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The advent of high-throughput sequencing technologies has led to the need for flexible 
and user-friendly data preprocessing platforms. The Pipeliner framework provides an 
out-of-the-box solution for processing various types of sequencing data. It combines 
the Nextflow scripting language and Anaconda package manager to generate modular 
computational workflows. We have used Pipeliner to create several pipelines for sequencing 
data processing including bulk RNA-sequencing (RNA-seq), single-cell RNA-seq, as well 
as digital gene expression data. This report highlights the design methodology behind 
Pipeliner that enables the development of highly flexible and reproducible pipelines that 
are easy to extend and maintain on multiple computing environments. We also provide a 
quick start user guide demonstrating how to setup and execute available pipelines with 
toy datasets.
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INTRODUCTION

High-throughput sequencing (HTS) technologies are vital to the study of genomics and related 
fields. Breakthroughs in cost efficiency have made it common for studies to obtain millions of raw 
sequencing reads. However, processing these data requires a series of computationally intensive 
tools that can be unintuitive to use, difficult to combine into stable workflows that can handle 
large number of samples, and challenging to maintain over long periods of time in different 
environments. The effort to simplify this process has resulted in the development of sequencing 
pipelines such as RseqFlow (Wang et al., 2011), PRADA (Torres-García et al., 2014), and Galaxy 
(Goecks et al., 2010), among others. Some of these pipelines are open-source and either available 
for download or on publicly available servers. However, some drawbacks include difficulty when 
deploying on existing computational resources, limited selection of computational tools, and 
unintuitive or limited ability to make modifications. While other frameworks may be more flexible, 
they often require the user to install each needed tool separately, which may be challenging and 
reduce reproducibility.

Pipeliner is a framework for the definition of sequencing data processing pipelines that 
aims to solve these issues. Pipelines developed within the framework are platform independent 
and fully reproducible and inherit automated job parallelization and failure recovery. Their 
flexibility and modular architecture allows users to easily customize and modify processes 
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based on their needs. Pipeliner also provides additional  
resources that allow developers to rapidly build and test 
their own pipelines in an efficient and scalable manner. 
Pipeliner is a complete and user-friendly solution to meet the 
demands of processing large amounts and various types of 
sequencing data.

MATERIALS AND METHODS

Design and Features
Pipeliner is a suite of tools and methods for defining 
sequencing pipelines. It uses Nextflow, a portable, scalable, 
and parallelizable domain-specific language, to define data 
workflows (Di Tommaso et al., 2017). Using Nextflow, each 
pipeline is modularized, consisting of a configuration file as 
well as a series of processes. These processes define the major 
steps in each pipeline and can be written in Linux-executable 
scripting languages such as Bash, Python, Ruby, etc. Nextflow 
processes are connected through channels—asynchronous 
first in, first out queues—which allow data to be passed 
between the different steps in each pipeline using a dataflow 
programming model. Using this architecture, pipelines 
developed within the Pipeliner framework inherit multiple 
features that contribute to their flexibility, reproducibility, and 
extensibility (Figure 1).

Pipeline Flexibility
Pipeliner enables flexible customization of pipeline options 
and parameters. Pipeliner currently offers three pipelines to 
demonstrate its applicability in processing different types of 

data, including bulk RNA-seq, single-cell RNA-seq (scRNA-
seq), as well as digital gene expression (DGE) data (Soumillon 
et al., 2014). For the RNA-seq pipeline, sequencing reads are 
checked for quality with FastQC (Andrews, 2010), trimmed 
with TrimGalore (Krueger, 2016), mapped to a reference 
genome with either STAR (Dobin et al., 2012) or HISAT2 (Kim 
et al., 2015), and quantified with either StringTie (Pertea et al., 
2015), HTSeq (Anders et al., 2015), or featureCounts (Liao et al., 
2014). After alignment, mapping quality is checked with RSeQC 
(Wang et al., 2012), and a comprehensive summary report of all 
processes is generated with MultiQC (Ewels et al., 2016). The 
scRNA-seq and DGE pipelines adopt a similar methodology, 
and the development of additional pipelines for microRNA-
seq (miRNA-seq) and RNA-seq Variant Calling is currently 
underway.

