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Abstract
A computer joystick is an efficient and cost-effective response device for recording continuous movements in psychological
experiments. Movement trajectories and other measures from continuous responses have expanded the insights gained from
discrete responses (e.g., button presses) by providing unique information about how cognitive processes unfold over time.
However, few studies have evaluated the validity of joystick responses with reference to conventional key presses, and how
response modality can affect cognitive processes. Here we systematically compared human participants’ behavioral performance
of perceptual decision-making when they responded with either joystick movements or key presses in a four-alternative motion
discrimination task. We found evidence that the response modality did not affect raw behavioral measures, including decision
accuracy andmean response time, at the group level. Furthermore, to compare the underlying decision processes between the two
response modalities, we fitted a drift-diffusion model of decision-making to individual participants’ behavioral data. Bayesian
analyses of the model parameters showed no evidence that switching from key presses to continuous joystick movements
modulated the decision-making process. These results supported continuous joystick actions as a valid apparatus for continuous
movements, although we highlight the need for caution when conducting experiments with continuous movement responses.

Keywords Joystick trajectory . Decision-making . Computational modeling . Behavioral experiments . Drift-diffusionmodel

Discrete key presses on a keyboard or button box have been
the long-standing responsemodality in computer-based exper-
iments in psychology, from which on/off responses and re-
sponse time (RT) are commonly measured. Developments in
computer and electronic technology have improved the acces-
sibility of other devices that are capable of recording continu-
ous responses—for example, a joystick, computer mouse, mo-
tion sensor, or robotic arm (Koop & Johnson, 2011; O’Hora,
Dale, Piiroinen, & Connolly, 2013). In addition to the standard
behavioral measures available from key presses, continuous
responses enable further inferences from movement trajecto-
ries. However, to utilize the full capacity of continuous

response recording, we need to ensure that the experimental
results from these devices are consistent with, or generalizable
to, the findings from conventional response modalities such as
key presses. In the present study, we addressed this issue by
comparing behavioral performance between joystick move-
ments and key presses in a perceptual decision-making task.
Using computational modeling of behavioral data, we further
compared the decision-making processes from the two re-
sponse modalities.

Continuous and discrete responses
in experimental psychology

Continuous responses can offer theoretical and practical advan-
tages in experiments. First, although a discrete response is con-
sistent with the assumption of sequential stages of cognition
andmotor outputs, a growing number of studies have suggested
a continuous and parallel flow of information between the brain
systems involved in sensory, cognitive, and motor processes
(Cisek & Kalaska, 2005; Spivey, Grosjean, & Knoblich,
2005). Continuous responses can capture the dynamics of these
multiple mental processes, as well as the transitions between
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them (Resulaj, Kiani, Wolpert, & Shadlen, 2009). Second, in
experiments involving clinical populations, it can be difficult
for patients to make discrete responses accurately on a key-
board, especially in patients with dementia or parkinsonism.
Patients with motor function impairments (e.g., tremor, apraxia,
or loss of dexterity) often omit button presses, press the button
too early or too late, press wrong buttons accidentally, or are
confused by the response-button mapping. This limitation may
result in a significant amount of experiment data being rejected
in some studies (Wessel, Verleger, Nazarenus, Vieregge, &
Kömpf, 1994), whereas continuous responses with natural
movements can be well-tolerated in patients (Limousin et al.,
1997; Strafella, Dagher, & Sadikot, 2003)

The trajectories of continuous movements contain rich spa-
tiotemporal information about the action and provide unique
insights into how cognitive processes unfold in time
(Freeman, Dale, & Farmer, 2011; Song & Nakayama, 2009).
In continuous reaching, movement trajectories showed that
human participants can initiate a reaching action prior to when
the target becomes fully available and can select from com-
peting action plans at a later stage (e.g., Chapman et al., 2010;
Gallivan & Chapman, 2014). In perceptual decision-making,
movement trajectories from joysticks and other similar de-
vices have been successfully used to investigate the cognitive
processes underlying changes of mind (Resulaj et al., 2009),
error correction (Acerbi, Vijayakumar, & Wolpert, 2017), and
subjective confidence (van den Berg et al., 2016) that would
otherwise be difficult to study with key presses.

