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Streptococcus tigurinus is a novel species of viridans
streptococci, shown to cause severe invasive infections such as
infective endocarditis, spondylodiscitis and meningitis. S.
tigurinus belongs to the Streptococcus mitis group and is most
closely related to Streptococcus mitis, Streptococcus oralis,
Streptococcus pneumoniae, Streptococcus pseudopneumoniae
and Streptococcus infantis. The presence of S. tigurinus in the
human oral cavity has been documented, including in patients
with periodontal disease. This review addresses the available
scientific knowledge on S. tigurinus and its association with
closely related streptococci, and discusses its putative
involvement in common oral infections. While there is as yet no
strong evidence on the involvement of S. tigurinus with oral
infections, its presence in the oral cavity and its association with
endocarditis warrants special attention for a link between oral
and systemic infection.

Introduction

The human oral microbiome consists of a number of bacteria;
most of them are non-pathogenic commensals or act as opportu-
nistic pathogens.1 Some oral bacteria are implicated in oral dis-
eases such as dental caries and periodontitis, which are among
the most common infections in humans.2,3 Several oral bacteria
have the capacity to form biofilms, which are built by complex
polymicrobial mechanisms on surfaces of teeth or soft oral
mucosa.4 Viridans streptococci form a major part of the human
oral microbiome, comprising 4 species groups: namely salivarius,
anginosus, mutans and mitis group, respectively.5 Streptococcus
mutans is a key player in the development of dental caries,6 and
Streptococcus anginosus is detected in periapical odontogenic
abscesses,7 while the other species groups are less known as causa-
tive agents of oral diseases. Some bacterial species are rather asso-
ciated with oral health than disease, e.g., Streptococcus salivarius,

which is commonly found on mucosal surfaces and in the saliva.8

Interestingly, the filamentation capacity of S. salivarius is
markedly increased compared to other viridans streptococci, a
property which may be required for a more efficient adhesion
onto continuously shedding oral mucosal surfaces.9 Other more
virulent bacteria potentially enter the bloodstream, which
increases the risk for invasive infections, e.g., infective endocardi-
tis.10 Streptococcus mitis, a prominent representative of viridans
streptococci, is a leading cause of infective endocarditis.11

Recently, a novel pathogen associated with severe invasive
infections such as infective endocarditis was described: Streptococ-
cus tigurinus belonging to viridans streptococci.12-14 S. tigurinus
initially was detected in an elderly patient with infective endocar-
ditis.12 First, a viridans streptococcal organism was isolated in
multiple blood cultures of the patient. Then, the bacterial strain
was analyzed by 16S rRNA gene sequencing for accurate species
identification. Analysis of the aortic valve specimen of the patient
by direct 16S rRNA gene broad-range PCR15 revealed an identi-
cal sequence compared to that of the isolate from the blood. 16S
rRNA gene sequence comparison to validated sequences in the
public database showed highest sequence similarity to the strain
S. mitis ATCC 15914 with 99.9% identity (GenBank accession
number AY281076). The next best match in the database was
the type strain of the species S. mitis ATCC 49456T (AY485601)
but only with 98.6% sequence identity. Obviously, this was a
novel species because of the high sequence demarcation of 1.3%.
Additionally, the strain ATCC 15914, which was typed in 1977
based solely on phenotypic characteristics, must have been erro-
neously assigned to the species S. mitis.16 Other authors have
questioned the correct species assignment of strain ATCC 15914
on basis of analyses of the housekeeping genes zwf and gki17 and
the ribosomal 16S-23S intergenic spacer region.18 Deeper analy-
ses by different methods such as conventional biochemical
testing, molecular analyses and DNA-DNA hybridization techni-
ques proofed the presence of a novel species for which the name
S. tigurinus was assigned.12

