
1 June 2019 | Volume 10 | Article 614

TECHNOLOGY REPORT

doi: 10.3389/fgene.2019.00614
published: 28 June 2019

Frontiers in Genetics | www.frontiersin.org

Edited by:
Vinicius Maracaja-Coutinho,
Universidad de Chile, Chile

Reviewed by:
Pao-Yang Chen,

Academia Sinica, Taiwan
Ernesto Picardi,

University of Bari Aldo Moro, Italy

*Correspondence:
Anthony Federico

anfed@bu.edu
Stefano Monti

smonti@BU.EDU

Specialty section:
This article was submitted to

Bioinformatics and
Computational Biology,
a section of the journal

Frontiers in Genetics

Received: 21 November 2018
Accepted: 13 June 2019
Published: 28 June 2019

Citation:
Federico A, Karagiannis T, Karri K,

Kishore D, Koga Y,Campbell JD
and Monti S (2019) Pipeliner:

A Nextflow-Based Framework
for the Definition of Sequencing

Data Processing Pipelines.
Front. Genet. 10:614.

doi: 10.3389/fgene.2019.00614

Pipeliner: A Nextflow-Based
Framework for the Definition
of Sequencing Data Processing
Pipelines
Anthony Federico 1,2*, Tanya Karagiannis 1, Kritika Karri 1, Dileep Kishore 1, Yusuke Koga 2,
Joshua D. Campbell 1,2 and Stefano Monti 1,2*

1 Bioinformatics Program, Boston University, Boston, MA, United States, 2 Division of Computational Biomedicine, Boston
University School of Medicine, Boston, MA, United States

The advent of high-throughput sequencing technologies has led to the need for flexible
and user-friendly data preprocessing platforms. The Pipeliner framework provides an
out-of-the-box solution for processing various types of sequencing data. It combines
the Nextflow scripting language and Anaconda package manager to generate modular
computational workflows. We have used Pipeliner to create several pipelines for sequencing
data processing including bulk RNA-sequencing (RNA-seq), single-cell RNA-seq, as well
as digital gene expression data. This report highlights the design methodology behind
Pipeliner that enables the development of highly flexible and reproducible pipelines that
are easy to extend and maintain on multiple computing environments. We also provide a
quick start user guide demonstrating how to setup and execute available pipelines with
toy datasets.

Keywords: pipeline development, sequencing workflows, Nextflow, RNA-seq pipeline, scRNA-seq pipeline

INTRODUCTION

High-throughput sequencing (HTS) technologies are vital to the study of genomics and related
fields. Breakthroughs in cost efficiency have made it common for studies to obtain millions of raw
sequencing reads. However, processing these data requires a series of computationally intensive
tools that can be unintuitive to use, difficult to combine into stable workflows that can handle
large number of samples, and challenging to maintain over long periods of time in different
environments. The effort to simplify this process has resulted in the development of sequencing
pipelines such as RseqFlow (Wang et al., 2011), PRADA (Torres-García et al., 2014), and Galaxy
(Goecks et al., 2010), among others. Some of these pipelines are open-source and either available
for download or on publicly available servers. However, some drawbacks include difficulty when
deploying on existing computational resources, limited selection of computational tools, and
unintuitive or limited ability to make modifications. While other frameworks may be more flexible,
they often require the user to install each needed tool separately, which may be challenging and
reduce reproducibility.

Pipeliner is a framework for the definition of sequencing data processing pipelines that
aims to solve these issues. Pipelines developed within the framework are platform independent
and fully reproducible and inherit automated job parallelization and failure recovery. Their
flexibility and modular architecture allows users to easily customize and modify processes

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00614
https://www.frontiersin.org/journals/genetics#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00614&domain=pdf&date_stamp=2019-06-28
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:anfed@bu.edu
mailto:smonti@BU.EDU
https://doi.org/10.3389/fgene.2019.00614
https://www.frontiersin.org/article/10.3389/fgene.2019.00614/full
https://www.frontiersin.org/article/10.3389/fgene.2019.00614/full
https://www.frontiersin.org/article/10.3389/fgene.2019.00614/full
https://www.frontiersin.org/article/10.3389/fgene.2019.00614/full
https://loop.frontiersin.org/people/627214
https://loop.frontiersin.org/people/650365
https://loop.frontiersin.org/people/759761/overview
https://loop.frontiersin.org/people/714243
https://loop.frontiersin.org/people/647948
https://loop.frontiersin.org/people/656795
https://loop.frontiersin.org/people/61455

Pipeliner: A Nextflow-Based FrameworkFederico et al.

