expression was quantified with default parameters using the

RNA pipeline of the GEMTools 1.7.0 suite (Marco-Sola et al., 2012) on the mouse genome assembly

GRCm38 (Cunningham et al., 2015) and Gencode annotations M8 (Mudge and Harrow, 2015). We

took advantage of the UMI information to correct for amplification biases during the library prepara-

tion, collapsing read counts for reads mapping on a gene with the same UMI and considering unam-

biguously mapped reads only.

Data analysis
Cells with a library size <1800 were excluded from further analysis. Genes detected in less than 50

cells or less than 15 cells per group were also excluded from further analysis, resulting in expression

data for 17183 genes in 3152 cells. Size factor normalisation was applied by dividing the expression

of each gene in each cell by the total number of detected mRNA molecules and multiplying by the

median number of molecules across cells. An inverse hyperbolic sine transformation (log (x + sqrt

(x2+1)), where x is the mRNA count) was then applied and the data were subsequently centred.

Dimensionality reduction, batch correction and gene expression
reconstruction
We performed principal component analysis (PCA) by computing partial singular value decomposi-

tion (SVD) on the data matrix extracting the first 100 largest singular values and corresponding vec-

tors using the method implemented in R in the ‘irlba’ package (Baglama and Reichel, 2005).

Examining singular vectors highlights the presence of batch effects between the two pools at each

time point starting from component 3 (Figure 1—figure supplement 1c). We therefore applied a

batch correction method based on finding mutual nearest neighbours between batches

(Haghverdi et al., 2017). We used the R implementation (function ‘mnn’ in the ‘scran’ package) with

k = 15 nearest neighbours, and computing the nearest neighbours on the first 2 PCA dimensions

which only capture biological variation. This method corrects batch effects shared across all samples.

However, partial SVD on batch corrected data shows that among the first 35 components that retain

signals (Figure 1—figure supplement 1d) batch effects between the two pools are still present Fig-

ure 1—figure supplement 1e). We therefore applied independent component analysis (ICA) to

decompose expression into 35 mutually independent components and estimate the relative mixing

matrix that, when multiplied by the independent components, results in the observed data (Fig-

ure 1—figure supplement 2d). ICA separates well sample-specific batch effects from biological sig-

nal (Figure 1—figure supplement 1f). We filtered out components when the interquartile ranges of

the distributions of component scores of the two pools do not overlap at any time point (compo-

nents 3, 9, 13, 15, 16, 17, 19, 20, 21, 24, 26, 27,32, 35). A component correlated with cell position in

the plate (Component 33, Figure 1—figure supplement 1g) was also filtered out. We then recon-

structed gene expression by multiplying filtered gene loadings (Supplementary file 1) by the
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filtered samples scores (Supplementary file 2) including only the selected 20 components (see Fig-

ure 1—figure supplement 2e for a schematic description). The resulting gene expression matrix

was then normalised using quantile normalisation.

Computation of similarity index of our single cell RNA-seq data with
reference cell types
We compared our data to a comprehensive atlas of murine cell types from Hutchins et al. (2017)

that consists of uniformly re-analysed bulk and single cell RNA-seq data from 113 publications

including 921 biological samples consisting of 272 distinct cell types.

We calculated a similarity score for each single cell transcriptome to each atlas cell type transcrip-

tome as follows: we first calculated the genome wide correlation between each single cell and all

cell types from the atlas. The correlation coefficient was then transformed using Fisher’s z transfor-

mation: 1/2 *ln((1 + r)/(1 r)). The vector of z-transformed correlations for each single cell was then

scaled across reference cell types. In the same manner, we also compared our starting population

single cell data to reference bulk expression data from different stages of B cell development from

Hoffmann et al. (2002) and from the immunological genome project (Painter et al., 2011). Myc

component increases in expression with time during reprogramming. This may fully account for the

prediction of the extent of reprogramming in each cell. We therefore regress out Myc component

before the computation of similarity score to derive a corrected similarity index. This was done by

reconstructing both the atlas and single cell expression without the Myc component. This shows that

Myc component is still well correlated with progression towards pluripotency at least at D4 (Fig-

ure 2—figure supplement 3a). This holds true when both Myc and cell cycle components are

regressed out (Figure 2—figure supplement 3b).