A comparison between response modalities

To extend the currently available experimental findings to other
devices, it is necessary to assess the consistency of performance
between response modalities. More importantly, characterizing
the consistency between response modalities may help us un-
derstand the interdependence of cognitive processes and motor
systems. For example, in decision-making tasks, comparisons
between saccadic eye movements and manual responses have
suggested that a domain-general decision mechanism operates,
regardless of response modality (Gomez, Ratcliff, & Childers,
2015; Ho, Brown, & Serences, 2009), and that the apparent
difference in response speed is accounted for by the neuroana-
tomical distinctions in saccadic and manual networks (Bompas,
Hedge, & Sumner, 2017).

In the present study we aimed to examine the validity and
consistency of continuous joystick responses versus discrete
button presses in perceptual decision-making. Participants
performed a four-alternative motion discrimination task
(Churchland, Kiani, & Shadlen, 2008) with two levels of per-
ceptual difficulty. The task was to indicate the coherent mo-
tion direction from a random-dot kinematogram, a standard
psychophysical stimulus for visual perceptual decision
(Fredericksen, Verstraten, & Van De Grind, 1994; Lappin &

Bell, 1976; Pilly & Seitz, 2009; Ramachandran & Anstis,
1983; Watamaniuk, Sekuler, & Williams, 1989). In two
counterbalanced sessions, the participants indicated their de-
cisions with either joystick movements or key presses. The
joystick response was to move the lever from its neutral posi-
tion toward one of the four cardinal directions, aligned to the
coherent motion direction, and the corresponding key press
was one of the four arrow keys on the keyboard.We compared
the raw behavioral performance (decision accuracy and mean
RTs) between the two response modalities and between the
two levels of task difficulty. From the continuous movement
trajectories, we also examined whether the joystick-specific
measures were consistent between movement directions (i.e.,
trajectory length, peak velocity, and acceleration time).

To assess whether the response modality affected the
decision-making process, we fitted a drift-diffusion model
(DDM; Gold & Shadlen, 2007; Ratcliff, Smith, Brown, &
McKoon, 2016) to the individual participants’ behavioral data
and compared the model parameters derived from the joystick
and keyboard sessions. The DDM belongs to a family of
sequential-sampling models of RT. These models assume that
the decision process is governed by the accumulation of noisy
sensory evidence over time until a threshold is reached (Bogacz,
Brown, Moehlis, Holmes, & Cohen, 2006; Ratcliff & Smith,
2004), consistent with electrophysiological (Britten, Shadlen,
Newsome, & Movshon, 1992; Churchland et al., 2008; Hanks,
Kiani, & Shadlen, 2014; Huk & Shadlen, 2005; Shadlen &
Newsome, 2001) and neuroimaging (Heekeren, Marrett, &
Ungerleider, 2008; Ho et al., 2009; Zhang, Hughes, & Rowe,
2012) evidence on the identification of neural accumulators in
the frontoparietal cortex. In the present study we used the DDM
to decompose the observed RT distributions and accuracy into
three main model components: decision threshold for the
amount of evidence needed prior to a decision, drift rate for
the speed of evidence accumulation, and nondecision time to
account for the latencies of stimulus encoding and action initia-
tion (Karahan, Costigan, Graham, Lawrence, & Zhang, 2019;
Ratcliff & McKoon, 2008; Wagenmakers, 2009; Zhang, 2012).
The latter parameter is of interest, because one might expect to
find a difference in the latency distributions of action initiation
between joystick movements and key presses.

Our findings demonstrated that when human participants
used ballistic movements to respond with a joystick, their
behavioral performance was modulated by task difficulty
and was similar to that from key presses during the same
perceptual task. Further computational modeling analysis
showed no evidence of a change in anymodel parameter when
switching between response modalities. As such, we conclud-
ed that joystick movement is a valid response modality for
extending discrete actions to continuous behavior in psycho-
logical experiments, although participants might exhibit dif-
ferences in movement trajectory measures for different
directions.
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Method

Participants

Twenty-one participants (14 females, seven males; age range
18–24 years, M = 20.43 years, SD = 2.91 years) took part in
the study following written informed consent. All but three
were right-handed. All the participants had normal or
corrected-to-normal vision, and none reported a history of
motor impairments or neurological disorders. The study was
approved by the Cardiff University School of Psychology
Ethics Committee.