2 June 2019 | Volume 10 | Article 614Frontiers in Genetics | www.frontiersin.org

based on their needs. Pipeliner also provides additional
resources that allow developers to rapidly build and test
their own pipelines in an efficient and scalable manner.
Pipeliner is a complete and user-friendly solution to meet the
demands of processing large amounts and various types of
sequencing data.

MATERIALS AND METHODS

Design and Features
Pipeliner is a suite of tools and methods for defining
sequencing pipelines. It uses Nextflow, a portable, scalable,
and parallelizable domain-specific language, to define data
workflows (Di Tommaso et al., 2017). Using Nextflow, each
pipeline is modularized, consisting of a configuration file as
well as a series of processes. These processes define the major
steps in each pipeline and can be written in Linux-executable
scripting languages such as Bash, Python, Ruby, etc. Nextflow
processes are connected through channels—asynchronous
first in, first out queues—which allow data to be passed
between the different steps in each pipeline using a dataflow
programming model. Using this architecture, pipelines
developed within the Pipeliner framework inherit multiple
features that contribute to their flexibility, reproducibility, and
extensibility (Figure 1).

Pipeline Flexibility
Pipeliner enables flexible customization of pipeline options
and parameters. Pipeliner currently offers three pipelines to
demonstrate its applicability in processing different types of

data, including bulk RNA-seq, single-cell RNA-seq (scRNA-
seq), as well as digital gene expression (DGE) data (Soumillon
et al., 2014). For the RNA-seq pipeline, sequencing reads are
checked for quality with FastQC (Andrews, 2010), trimmed
with TrimGalore (Krueger, 2016), mapped to a reference
genome with either STAR (Dobin et al., 2012) or HISAT2 (Kim
et al., 2015), and quantified with either StringTie (Pertea et al.,
2015), HTSeq (Anders et al., 2015), or featureCounts (Liao et al.,
2014). After alignment, mapping quality is checked with RSeQC
(Wang et al., 2012), and a comprehensive summary report of all
processes is generated with MultiQC (Ewels et al., 2016). The
scRNA-seq and DGE pipelines adopt a similar methodology,
and the development of additional pipelines for microRNA-
seq (miRNA-seq) and RNA-seq Variant Calling is currently
underway.

Parameter Configuration
All pipeline options and process parameters are set from a
single configuration file (Figure 2). Users have the option to
select and skip various steps as well as customize parameters
and allocate computing resources for specific processes. This
flexibility gives rise to many different use cases. For example,
a user may opt to provide a pre-indexed reference genome or
start the pipeline after the mapping step with saved alignment
files or output an ExpressionSet data structure with count and
phenotypic data. Thus, each pipeline is multipurpose and allows
users to frequently tweak settings without adding complexity or
sacrificing reproducibility.

The default configuration file defines variables for common
parameters of third-party software tools used in each
pipeline. These tools are wrapped into templates—one for

FIGURE 1 | The Pipeliner framework employs reusable template processes strung together via Nextflow’s scripting language to create workflows in addition to
developer tools such as toy datasets and testing modules.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org

Pipeliner: A Nextflow-Based FrameworkFederico et al.

3 June 2019 | Volume 10 | Article 614Frontiers in Genetics | www.frontiersin.org

each process—which are executed sequentially within the
pipeline script. Because some software tools have hundreds of
arguments, users have the option to insert code injections from
the configuration file. These code injections can be used to pass
uncommon keyword arguments or to append ad hoc processing
steps (Figure 3). These features provide unrestricted control
over each step in the execution of a pipeline. Furthermore,
since all modifications are made within the configuration file—
which is copied with each run—the pipeline script is left intact,
preserving the reproducibility of each run regardless of any
execution-specific changes the user may make.