Characterisation of the components: Gene set enrichment analysis
We clustered genes according to the loadings on the components from ICA, assigning each gene to

the component with highest or lowest loading. Each component therefore defines one cluster of

negatively correlated genes and one of positively correlated genes. We then calculated the enrich-

ment of each cluster for Gene Ontology categories (Ashburner et al., 2000), restricting the analysis

to categories including more than 10 and less than 200 genes, and hallmark signatures from the

Molecular Signature database (Liberzon et al., 2015). The hallmark gene set collection consists of

50 refined gene sets derived from over 6700 gene sets of the Molecular Signature Database, which

are obtained from a variety of experimental approaches including gene expression profiling and

binding location experiments (Liberzon et al., 2011). Refinement was obtained by a combination of

automated approaches and expert curation, aimed at reducing redundancy among gene sets and

expression variation within gene sets (Liberzon et al., 2015).

We tested significance of gene set enrichment its significance using Fisher’s test. P-values were

corrected for multiple testing using Benjamini-Hochberg method (Benjamini and Hochberg, 1995).

Characterisation of the components: comparison to the mouse cell atlas
We compared our data to a comprehensive atlas of murine cell types (Hutchins et al., 2017). We

applied ICA to decompose expression of the atlas of cell types into 120 mutually independent com-

ponents, and we correlated these to the components extracted from our single cell data (Figure 1—

figure supplement 2), to determine cell type specificity of single cell components. To this end, we

correlate gene loadings of single cell components with the gene loadings of atlas components. We

then defined the cell type specificity of a single cell component as follows: we associate single cell

components and atlas components based on the highest absolute value of Pearson’s correlation

between the gene loadings of the single cell components and of the atlas components (Figure 1—

figure supplement 2a). For example, the single cell component one gene loadings best correlates

with atlas component 12 gene loadings (positive correlation). We next characterise cell type specific-

ity of each atlas component based on the dynamics of the single cell components scores (the single

cells’ projection onto the components) and on atlas cell type scores (projection of atlas cell type on

the atlas component). For example, single cell component one negatively correlates with genes that

monotonically increase during transdifferentiation. The correspondent atlas component 12 is
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characterised by highly negative scores of macrophage and dendritic cells. We therefore define

component 12 of the atlas, and by extension also the single cell component 1, as ‘a macrophage’

component.

Diffusion map and diffusion pseudotime
To visualise data in low dimensional space we used diffusion maps. Diffusion maps are a method for

non-linear dimension reduction that learn the non-linear data manifold by computing the transition

probability of each data point to its neighbours (diffusion distances). We used the R implementation

by Haghverdi et al. (2016) available in library ‘dpt’ version 0.6.0. The transition matrix is calculated

by using ´Transitions´ function on the selected ICA components using a sigma = 0.12 for the Gauss-

ian kernel. We also calculated diffusion pseudotime using the function ‘dpt’ in the same library.

t-SNE
We used the R implementation of t-SNE (Rtsne library). We input the 20 selected components from

ICA for the starting pre-B cell population and we choose a perplexity of 30.

Differential expression analysis, clustering and heatmaps
We performed differential expression analysis on the reconstructed expression using ‘limma’ pack-

age in R, we selected genes differentially expressed at false discovery rate of 5% and with at least

1.3 fold change between adjacent time points during transdifferentiation or reprogramming. We

cluster these sets of genes using hierarchical clustering with complete linkage (function hclust in R

library ‘fastcluster’, method=’complete’). Clusters are displayed the with heatmaps (function ‘heat-

plot’ in ‘made4’ library). We performed gene set enrichment analyses on these sets of genes and

clusters using Fisher’s test as explained above.

Correlation between reprogramming efficiency and myc activity
Reprogramming efficiency data for different hematopoietic cell types as well as from mouse tail

fibroblasts are from Eminli et al. (2009); neural stem cells, pancreatic beta cells, keratinocytes and

MEFs are from Kim et al. (2008), Stadtfeld et al. (2008), Aasen et al. (2008), and Takahashi and

Yamanaka (2006), respectively. Cell reprogramming efficiencies were matched to the expression

values of their Myc component, obtained from the mouse cell atlas (Hutchins et al., 2017) as

described above (Figure 1—figure supplement 2a,c). When more than one cell type from the atlas

corresponded to a single cell category used for reprogramming, their Myc component values were

averaged (Supplementary file 5). Myc expression in the hematopoietic lineage is the mean level

across single cells of each cell type from Jaitin et al. (2014).