Apparatus

The experiment was conducted in a behavioral testing room
with a dimmed light. The stimuli were displayed on a 22-in.
CRT monitor with 1,600 × 1,200 pixel resolution and 85-Hz
refresh rate. A chin rest was used to maintain the viewing
distance and position. A joystick (Extreme 3D Pro Precision,
Logitech International S.A., Switzerland) was used to record
movement trajectories at 85 Hz in the joystick session. The
experimental setup for the joystick and keyboard sessions is
illustrated in Supplementary Fig. 1. The joystick handle could
move nearly freely, with little resistance from its neutral posi-
tion within the 20% movement radius. Beyond the 20% radi-
us, the resistance during joystick movement was approximate-
ly constant. A standard PC keyboard was used to record key
presses. The experiment was written using PsychoPy 1.85.4
library (Peirce, 2009).

Stimuli

In both the joystick and keyboard sessions, a random-dot
kinematogram was displayed within a central invisible circu-
lar aperture of 14.22° diameter (visual angle). White dots were
presented on a black background (100% contrast), with a dot
density of 27.77 dots per degree2 per second and a dot size of
0.14°. As in previous studies (Britten et al., 1992; Pilly &
Seitz, 2009; Roitman & Shadlen, 2002; Shadlen &
Newsome, 2001; Zhang & Rowe, 2014), we introduced co-
herent motion information by interleaving three uncorrelated
sequences of dot positions across frames at 85 Hz. In each
frame, a fixed proportion (i.e., the motion coherence) of dots
were replotted at an appropriate spatial displacement in the
direction of the coherent motion (51.195°/s velocity), relative
to their positions three frames earlier, and the rest of the dots
were presented at random locations within the aperture. The
signal dots had a maximum lifetime of three frames, after
which they were reassigned to random positions. The coherent
motion direction in each trial was set in one of the four cardi-
nal directions (0°, 90°, 180°, or 270°).

Task and procedure

Each participant took part in two experimental sessions
using keyboard or joystick as a response modality. The
order of response modality was counterbalanced across
participants. In both sessions, participants performed a
four-alternative motion discrimination task, indicating the
coherent motion direction from four possible choices (0°,
90°, 180°, or 270°). Each session comprised 960 trials,
which were divided into eight blocks of 120 trials. Each
block had 15 repetitions of each of the four motion direc-
tions and two difficulty conditions. The motion coherence
was set to 10% in the “Difficult” condition and 20% in the
“Easy” condition. Feedback on the mean decision accuracy
was provided after each block. The order of the conditions
was pseudo-randomized across sessions and participants,
ensuring that the same direction and difficulty condition
did not occur in four consecutive trials. In the keyboard
session, the participants responded with four arrow keys
corresponding to the coherent motion directions (right,
0°; up, 90°; left, 180°; and down, 270°). In the joystick
session, the participants were instructed to indicate the mo-
tion direction with an appropriate joystick movement from
the joystick’s central position toward one of the four edges
(right, 0°; up, 90°; left, 180°; and down, 270°).

Every trial started with a 400-ms fixation period (Fig. 1a).
The random-dot kinematogram appeared after the fixation pe-
riod for a maximum of 3,000 ms or until response. In the
keyboard session, the stimuli disappeared after a button press.
In the joystick condition, the stimuli disappeared when the
participants stopped the joystick movement. The chosen stop-
ping rule was when the joystick position did not change in the
last four sampling points and its position was outside of the
20% motion radius. After response, a blank screen was pre-
sented as the intertrial interval, with a duration uniformly ran-
domized between 1,000 and 1,400 ms.

The RT in the keyboard session was defined as the latency
between the onset of random-dot kinematogram and the time
of key press. In the joystick session, the RTwas defined as the
duration between the onset of the random-dot kinematogram
and the first time when the joystick’s position left the 20%
movement radius from its neutral position. It coincided with
the first noticeable increase in the velocity of the movement
from the stimulus onset. Participants’ choice in the joystick
session was one of the four cardinal directions (i.e., 0°, 90°,
180°, or 270°) closest to the last position of the joystick.

DDM analysis

We fitted the DDM to each participant’s response time distri-
butions and accuracy. The DDM decomposes the behavioral
data into four key model parameters (Ratcliff & McKoon,
2008). The decision threshold (a) denotes the distance
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between the two decision boundaries. The mean drift rate (v)
denotes the strength of sensory information. The starting point
(z) denotes the response bias toward one of the two alterna-
tives. The nondecision time (Ter) denotes the latencies of stim-
ulus encoding and response initiation. In addition, the DDM
can be extended to include trial-by-trial variability in drift rate
sv and nondecision time st, which improves the model fit to the
data (Ratcliff & McKoon, 2008). The DDM predicts the de-
cision time as the duration of the accumulation process and the
observed RT as the sum of the decision time and Ter(Fig. 1b).