S. tigurinus is a member of the Streptococcus mitis group
S. tigurinus belongs to the S. mitis group, which consists of

different species, i.e., Streptococcus pneumoniae, Streptococcus pseu-
dopneumoniae, S. mitis, Streptococcus oralis, Streptococcus infantis,
Streptococcus sanguinis, Streptococcus parasanguinis, Streptococcus
cristatus, Streptococcus gordonii, Streptococcus peroris, Streptococcus
australis, Streptococcus oligofermentans and Streptococcus sinen-
sis.19,20 Recently, 3 novel species were assigned to the S. mitis
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group, i.e., Streptococcus dentisani,21 Streptococcus rubneri22 and
Streptococcus lactarius.23 S. dentisani was isolated from supragingi-
val dental plaque from adult individuals who had never suffered
from dental caries21; S. rubneri was isolated from throat swab
samples of healthy humans22 and S. lactarius from breast milk of
healthy women.23 Members of the S. mitis group are known as
commensal bacteria of the human oral cavity, gastrointestinal
tract and the female genital tract, however, invasive infections
might occur when entering the bloodstream.10 S. pneumoniae is
associated with bacteremia, meningitis, otitis media and sinusitis;
and is the most common cause of community-acquired pneumo-
nia.10 Commensals such as S. oralis and S. mitis are major patho-
gens for infective endocarditis in native or prosthetic heart
valves.10, 24

Proper identification of species within the S. mitis group
consisting of phenotypically very closely related species still
remains a challenge, in particular for S. pneumoniae, S. pseu-
dopneumoniae, S. mitis, and S. oralis. Identification by conven-
tional phenotypic methods including commercial kits as
VITEK 2 GP colorimetric card or API rapid 20 Strep strip
(bioM�erieux, Marcy-l’Etoile, France) are limited25,26 and
newer rapid technologies such as matrix-assisted laser desorp-
tion ionization-time of flight mass spectrometry (MALDI-
TOF MS) are useful for initial assessment to the S. mitis group
but frequently do not allow for accurate identification.27-29

However, there are promising reports elaborating on the dif-
ferentiation of S. pneumoniae from other S. mitis group bacte-
ria by MALDI-TOF MS.30,31 Molecular analysis by the 50-
part of the 16S rRNA gene, which is the gold standard for
bacterial identification,26,32-34 is not sufficiently discriminative
to differentiate S. pneumoniae, S. pseudopneumoniae, S. mitis
and S. oralis due to a >99% sequence homology.25,35 In the
past, several other target genes like sodA,36,37 rpoB38 and
groEL39 were proposed for species differentiation. The recA
gene was recently demonstrated as alternative target to differ-
entiate S. pneumoniae from other viridans streptococci.40 An

interspecies homology of less
than 95.8% was shown
within a 313-bp part of recA,
representing a hypervariable
region. Additionally, 6 signa-
ture nucleotides specific for
S. pneumoniae were identi-
fied within the 313-bp recA
fragment.

Difficulties in identify-
ing bacteria of the S. mitis
group to the species level
might explain why the novel
species S. tigurinus was
unrecognized and underre-
ported in the past. How-
ever, proper identification
of those bacteria is impor-
tant regarding species-spe-
cific pathogenicity, efficient

patient management and guidance of appropriate antimicrobial
therapy where needed.

Microbiological characteristics of
S. tigurinus.

S. tigurinus belongs to Gram-positive cocci arranged in chains
and is a non-motile, non-spore-forming and catalase-negative bacte-
rium. Colonies on sheep blood agar are smooth, white to grayish,
a-hemolytic and 0.5 to 1 mm in diameter after 24 h incubation at
37�C in aerobic atmosphere. The type strain of the species is
AZ_3aT and is deposited in 2 different culture collections: the Cul-
ture Collection of Switzerland, CCOS, W€adenswil, Switzerland,
under accession number CCOS 600T; and the Deutsche Sammlung
f€ur Mikroorganismen und Zellkulturen, DSMZ, Braunschweig,
Germany, under accession number DSM 24864T. The type strain
AZ_3aT has a GCC content of the DNA of 40 mol%.12

Phylogenetic analysis by the 16S rRNA gene of species of the
S. mitis group demonstrated that S. tigurinus type strain AZ_3aT

is clearly distinguished from the other species (Fig. 1). Within
the S. mitis group, S. tigurinus forms a subcluster with S. pseudop-
neumoniae, S. pneumoniae, S. mitis, S. oralis and S. infantis
(Fig. 1). The species most closely related to the S. tigurinus type
strain AZ_3aT is S. mitis AY485601 with a sequence similarity of
98.6%; the next related species are S. infantis AY485603
(98.5%), S. pseudopneumoniae AY612844 (98.3%), S. pneumo-
niae AY485600 (98.2%) and S. oralis AY485602 (98.1%).12