Parameter Configuration
All pipeline options and process parameters are set from a 
single configuration file (Figure 2). Users have the option to 
select and skip various steps as well as customize parameters 
and allocate computing resources for specific processes. This 
flexibility gives rise to many different use cases. For example, 
a user may opt to provide a pre-indexed reference genome or 
start the pipeline after the mapping step with saved alignment 
files or output an ExpressionSet data structure with count and 
phenotypic data. Thus, each pipeline is multipurpose and allows 
users to frequently tweak settings without adding complexity or 
sacrificing reproducibility.

The default configuration file defines variables for common 
parameters of third-party software tools used in each 
pipeline. These tools are wrapped into templates—one for 

FIGURE 1 | The Pipeliner framework employs reusable template processes strung together via Nextflow’s scripting language to create workflows in addition to 
developer tools such as toy datasets and testing modules.
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each process—which are executed sequentially within the 
pipeline script. Because some software tools have hundreds of 
arguments, users have the option to insert code injections from 
the configuration file. These code injections can be used to pass 
uncommon keyword arguments or to append ad hoc processing 
steps (Figure 3). These features provide unrestricted control 
over each step in the execution of a pipeline. Furthermore, 
since all modifications are made within the configuration file—
which is copied with each run—the pipeline script is left intact, 
preserving the reproducibility of each run regardless of any 
execution-specific changes the user may make.

Workflow Reproducibility
Pipeliner is designed to create reproducible workflows. An 
abstraction layer between Nextflow and Pipeliner logic enables 
platform independence and seamless compatibility with high-
performance cloud computing executors such as Amazon Web 
Services. Pipeliner also uses Anaconda—a multi-platform 
package and environment manager—to manage all third-party 
software dependencies and handle pre-compilation of all required 
tools before a pipeline is executed (Continuum Analytics, 2016).

Pipeliner is bundled with a prepackaged environment 
hosted on Anaconda Cloud that contains all software packages 
necessary to run any of the three pipelines available. This virtual 
environment ensures consistent versioning of all software tools 
used during each pipeline execution. Additionally, all file paths, 
pipeline options, and process parameters are recorded, time 
stamped, and copied into a new configuration file with each run, 
ensuring pipelines are fully reproducible regardless of where and 
when they are executed.

Extensibility
Pipeliner makes the development of bioinformatics pipelines 
more efficient. The configuration file and processes that 
makeup each pipeline are inherited from shared blocks of code 
called template processes. For example, if a major update to an 
alignment tool requires modification to its template process, 
these changes propagate to all pipelines inheriting it (Figure 4). 
This property also minimizes the amount of code introduced as 
new pipelines are created, making them quicker to develop and 
easier to maintain. If a pipeline can inherit all of its processes 
with predefined templates, the user is only required to link these 
processes via Nextflow’s scripting language and create a basic 
configuration file.

Rapid Development and Testing
Users can rapidly develop pipelines by using the toy datasets 
conveniently included with Pipeliner, enabling developers to 
test modifications made to their pipeline in minutes rather 
than hours. When testing, each execution covers only one 
configuration of parameters, meaning some processes may be 
skipped or partially executed depending on the configuration 
file. Therefore, to increase decision coverage, that is, the 
amount of tested reachable code, Pipeliner includes a custom 
testing module that automatically executes and logs a series of 
independent tests and configuration files (Figure 5). With these 
tools, users can efficiently build, test, and maintain multiple 
sequencing pipelines.

FIGURE 2 | A shortened example of a configuration file, highlighting the key 
components. This configuration includes resource allocations for cluster 
executions, input and output paths to data, general pipeline parameters, as 
well as process-specific parameters.  FIGURE 3 | A code example of a template defined for the software tool 

featureCounts. The template wraps user-defined parameters, paths to data, 
as well as code injections into an executable bash script used in one of the 
pipeline steps.
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Comparisons with Other Available Tools
Pipeliner has several characteristics that distinguish it from 
existing sequencing data workflows, such as RseqFlow (Wang 
et al., 2011), PRADA (Torres-García et al., 2014), or Galaxy 
(Goecks et al., 2010) (Table 1). These tools and their dependencies 
can be difficult to install and setup, lack sufficient documentation, 
and are rigid in their design, making customization challenging. 
Downloading and setting up Pipeliner is simple, and all 
dependencies are automatically installed through a virtual 
environment, ensuring data reproducibility and compatibility 
across various computing environments. Pipeliner is designed 
to be modular and flexible; therefore, workflow steps can be 
modified, skipped, removed, or extended. Pipeliner provides 
comprehensive documentation for general use as well as for 
developers who wish to extend the framework.