As in previous studies (Churchland et al., 2008), we
simplified the four-alternative forced choice task in the
present study to a binary decision problem for model
fitting. This was achieved by separately grouping trials
with correct responses and trials with incorrect responses.
The behavioral task was then reduced to a binary choice
between a correct and an incorrect alternative. We used the
hierarchical drift-diffusion model (HDDM) toolbox to fit
the behavioral data (Wiecki, Sofer, & Frank, 2013). The
HDDM implemented a hierarchical Bayesian model
(Vandekerckhove, Tuerlinckx, & Lee, 2011) for estimating
the DDM parameters, which assumes that the model pa-
rameters for individual participants are sampled from
group-level distributions at a higher hierarchy. Given the
observed experimental data, the HDDM used Markov
chain Monte Carlo (MCMC) approaches to estimate the

joint posterior distribution of all individual- and group-
level parameters. The posterior parameter distributions
can be used directly for Bayesian inference (Gelman
et al., 2014), and this Bayesian approach has been shown
to be robust in recovering model parameters when limited
data are available (Ratcliff & Childers, 2015; Wiecki et al.,
2013; Zhang et al., 2016).

We applied a few constraints to the model parameters based
on our task design. First, we allowed all the model parameters
(a, v, Ter, sv, and st) to vary between the two response modal-
ities. Second, the mean drift rate v was further allowed to vary
between task difficulties (easy, difficult) and correct directions
(up, down, left, and right). Third, the starting point zwas fixed
at .5, suggesting that there was no bias toward the two decision
boundaries and that equal amounts of evidence were required
for correct and incorrect decisions. This was because the par-
ticipants did not have a priori knowledge about the correct
alternative at the beginning of each trial.

We generated 15,000 samples from the joint posterior dis-
tribution of all model parameters by using MCMC sampling
(Gamerman & Lopes, 2006). The initial 7,000 samples were
discarded as burn-in for stable posterior estimates. Geweke
diagnostic (Cowles & Carlin, 1996) and autocorrelation were
used to assess the convergence of theMarkov chains in the last
8,000 samples. All parameter estimates were converged after
15,000 samples.
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Fig. 1 Behavioral paradigm and the drift-diffusion model (DDM). a The
structure of a single trial of the experiment. A fixation screen was pre-
sented for 400 ms, after which the random-dot kinematogram was pre-
sented for a maximum of 3,000 ms or until response. The intertrial inter-
val was randomized between 1,000 and 1,400 ms. Participants were
instructed to indicate the direction of the coherent motion direction (0°,
90°, 180°, or 270°) using the joystick or keyboard, in two
counterbalanced sessions. b The DDM and examples of evidence accu-
mulation trajectories. The parameter (a) indicates the distance between
the correct and incorrect decision thresholds. The drift rate (v) represents
the speed of evidence accumulation, and its magnitude is determined by
the quality of the evidence. A positive v indicates that, on average, the

accumulation of sensory evidence is toward the correct decision thresh-
old. The starting point (z) represents the response bias toward one of the
two thresholds. The nondecision time (Ter) represents the latencies of
nondecision processes, illustrated by the gray area beside the decision
time distribution in the figure. The diffusion process starts at the starting
point (z) until the accumulated evidence reaches one of the two thresh-
olds. If the accumulated evidence reaches the correct (upper) threshold
(blue trajectories), the model predicts a correct response. Because of
noise, the accumulated evidence might reach the incorrect (lower) thresh-
old (red trajectories), so the model would predict an incorrect response.
The predicted single-trial response time is the sum of the duration of the
evidence accumulation (decision time) and the nondecision time Ter
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Data analysis

First, we used both Bayesian and frequentist repeated mea-
sures analysis of variance (ANOVA) to make inferences on
behavioral measures (JASP Team, 2018). For frequentist
ANOVAs, Greenhouse–Geisser correction was applied when
the assumption of sphericity was violated. For Bayesian
ANOVAs, we followed the standard heuristic to characterize
the strength of evidence based on the Bayes factor (BF10;
Wagenmakers, Lee, Lodewyckx, & Iverson, 2008), which
can provide evidence supporting either the alternative (BF10
> 1) or the null (BF10 < 1) hypothesis. A BF10 between [1, 3]
(or [0, 1/3]) suggests weak evidence for the alternative (or
null) hypothesis. A BF10 between [3, 10] (or [1/10, 1/3]) sug-
gests moderate or compelling evidence for the alternative (or
null) hypothesis. A BF10 larger than 10 (or smaller than 1/10)
suggests strong evidence for the alternative (or null)
hypothesis.