Data availability
Single cell gene expression data have been deposited in the National Center for Biotechnology

Information Gene Expression Omnibus (GEO) under accession number GSE112004.
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D, Martynoga B, Castro DS, Webb AE, Südhof TC, Brunet A, Guillemot F, Chang HY, Wernig M. 2013.
Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 155:621–635. DOI: https://
doi.org/10.1016/j.cell.2013.09.028, PMID: 24243019

Xie H, Ye M, Feng R, Graf T. 2004. Stepwise reprogramming of B cells into macrophages. Cell 117:663–676.
DOI: https://doi.org/10.1016/S0092-8674(04)00419-2, PMID: 15163413

Zhu F, Farnung L, Kaasinen E, Sahu B, Yin Y, Wei B, Dodonova SO, Nitta KR, Morgunova E, Taipale M, Cramer P,
Taipale J. 2018. The interaction landscape between transcription factors and the nucleosome. Nature 562:76–
81. DOI: https://doi.org/10.1038/s41586-018-0549-5

Zviran A, Mor N, Rais Y, Gingold H, Peles S, Chomsky E, Viukov S, Buenrostro JD, Scognamiglio R, Weinberger
L, Manor YS, Krupalnik V, Zerbib M, Hezroni H, Jaitin DA, Larastiaso D, Gilad S, Benjamin S, Gafni O, Mousa A,
et al. 2019. Deterministic somatic cell reprogramming involves continuous transcriptional changes governed by
myc and Epigenetic-Driven modules. Cell Stem Cell 24:328–341. DOI: https://doi.org/10.1016/j.stem.2018.11.
014, PMID: 30554962

Francesconi et al. eLife 2019;8:e41627. DOI: https://doi.org/10.7554/eLife.41627 22 of 22

Research article Computational and Systems Biology Stem Cells and Regenerative Medicine

https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1016/j.cels.2015.12.004
http://www.ncbi.nlm.nih.gov/pubmed/26771021
https://doi.org/10.1016/j.cell.2012.08.026
https://doi.org/10.1016/j.cell.2012.08.026
http://www.ncbi.nlm.nih.gov/pubmed/23021215
https://doi.org/10.1038/nmeth.2221
http://www.ncbi.nlm.nih.gov/pubmed/23103880
https://doi.org/10.1007/s00335-015-9583-x
http://www.ncbi.nlm.nih.gov/pubmed/26187010
https://doi.org/10.1182/blood-2011-01-331181
http://www.ncbi.nlm.nih.gov/pubmed/21856866
https://doi.org/10.4049/jimmunol.1002695
https://doi.org/10.1016/j.stemcr.2016.02.003
https://doi.org/10.1016/j.stemcr.2016.02.003
http://www.ncbi.nlm.nih.gov/pubmed/26947975
https://doi.org/10.1016/j.stem.2018.11.001
http://www.ncbi.nlm.nih.gov/pubmed/30526885
https://doi.org/10.1101/191056
https://doi.org/10.1016/j.cell.2015.12.033
http://www.ncbi.nlm.nih.gov/pubmed/26871632
https://doi.org/10.1038/s41588-017-0030-7
http://www.ncbi.nlm.nih.gov/pubmed/29335546
https://doi.org/10.1016/j.cub.2008.05.010
http://www.ncbi.nlm.nih.gov/pubmed/18501604
http://www.ncbi.nlm.nih.gov/pubmed/18501604
https://doi.org/10.1016/j.cell.2006.07.024
http://www.ncbi.nlm.nih.gov/pubmed/16904174
http://www.ncbi.nlm.nih.gov/pubmed/16904174
https://doi.org/10.1038/nature18323
http://www.ncbi.nlm.nih.gov/pubmed/27281220
https://doi.org/10.1016/j.stemcr.2015.06.007
http://www.ncbi.nlm.nih.gov/pubmed/26235892
https://doi.org/10.1038/nature08797
http://www.ncbi.nlm.nih.gov/pubmed/20107439
https://doi.org/10.1016/j.cell.2013.09.028
https://doi.org/10.1016/j.cell.2013.09.028
http://www.ncbi.nlm.nih.gov/pubmed/24243019
https://doi.org/10.1016/S0092-8674(04)00419-2
http://www.ncbi.nlm.nih.gov/pubmed/15163413
https://doi.org/10.1038/s41586-018-0549-5
https://doi.org/10.1016/j.stem.2018.11.014
https://doi.org/10.1016/j.stem.2018.11.014
http://www.ncbi.nlm.nih.gov/pubmed/30554962
https://doi.org/10.7554/eLife.41627