For laboratory diagnostic means, commercial systems such as
VITEK 2 colorimetric card (bioM�erieux) or MALDI-TOF MS
are useful as screening method for assignment of the unknown
organism into the S. mitis group but do not allow for accurate
identification of S. tigurinus. Because of the limited database,
analysis of the S. tigurinus strains by the VITEK 2 colorimetric
card (bioM�erieux) revealed identification as S. mitis / S. oralis;
whereas MALDI-TOF MS analysis yielded scores of � 2.2 with
S. pneumoniae, which suggests an identification on species level.12

Thus, for accurate identification of S. tigurinus, sequence analysis
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Figure 1. Phylogenetic analysis of the Streptococcus mitis group. The neighbor-joining phylogenetic tree based on
partial 16S rRNA gene sequences (>1300 bp) shows the relationships among S. tigurinus strain AZ_3aT and related
species within the S. mitis group. Bootstrap percentages (based on 1000 replications)> 50% are shown at branching
points. Published sequences used were from the public GenBank database. Bar, 0.01 substitutions per nucleotide
position.
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of the partial 16S rRNA gene is mandatory. Recently, a S. tiguri-
nus specific real-time TaqMan PCR was developed for highly
sensitive and specific detection of S. tigurinus directly in clinical
samples.41

Ecological niche of S. tigurinus in the human oral
microbial flora

The human oral microbiome consists of diverse bacterial
phyla, e.g., Firmicutes, Actinobacteria, Proteobacteria, Bacteroi-
detes, Synergistetes and Proteobacteria.42,43 Viridans streptococci,
e.g., S. mitis, are known to be the predominant bacterial species
in the human oral cavity and were detected in various dental
sites.42 S. oralis is an early colonizing species of the tooth surface
and can mediate the first events of biofilm formation. Thus, S.
tigurinus was also expected to be present in the human oral
microbial flora. In a previous report, S. tigurinus was not detected
in saliva samples, however, the method applied was only based on
culturing methods followed by analyses by MALDI-TOF MS.13

As described before, these methods are limited in accurate identi-
fication of S. tigurinus thus an underestimation of S. tigurinus in
the oral cavity seemed likely. By using a more sensitive method,
i.e., a S. tigurinus specific real-time TaqMan PCR, S. tigurinus
was detected in half of the individuals investigated.41 Zbinden
et al. analyzed 51 saliva samples and 51 subgingival plaque sam-
ples obtained from 51 individuals by the S. tigurinus specific real-
time TaqMan PCR.41 S. tigurinus was detected both in saliva
(n D 22, 43%) and in subgingival plaque samples (n D 18,
35%). Overall, in 27 (53%) out of 51 individuals, S. tigurinus
was detected in the saliva samples and / or in the plaque samples.
Saliva consists of bacteria from different oral sites including the
subgingival area. Thus it is not surprising that S. tigurinus was
found in the saliva in a higher frequency than in individually
selected subgingival sites. Saliva has been shown to be a suitable
biological fluid as alternative to pooled subgingival plaque sam-
ples for detection of oral bacteria such as newly identified Syner-
gistetes.44 The presence of S. tigurinus in the oral cavity was
neither influenced by age nor nicotine consumption.41

Clinical manifestation of S. tigurinus
Members of the microbial flora originating from the oral cav-

ity may be involved in the pathogenesis of systemic infections.45

Biofilm formation, complex mechanisms with other bacteria or
underlying diseases might play a crucial role in the development
of invasive infections. To date, all S. tigurinus isolates detected
from clinical human patient samples were causing severe invasive
infections. S. tigurinus most frequently caused infective endocar-
ditis (n D 7).13 Over a period of 10 years, 15% of all infective
endocarditis cases caused by viridans streptococci were caused by
S. tigurinus.13 Other patients developed spondylodiscitis (n D 3),
bacteremia (nD 3), prosthetic joint infection (nD 2) and menin-
gitis (n D 1) caused by S. tigurinus.12-14 S. tigurinus was isolated
from normally sterile human body sites, e.g., blood, heart valves,
cerebrospinal fluid and periarticular joint biopsy specimens. All
patients recovered after appropriate antimicrobial therapy, how-
ever, 8 out of 16 patients required surgical interventions. S. tigur-
inus affected not only immunocompromised patients or patients

with underlying conditions such as preexisting cardiac morbid-
ities but also healthy young patients without any comorbid-
ities.12-14 To date, a specific risk factor profile for the
development of invasive infections with S. tigurinus could not be
established yet due to the limited number of patients.