Second, to quantify the difference in RT distributions be-
tween response modalities, we used the Kolmogorov–
Smirnov (K–S) test (Pratt & Gibbons, 1981), a nonparametric
statistical measure of difference between two one-dimensional
empirical distributions.

Third, to compare a fitted DDM parameter between two
conditions (e.g., between response modalities or between task
difficulties), we used Bayesian hypothesis testing (Bayarri &
Berger, 2004; Gelman et al., 2014; Kruschke, 2015; Lindley,
1965) to make inferences from the posterior parameter distri-
butions, under the null hypothesis that the parameter values
were equal between the two conditions.

More specifically, we first calculated the distribution of the
parameter difference from the two MCMC chains of the two
conditions, and we obtained the 95% highest density interval
(HDI) of that difference distribution between the two condi-
tions. We then set a region of practical equivalence (ROPE)
around the null value (i.e., 0 for the null hypothesis), which
encloses the values of the posterior difference that are deemed
to be negligible from the null value 0 (Kruschke, 2013). In
each Bayesian inference, the ROPE was set empirically from
the two MCMC chains of the two conditions under compari-
son. For each of the two conditions, we calculated the 95%
HDI of the difference distribution between odd and even sam-
ples from that condition’s MCMC chain. This 95% HDI from
a single MCMC chain can be considered as negligible values
around the null, because posterior samples from different por-
tions of the same chain are representative values of the same
parameter. That is, we accepted that the null hypothesis is true
when comparing the difference between odd and even sam-
ples from the same MCMC chain. The ROPE was then set to
the widest boundaries of the two 95% HDIs of the two
conditions.

From the 95% HDI of the difference distribution and the
ROPE, a Bayesian P value was calculated. To avoid

confusion, we use P to refer to classical frequentist P values,
and PP|D to refer to the Bayesian P values based on posterior
parameter distributions. If ROPE is completely contained
within the 95% HDI, PP|D = 1, and we accept the null hypoth-
esis (i.e., the parameter values are equal between the two con-
ditions). If ROPE is completely outside the 95%HDI,PP|D = 0
and we reject the null hypothesis (i.e., the parameter values
differ between the two conditions). If ROPE and the 95%HDI
partially overlap, PP|D equals the proportion of the 95% HDI
that falls within the ROPE, which indicates the probability that
the parameter values are practically equivalent between the
two conditions (Kruschke & Liddell, 2018).

Results

Behavioral results

The behavioral performance of the four-alternative mo-
tion discrimination task was quantified by accuracy
(proportions of correct responses; Fig. 2a) and mean
RTs (Fig. 2b). We compared the behavioral performance
between response modalities (joystick or keyboard), task
difficulties (easy or difficult), and motion directions (up,
down, left, or right) using three-way Bayesian and
frequentist repeated measures ANOVAs. Across the two
response modalities, participants showed decreased accu-
racy [BF10 = 5.112 × 1030; F(1, 20) = 292.709, p < .001]
and increased mean RTs [BF10 = 1.458 × 1018; F(1, 20)
= 63.163, p < .001] in the more difficult condition. We
found compelling evidence against the main effect of
response modality on accuracy [BF10 = 0.124; F(1, 20)
= 0.083, p = .776] and weak evidence against the main
effect of response modality on mean RT [BF10 = 0.560;
F(1, 20) = 0.495, p = .490]. These results indicated sim-
ilar behavioral performance between joystick and key-
board responses.