Workflow Reproducibility
Pipeliner is designed to create reproducible workflows. An
abstraction layer between Nextflow and Pipeliner logic enables
platform independence and seamless compatibility with high-
performance cloud computing executors such as Amazon Web
Services. Pipeliner also uses Anaconda—a multi-platform
package and environment manager—to manage all third-party
software dependencies and handle pre-compilation of all required
tools before a pipeline is executed (Continuum Analytics, 2016).

Pipeliner is bundled with a prepackaged environment
hosted on Anaconda Cloud that contains all software packages
necessary to run any of the three pipelines available. This virtual
environment ensures consistent versioning of all software tools
used during each pipeline execution. Additionally, all file paths,
pipeline options, and process parameters are recorded, time
stamped, and copied into a new configuration file with each run,
ensuring pipelines are fully reproducible regardless of where and
when they are executed.

Extensibility
Pipeliner makes the development of bioinformatics pipelines
more efficient. The configuration file and processes that
makeup each pipeline are inherited from shared blocks of code
called template processes. For example, if a major update to an
alignment tool requires modification to its template process,
these changes propagate to all pipelines inheriting it (Figure 4).
This property also minimizes the amount of code introduced as
new pipelines are created, making them quicker to develop and
easier to maintain. If a pipeline can inherit all of its processes
with predefined templates, the user is only required to link these
processes via Nextflow’s scripting language and create a basic
configuration file.

Rapid Development and Testing
Users can rapidly develop pipelines by using the toy datasets
conveniently included with Pipeliner, enabling developers to
test modifications made to their pipeline in minutes rather
than hours. When testing, each execution covers only one
configuration of parameters, meaning some processes may be
skipped or partially executed depending on the configuration
file. Therefore, to increase decision coverage, that is, the
amount of tested reachable code, Pipeliner includes a custom
testing module that automatically executes and logs a series of
independent tests and configuration files (Figure 5). With these
tools, users can efficiently build, test, and maintain multiple
sequencing pipelines.

FIGURE 2 | A shortened example of a configuration file, highlighting the key
components. This configuration includes resource allocations for cluster
executions, input and output paths to data, general pipeline parameters, as
well as process-specific parameters. FIGURE 3 | A code example of a template defined for the software tool

featureCounts. The template wraps user-defined parameters, paths to data,
as well as code injections into an executable bash script used in one of the
pipeline steps.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org

Pipeliner: A Nextflow-Based FrameworkFederico et al.

4 June 2019 | Volume 10 | Article 614Frontiers in Genetics | www.frontiersin.org

Comparisons with Other Available Tools
Pipeliner has several characteristics that distinguish it from
existing sequencing data workflows, such as RseqFlow (Wang
et al., 2011), PRADA (Torres-García et al., 2014), or Galaxy
(Goecks et al., 2010) (Table 1). These tools and their dependencies
can be difficult to install and setup, lack sufficient documentation,
and are rigid in their design, making customization challenging.
Downloading and setting up Pipeliner is simple, and all
dependencies are automatically installed through a virtual
environment, ensuring data reproducibility and compatibility
across various computing environments. Pipeliner is designed
to be modular and flexible; therefore, workflow steps can be
modified, skipped, removed, or extended. Pipeliner provides
comprehensive documentation for general use as well as for
developers who wish to extend the framework.

Usage Guide
In addition to comprehensive documentation of the framework
and to demonstrate its ease of use, we provide a tutorial for
processing the toy datasets available for each pipeline.

Processing Toy Datasets
The Pipeliner framework requires Nextflow and Anaconda.
Nextflow requires Java 8 (or higher) to be installed and can
be used on Linux and OS X machines. Third-party software
tools will be installed and managed through an Anaconda
virtual environment. Once the prerequisites are installed, the
repository can be cloned from GitHub to any location through
the following command:

$ git clone https://github.com/montilab/pipeliner

The next step is to clone and activate the virtual environment.
The easiest method is to recreate the environment through
the yml files provided in the repository. There is a single yml
file for both Linux and OS X operating systems, containing all
dependencies for all available pipelines.

$ conda env create -f pipeliner/envs/linux_env.yml
Linux
$ conda env create -f pipeliner/envs/osx_env.yml #
OS X
$ source activate pipeliner

Pipeliner requires configuration of paths to input data such as
fastq reads, bam alignments, references files, etc. When cloning
Pipeliner to a new machine, all paths must be reconfigured. This
process can be automated by running a script that will reconfigure
any paths to the same directory of your clone.