Usage Guide
In addition to comprehensive documentation of the framework 
and to demonstrate its ease of use, we provide a tutorial for 
processing the toy datasets available for each pipeline.

Processing Toy Datasets
The Pipeliner framework requires Nextflow and Anaconda. 
Nextflow requires Java 8 (or higher) to be installed and can 
be used on Linux and OS X machines. Third-party software 
tools will be installed and managed through an Anaconda 
virtual environment. Once the prerequisites are installed, the 
repository can be cloned from GitHub to any location through 
the following command:

$ git clone https://github.com/montilab/pipeliner

The next step is to clone and activate the virtual environment. 
The easiest method is to recreate the environment through 
the yml files provided in the repository. There is a single yml 
file for both Linux and OS X operating systems, containing all 
dependencies for all available pipelines.

$ conda env create -f pipeliner/envs/linux_env.yml 
# Linux
$ conda env create -f pipeliner/envs/osx_env.yml # 
OS X
$ source activate pipeliner

Pipeliner requires configuration of paths to input data such as 
fastq reads, bam alignments, references files, etc. When cloning 
Pipeliner to a new machine, all paths must be reconfigured. This 
process can be automated by running a script that will reconfigure 
any paths to the same directory of your clone.

$ python pipeliner/scripts/paths.py

The final step is to download a Nextflow executable package in 
the same directory as the available pipelines.

FIGURE 4 | A diagram of template code sharing between the RNA-seq and scRNA-seq pipelines. Each block represents an individual workflow step. Shaded 
blocks share template code, while unshaded blocks are unique.

FIGURE 5 | A decision tree of the digital gene expression (DGE) pipeline 
based on available options in the configuration file. When testing, one 
execution of the pipeline will test one path in the decision tree (highlighted 
in green). The testing module automates the execution and logging of all 
possible paths.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://github.com/montilab/pipeliner


Pipeliner: A Nextflow-Based FrameworkFederico et al.

5 June 2019 | Volume 10 | Article 614Frontiers in Genetics | www.frontiersin.org

$ cd pipeliner/pipelines
$ curl -s https://get.nextflow.io | bash

With the setup complete, any of the available pipelines can 
be executed with their respective toy datasets with the following 
commands.

$./nextflow rnaseq.nf -c rnaseq.config
$./nextflow scrnaseq.nf -c scrnaseq.config
$./nextflow dge.nf -c dge.config

Proof of Concept
To showcase the applicability of Pipeliner to real-world 
datasets, we reprocessed 48 RNA-seq-paired read files for the 
lymphoid neoplasm diffuse large B-cell lymphoma (DLBC) 
cohort from The Cancer Genome Atlas (TCGA). For each 
cohort, the TCGA uses a standardized pipeline where reads 
are mapped to a reference genome with STAR and quantified 
by HTSeq. While the TCGA provides open access to the count 
matrix, some researchers have opted to use alignment and 
quantification algorithms specific to their research interests 
(Rahman et al., 2015). For this reason, the TCGA also 
provides raw sequencing data; however, its large size requires 
parallelization on a high-performance computing platform. 
We argue that Pipeliner is a suitable choice for users looking 
for alternative reprocessing of TCGA datasets with minimal 
pipeline development.