To note, S. tigurinus still might be underreported as causative
agent of invasive infections for laboratory diagnostic reasons.
Most microbiological diagnostic laboratories rely on identifica-
tion methods by mass spectrometry, which usually allows rapid
identification of bacteria but has a limited discriminative power
when analyzing closely related species. Molecular techniques
facilitating accurate identification of S. tigurinus are not applica-
ble in every routine microbiological laboratory. Yet, the occur-
rence of S. tigurinus in causing invasive infections seems
geographically unlimited, since in a recent report of Japan S.
tigurinus was demonstrated to be the causative agent in 2 cases of
infective endocarditis.46

S. tigurinus is mostly fully susceptible to different antimicro-
bial classes. Susceptibility to penicillin, gentamicin, vancomycin,
levofloxacin, erythromycin and clindamycin was demon-
strated.13 Some S. tigurinus strains displayed reduced suscepti-
bility or resistance to tetracycline.13 Nevertheless, the antibiotic
resistance profile should be determined in each invasive isolate
as S. mitis group species are known for bacterial transformation
and can acquire multiple genetic elements containing resistance
genes.47

Association of S. tigurinus with oral infections
Although more than 700 species were shown to colonize

the oral cavity,42 evidence suggests that only a few of them,
e.g., Aggregatibacter actinomycetemcomitans or Porphyromonas
gingivalis, are associated with the pathogenesis of periodonti-
tis or systemic complications.48,49 Streptococci were found to
be more prevalent in healthy individuals, however, S. parasan-
guinis was proposed to be involved in localized aggressive
periodontitis by interaction with the major pathogen A. acti-
nomycetemcomitans.50 Furthermore, S. mitis is overrepresented
in endodontic infections,51 the etiology of which likely is
polymicrobial.52

To date, it is not yet fully understood whether or not S. tiguri-
nus is more prevalent in individuals with periodontitis or if it is
involved in the development of other oral infections. S. tigurinus
not only was detected in patients with periodontitis but also in
individuals without periodontal diseases.41,53 Earlier studies have
demonstrated that S. mitis, which is the closest related species to
S. tigurinus, is a predominant early colonizing species of dental
biofilms.54 Although S. mitis is not a potent inducer of immune
responses, it can antagonize the capacity of A. actinomycetemcomi-
tans (a key pathogen associated with the localized aggressive form
of periodontitis occurring in younger individuals) to stimulate
IL-8.55 Interaction of S. tigurinus with A. actinomycetemcomitans
might be of interest.56 Since its recent identification, it is not
clear whether modifying factors are associated with the presence
of S. tigurinus in the human oral microbiome and if its detection
in the oral cavity has direct clinical implications in systemic
diseases.
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Pathogenicity of S. tigurinus
Although S. tigurinus is a commensal of the human oral cavity

as other members of the S. mitis group, specific virulence factors
which allow for entering the bloodstream and causing severe
invasive infections, e.g., infective endocarditis, must be present.
In a rat model of experimental endocarditis, S. tigurinus was
demonstrated to be highly virulent, however, a natural intraspe-
cies variability of different S. tigurinus isolates regarding its path-
ogenicity potential was observed.57 Most S. tigurinus strains had
a more than 10-times higher capacity rate to induce aortic infec-
tion in rats than S. gordonii, a well-known endocarditis patho-
gen.58 Moreover, the infectivity rate was similar to the most
aggressive infective endocarditis pathogens, i.e., Staphylococcus
aureus and enterococci.57 Several virulence determinants were
shown to be present in S. tigurinus. Phagocytosis of S. tigurinus
by macrophages significantly was reduced compared to S. gordo-
nii. The ability to resist to phagocytosis is a key attribute of inva-
sive streptococci such as Streptococcus pyogenes.59 Adherence and
invasion to endothelial cells, a prerequisite for effective host cell
internalization, was enhanced in some S. tigurinus strains as well
as induction of platelet aggregation.57 Whole-genome analyses of
S. tigurinus were performed to unravel the genetic background of
the pathogenic phenotype; genes of known virulence factors such
as exfoliative toxin and fibronectin-binding protein, as well as
several prophages were identified.60