$ python pipeliner/scripts/paths.py

The final step is to download a Nextflow executable package in
the same directory as the available pipelines.

FIGURE 4 | A diagram of template code sharing between the RNA-seq and scRNA-seq pipelines. Each block represents an individual workflow step. Shaded
blocks share template code, while unshaded blocks are unique.

FIGURE 5 | A decision tree of the digital gene expression (DGE) pipeline
based on available options in the configuration file. When testing, one
execution of the pipeline will test one path in the decision tree (highlighted
in green). The testing module automates the execution and logging of all
possible paths.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://github.com/montilab/pipeliner

Pipeliner: A Nextflow-Based FrameworkFederico et al.

5 June 2019 | Volume 10 | Article 614Frontiers in Genetics | www.frontiersin.org

$ cd pipeliner/pipelines
$ curl -s https://get.nextflow.io | bash

With the setup complete, any of the available pipelines can
be executed with their respective toy datasets with the following
commands.

$./nextflow rnaseq.nf -c rnaseq.config
$./nextflow scrnaseq.nf -c scrnaseq.config
$./nextflow dge.nf -c dge.config

Proof of Concept
To showcase the applicability of Pipeliner to real-world
datasets, we reprocessed 48 RNA-seq-paired read files for the
lymphoid neoplasm diffuse large B-cell lymphoma (DLBC)
cohort from The Cancer Genome Atlas (TCGA). For each
cohort, the TCGA uses a standardized pipeline where reads
are mapped to a reference genome with STAR and quantified
by HTSeq. While the TCGA provides open access to the count
matrix, some researchers have opted to use alignment and
quantification algorithms specific to their research interests
(Rahman et al., 2015). For this reason, the TCGA also
provides raw sequencing data; however, its large size requires
parallelization on a high-performance computing platform.
We argue that Pipeliner is a suitable choice for users looking
for alternative reprocessing of TCGA datasets with minimal
pipeline development.

Pipeliner makes alternative processing of TCGA and other
publicly available data straightforward. In processing raw
RNA-seq data for DLBC, paired fastq reads were downloaded
from the Genomic Data Commons Data Portal. For each
sample, Pipeliner requires an absolute file path to reads.
After specifying this information, Pipeliner was able to
successfully process all data with HISAT2, featureCounts,
and the remaining settings left to default. Data processing
methods can have subtle effects on downstream analysis of
sequencing data. This is exemplified by an increase in assigned
features and decrease in multi-mapping when using HISAT2/
featureCounts instead of STAR/HTSeq (Figure 6). The ability
for researchers to reprocess publicly available datasets to suit
their specific interests is important, and Pipeliner is a useful
software tool that meets those needs. The flexibility provided
by Pipeliner is ideal for users experimenting with different
tools and parameters. For example, because Pipeline is capable
of taking aligned bam files as input and skipping preceding
steps, we were able to rapidly try all three quantification
options without rerunning unrelated processes. This level of
control is critical for downstream analysis of the processed
data. To help researchers extend this example to other
datasets, we provide the scripts used to obtain and organize
TCGA data from the Genomic Data Commons as well as the
configuration file used by Pipeliner to process the data in the
supplementary information.

TABLE 1 | Comparison of Pipeliner with common sequencing data workflows.

Pipeliner RseqFlow PRADA Galaxy

Flexibility Any computational tool or script
can be incorporated into existing
workflows. Workflow steps can be
skipped, modified, or removed.

Computational tools are
determined and difficult to
remove or modify.

Computational tools are
determined and difficult to
remove or modify.

Users are limited to
existing tools supported by
the platform.

Extensibility Extensible by design. Includes
modular workflows, testing
capabilities, and documentation
specific to extending the
framework.

Requires extensive Python
experience to be extended by
users. Limited documentation
for making changes.

Requires extensive Python
experience to be extended by
users. Limited documentation
for making changes.

The platform is not
designed to be modified
by its users.

Reproducibility Dependencies are installable from
Anaconda cloud or environment
files for Linux or OS X. Workflow
configuration files are recorded
and reusable.

No virtualization methods used;
correct dependency versions
must be installed manually.
Workflow steps are not logged.