Pipeliner makes alternative processing of TCGA and other 
publicly available data straightforward. In processing raw 
RNA-seq data for DLBC, paired fastq reads were downloaded 
from the Genomic Data Commons Data Portal. For each 
sample, Pipeliner requires an absolute file path to reads. 
After specifying this information, Pipeliner was able to 
successfully process all data with HISAT2, featureCounts, 
and the remaining settings left to default. Data processing 
methods can have subtle effects on downstream analysis of 
sequencing data. This is exemplified by an increase in assigned 
features and decrease in multi-mapping when using HISAT2/
featureCounts instead of STAR/HTSeq (Figure 6). The ability 
for researchers to reprocess publicly available datasets to suit 
their specific interests is important, and Pipeliner is a useful 
software tool that meets those needs. The flexibility provided 
by Pipeliner is ideal for users experimenting with different 
tools and parameters. For example, because Pipeline is capable 
of taking aligned bam files as input and skipping preceding 
steps, we were able to rapidly try all three quantification 
options without rerunning unrelated processes. This level of 
control is critical for downstream analysis of the processed 
data. To help researchers extend this example to other 
datasets, we provide the scripts used to obtain and organize 
TCGA data from the Genomic Data Commons as well as the 
configuration file used by Pipeliner to process the data in the 
supplementary information.

TABLE 1 | Comparison of Pipeliner with common sequencing data workflows.

Pipeliner RseqFlow PRADA Galaxy

Flexibility Any computational tool or script 
can be incorporated into existing 
workflows. Workflow steps can be 
skipped, modified, or removed.

Computational tools are 
determined and difficult to 
remove or modify.

Computational tools are 
determined and difficult to 
remove or modify.

Users are limited to 
existing tools supported by 
the platform.

Extensibility Extensible by design. Includes 
modular workflows, testing 
capabilities, and documentation 
specific to extending the 
framework.

Requires extensive Python 
experience to be extended by 
users. Limited documentation 
for making changes.

Requires extensive Python 
experience to be extended by 
users. Limited documentation 
for making changes.

The platform is not 
designed to be modified 
by its users.

Reproducibility Dependencies are installable from 
Anaconda cloud or environment 
files for Linux or OS X. Workflow 
configuration files are recorded 
and reusable.

No virtualization methods used; 
correct dependency versions 
must be installed manually. 
Workflow steps are not logged.

No virtualization methods used; 
correct dependency versions 
must be installed manually. 
Workflow steps are not logged.

Workflows can be saved, 
shared, and reproduced 
on the platform.

Installation A few simple steps to configure 
environment and install 
dependencies.

Must install dependencies 
and configure environment 
manually.

Must install dependencies and 
configure environment manually.

N/A

Ease of Use Simple config file. Provides 
small example datasets for local 
machines. One command to 
run entire workflow. Extensive 
documentation.

Simple config file. Workflow 
steps must be run individually. 
Provides example datasets. 
Limited documentation.

Simple config file. Workflow 
steps must be run individually. 
Provides example datasets. 
Limited documentation

Click and drag interface. 
Extensive documentation.

Data Types RNA-seq
scRNA-seq
digital gene expression

RNA-seq RNA-seq RNA-seq
ChIP-seq
Mass Spec
16S

Interface Type Command Line Command Line Command Line Web-based
Available for Download GitHub repository SourceForge Tarball Google Code Tarball GitHub repository
Publicly Available Yes Yes Yes Yes
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CONCLUSIONS

Together with Nextflow and Anaconda, Pipeliner enables 
users to process large and complex sequencing datasets with 
pipelines that are customizable, reproducible, and extensible. 
The framework provides a set of user-friendly tools for rapidly 
developing and testing new pipelines for various types of 
sequencing data that will inherit valuable design features of 
existing pipelines. We apply the RNA-seq pipeline to real-word 
data by processing raw sequencing reads from the DLBC cohort 
provided by the TCGA and provide supplementary files that can 
be used to repeat the analysis or serve as a template for applying 
Pipeliner to other publicly available datasets.

AVAILABILITY AND FUTURE DIRECTIONS

Pipeliner is implemented in Nextflow, Python, R, and Bash and 
released under a General Public License 3.0 license. It is publicly 
available at https://github.com/montilab/pipeliner and supports 
Linux and OS X operating systems. Comprehensive documentation 
is generated with Sphinx and hosted by Read the Docs at https://
pipeliner.readthedocs.io/. We will continue to develop the Pipeliner 
framework as the Nextflow programming language matures, and 
we plan to provide additional pipelines for other types of sequencing 
data and analysis workflows in the future.
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