Small-colony variants of S. tigurinus
The occurrence of small-colony variants (SCVs) in oral bacte-

ria, e.g., viridans streptococci has been rather unknown. There
are only a few reports describing S. pneumoniae mucoid variants
and SCVs in biofilms.61,62 Recently, a prosthetic joint infection
caused by S. tigurinus SCVs was described.14 SCVs of bacteria
are a pathogenic life form promoting persistent and recurrent
infections.63 SCVs frequently cause infections associated with
foreign-body material such as cardiac devices63,64 or prosthetic
joints.65 Infection by bacterial SCVs may lead to therapy failure
and often makes a definite eradication very difficult.65-67 There-
fore, timely diagnosis of these bacterial life variants has a major
clinical impact regarding patient management and antibiotic
therapy. Morphological and phenotypic characteristics of SCVs
are small colony size, atypical colony morphology and reduced
growth.63,68 SCVs of viridans streptococci might have been over-
looked in the past as even the wild-type (WT) phenotype of viri-
dans streptococci displays tiny colonies. Moreover, overgrowth
by the WT phenotype might complicate the isolation of the
SCVs. SCVs often display auxotrophy for hemin, menadione or
thymidine due to deficiency in electron transport or thymidine
biosynthesis.63,68 Morphological and biochemical characteristics
of SCVs are extensively studied in staphylococci,63 however,
SCVs are found in various genera and species, e.g., enterococci,69

Escherichia coli70 and Pseudomonas aeruginosa.63 The S. tigurinus

SCVs displayed very small, pinpointed colonies, had a consider-
ably reduced exponential growth phase compared to the WT and
showed either a very stable or a fluctuating SCV phenotype.14

The unstable SCV phenotype characterized by a switch from
SCVs to revertant normal colonies after a few passages was first
recognized in staphylococci.64 In the S. tigurinus SCVs, no auxot-
rophy for hemin, menadione or thymidine was detected. The
ultrastructure of the S. tigurinus SCVs were characterized in-
depth by transmission electron microscopy analyses showing
major alterations in cell separation and morphological abnormal-
ities.14 Autolysis of S. tigurinus SCVs was impaired in such the
SCVs displayed an increased spontaneous autolysis compared to
the WT but an unexpectedly reduced autolysis under induction
with Triton X-100, which is a potent autolysis inducer.14

Whole-genome sequencing revealed mutations in genes involved
in general cell metabolism, cell division, stringent response and
virulence, which might partially explain the S. tigurinus SCV
phenotype.14

S. pneumoniae SCVs were identified in biofilms,61 however,
whether or not S. tigurinus is able to develop a SCV phenotype
under such circumstances is not yet known. Biofilm formation of
SCV bacteria with specialized functions has been suggested to be
a survival strategy, enabling tolerance to a wide variety of envi-
ronmental conditions.71 Oral bacteria forming subgingival bio-
film communities may lead to development of periodontitis. In
the absence of the red complex (Treponema denticola, P. gingivalis
and Tannerella forsythia), S. oralis was found to dominate the bio-
film composition in in-vitro models.72 Hence in the absence of
the red complex, S. oralis may display more decisive virulence
characteristics within a mature biofilm community. S. oralis is a
very closely related species of S. tigurinus, however, future investi-
gations are warranted to prove if S. tigurinus has a similar behav-
ior in subgingival biofilm formation.

Conclusions

S. tigurinus is detected as part of the oral microbiota, includ-
ing patients with periodontal infection. Still, a cause-effect rela-
tionship in oral infections cannot be established by the limited
data available. It further needs to be established if S. tigurinus can
be part of pathogenic oral biofilms, how it associates with other
members of the oral microbiota, and whether it is a potent
inducer of pathogenic host responses. Whichever the case, how-
ever, its presence in the oral cavity and its association with endo-
carditis warrants special attention for a link between oral and
systemic infection.
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