No virtualization methods used;
correct dependency versions
must be installed manually.
Workflow steps are not logged.

Workflows can be saved,
shared, and reproduced
on the platform.

Installation A few simple steps to configure
environment and install
dependencies.

Must install dependencies
and configure environment
manually.

Must install dependencies and
configure environment manually.

N/A

Ease of Use Simple config file. Provides
small example datasets for local
machines. One command to
run entire workflow. Extensive
documentation.

Simple config file. Workflow
steps must be run individually.
Provides example datasets.
Limited documentation.

Simple config file. Workflow
steps must be run individually.
Provides example datasets.
Limited documentation

Click and drag interface.
Extensive documentation.

Data Types RNA-seq
scRNA-seq
digital gene expression

RNA-seq RNA-seq RNA-seq
ChIP-seq
Mass Spec
16S

Interface Type Command Line Command Line Command Line Web-based
Available for Download GitHub repository SourceForge Tarball Google Code Tarball GitHub repository
Publicly Available Yes Yes Yes Yes

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://get.nextflow.io

Pipeliner: A Nextflow-Based FrameworkFederico et al.

6 June 2019 | Volume 10 | Article 614Frontiers in Genetics | www.frontiersin.org

CONCLUSIONS

Together with Nextflow and Anaconda, Pipeliner enables
users to process large and complex sequencing datasets with
pipelines that are customizable, reproducible, and extensible.
The framework provides a set of user-friendly tools for rapidly
developing and testing new pipelines for various types of
sequencing data that will inherit valuable design features of
existing pipelines. We apply the RNA-seq pipeline to real-word
data by processing raw sequencing reads from the DLBC cohort
provided by the TCGA and provide supplementary files that can
be used to repeat the analysis or serve as a template for applying
Pipeliner to other publicly available datasets.

AVAILABILITY AND FUTURE DIRECTIONS

Pipeliner is implemented in Nextflow, Python, R, and Bash and
released under a General Public License 3.0 license. It is publicly
available at https://github.com/montilab/pipeliner and supports
Linux and OS X operating systems. Comprehensive documentation
is generated with Sphinx and hosted by Read the Docs at https://
pipeliner.readthedocs.io/. We will continue to develop the Pipeliner
framework as the Nextflow programming language matures, and
we plan to provide additional pipelines for other types of sequencing
data and analysis workflows in the future.

AUTHOR CONTRIBUTIONS

AF—Developed the current version of Pipeliner, wrote the
manuscript, and generated the figures; TK—Initiated the
project and developed early versions of Pipeliner; KK—
Initiated the project and developed early versions of Pipeliner;
DK—Initiated the project and developed early versions
of Pipeliner; YK—Assisted in development of individual
sequencing pipelines; JC—Initiated, oversaw, and guided the
project as well as helped in writing the manuscript; SM—
Initiated, oversaw, and guided the project as well as helped in
writing the manuscript.

FUNDING

This work was supported by a Superfund Research Program grant
P42ES007381 (SM) and the LUNGevity Career Development
Award (JC).

ACKNOWLEDGMENTS

The authors would like to thank P. Di Tommaso for his assistance
with Nextflow-related inquiries and A. Gower for his advice for
improving and testing Pipeliner.

FIGURE 6 | A summary of counting and mapping quality metrics when processing with Pipeliner using HISAT2 and featureCounts compared with processed counts
from The Cancer Genome Atlas (TCGA)-diffuse large B-cell lymphoma (DLBC) using STAR and HTSeq.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://github.com/montilab/pipeliner
https://pipeliner.readthedocs.io/
https://pipeliner.readthedocs.io/

Pipeliner: A Nextflow-Based FrameworkFederico et al.

7 June 2019 | Volume 10 | Article 614Frontiers in Genetics | www.frontiersin.org

REFERENCES

Anders, S., Pyl, P. T., and Huber, W. (2015). HTSeq - a Python framework to work
with high-throughput sequencing data. Bioinformatics 31 (2), 166–169. doi:
10.1093/bioinformatics/btu638

Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data.
Babraham Bioinforma. doi: 10.1016/S1048-9843(02)00144-3

Continuum Analytics. (2016). Anaconda Software Distribution: Version 2-2.4.0.
Available online at: https://continuum.io.

Di Tommaso, P., Chatzou, M., Floden, E. W., Barja, P. P., Palumbo, E., and Notredame, C.
(2017). Nextflow enables reproducible computational workflows. Nat.
Biotechnol. 35 (4), 316–319. doi: 10.1038/nbt.3820

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al. (2012).
STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29 (1), 15–21. doi:
10.1093/bioinformatics/bts635

Ewels, P., Magnusson, M., Lundin, S., and Käller, M. (2016). MultiQC: summarize
analysis results for multiple tools and samples in a single report. Bioinformatics
32 (19), 3047–3048. doi: 10.1093/bioinformatics/btw354

Goecks, J., Nekrutenko, A., Taylor, J., Afgan, E., Ananda, G., Baker, D., et al. (2010).
Galaxy: a comprehensive approach for supporting accessible, reproducible, and
transparent computational research in the life sciences. Genome Biol. 11. doi:
10.1186/gb-2010-11-8-r86

Kim, D., Langmead, B., and Salzberg, S. L. (2015). HISAT: a fast spliced aligner with
low memory requirements. Nat. Methods 12 (4), 357–360. doi: 10.1038/nmeth.3317

Krueger, F. (2016). Trim Galore. Babraham Bioinforma.
Liao, Y., Smyth, G. K., and Shi, W. (2014). Featurecounts: an efficient general

purpose program for assigning sequence reads to genomic features.
Bioinformatics 30 (7), 923–930. doi: 10.1093/bioinformatics/btt656

Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T., and
Salzberg, S. L. (2015). StringTie enables improved reconstruction of a

transcriptome from RNA-seq reads. Nat. Biotechnol. 33 (3), 290–295. doi:
10.1038/nbt.3122

Rahman, M., Jackson, L. K., Johnson, W. E., Li, D. Y., Bild, A. H., and Piccolo, S. R.
(2015). Alternative preprocessing of RNA-Sequencing data in the Cancer
Genome Atlas leads to improved analysis results. Bioinformatics 31 (22), 3666–
3672. doi: 10.1093/bioinformatics/btv377

Soumillon, M., Cacchiarelli, D., Semrau, S., van Oudenaarden, A., and Mikkelsen, T. S.
(2014). Characterization of directed differentiation by high-throughput single-
cell RNA-seq. BioRxiv. doi: 10.1101/003236

Torres-García, W., Zheng, S., Sivachenko, A., Vegesna, R., Wang, Q., Yao, R., et al.
(2014). PRADA: pipeline for RNA sequencing data analysis. Bioinformatics 30,
2224–2226. doi: 10.1093/bioinformatics/btu169

Wang, L., Wang, S., and Li, W. (2012). RSeQC: quality control of RNA-seq
experiments. Bioinformatics 28 (16), 2184–2185. doi: 10.1093/bioinformatics/
bts356

Wang, Y., Mehta, G., Mayani, R., Lu, J., Souaiaia, T., Chen, Y., et al. (2011).
RseqFlow: workflows for RNA-Seq data analysis. Bioinformatics 27, 2598–
2600. doi: 10.1093/bioinformatics/btr441

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Federico, Karagiannis, Karri, Kishore, Koga, Campbell and Monti.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1016/S1048-9843(02)00144-3
https://continuum.io
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/btw354
https://doi.org/10.1186/gb-2010-11-8-r86
https://doi.org/10.1038/nmeth.3317
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1038/nbt.3122
https://doi.org/10.1093/bioinformatics/btv377
https://doi.org/10.1101/003236
https://doi.org/10.1093/bioinformatics/btu169
https://doi.org/10.1093/bioinformatics/bts356
https://doi.org/10.1093/bioinformatics/bts356
https://doi.org/10.1093/bioinformatics/btr441
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Pipeliner: A Nextflow-Based Framework for the Definition of Sequencing Data Processing Pipelines
	Introduction
	Materials and Methods
	Design and Features
	Pipeline Flexibility
	Parameter Configuration
	Workflow Reproducibility
	Extensibility
	Rapid Development and Testing
	Comparisons with Other Available Tools
	Usage Guide
	Processing Toy Datasets
	Proof of Concept

	Conclusions
	Availability and Future Directions
	Author Contributions
	Funding
	Acknowledgments
	References