When comparing the behavioral performance between mo-
tion directions, compelling evidence against a main effect on
accuracy emerged [BF10 = 0.185; F(2.248, 44.961) = 0.107, p
= .357]. For mean RTs, the frequentist ANOVA suggested a
significant main effect of motion direction [F(2.853, 57.052)
= 3.021, p = .039], but this result was supported by neither
post-hoc tests (p > .139 in all post-hoc comparisons,
Bonferroni-corrected) nor a Bayesian ANOVA (BF10 =
0.305). Furthermore, there was a significant interaction be-
tween task difficulty and motion direction for accuracy
[F(2.586, 51.718) = 6.317, p = .002], although this was again
not supported by the Bayesian analysis (BF10 = 0.299). We
found evidence against all the other interactions for both ac-
curacy (BF10 < 0.179; p > .228) and mean RT (BF10 < 0.199;
p > .083).
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The results above suggested no systematic bias at the group
level when comparing responses from a joystick and a keyboard.
However, the consistency of behavioral performance between
response modalities could vary between participants. For exper-
iments with multiple response modalities, the researcher might
want to confirm whether the consistency between response mo-
dalities is maintained across experimental conditions. This would
allow, for example, a prescreening procedure to identify partici-
pants with high response consistency to be recruited for further
experiments. Here we used K–S statistics to quantify the differ-
ence in individual participants’RT distributions between the joy-
stick and keyboard sessions in each difficulty condition, sepa-
rately for correct and incorrect trials. There was strong evidence
of a positive correlation between the K–S statistics of the easy
and difficult conditions (correct trials, BF10 = 3.647 × 106, R =
.92, p < .001; incorrect trials, BF10 = 4,526.00, R = .82, p < .001;
Fig. 2c). Therefore, the difference in behavioral performance
between response modalities was consistent within participants
across difficulty levels.

Hierarchical DDM analyses

To compare the underlying decision-making processes be-
tween joystick and keyboard responses, we simplified the
four-alternative motion discrimination task to a binary deci-
sion task (Churchland et al., 2008; see also the Drift-Diffusion
Model section) and fitted the DDM to the behavioral data
using the HDDM toolbox (Wiecki et al., 2013). The DDM
decomposed individual participants’ behavioral data into
model parameters for their latent psychological processes,
and the HDDM toolbox allowed us to estimate the joint pos-
terior estimates of model parameters using the hierarchical
Bayesian approach. To evaluate the model fit, we generated
model predictions by simulations with the posterior estimates

of the model parameters. There was good agreement between
the observed data and the model simulations across response
modalities, task difficulties, and motion directions (Fig. 3).

With no a priori knowledge about the effect of response
modality on the decision-making process, we allowed all
model parameters to vary between joystick and keyboard re-
sponses: the boundary separation a, the mean drift rate v, the
mean nondecision time Ter, the trial-by-trial variability in drift
rate sv, and the trial-by-trial variability in nondecision time
st(Table 1). The mean drift rate was further allowed to vary
between task difficulties and motion directions. We performed
Bayesian hypothesis testing on the posterior parameter esti-
mates between response modalities (Bayarri & Berger, 2004;
Gelman et al., 2014; Kruschke, 2015; Lindley, 1965). This
analysis yielded 95% HDIs of the parameter differences be-
tween the joystick and keyboard sessions, as well as Bayesian
P values PP|D(see the Data Analysis section for details).

For all the model parameters, we could not reject the null
hypothesis that the posterior parameter estimates were practi-
cally equivalent between the joystick and keyboard sessions.
The PP|D, which quantifies the probability that the model pa-
rameters are practically equivalent between the two condi-
tions, ranged from .641 to .964 (Table 1). Therefore, we found
no evidence to support that switching from keyboard to joy-
stick altered the decision-making process. Next, because the
mean drift rate is often assumed to increase with decreased
task difficulty (Ratcliff & McKoon, 2008), we compared the
drift rates averaged from the joystick and keyboard sessions
between the easy and difficult conditions. As expected, the
drift rate was larger in the easy than in the difficult condition
in all motion directions (up: 95%HDI = [0.589, 1.613], PP|D =
0; down: 95%HDI = [0.930, 1.958], PP|D = 0; left: 95%HDI =
[1.204, 2.227], PP|D = 0; right: 95% HDI = [1.185, 2.214],
PP|D = 0).

a) b) c)

Fig. 2 Behavioral results in the joystick and keyboard sessions. a
Average decision accuracy (proportions correct) across participants.
Error bars denote the standard errors of the means. b Average mean
response times (RTs) across participants. Error bars denote the standard
errors of the means. c Kolmogorov–Smirnov (K–S) statistics when com-
paring the RT distributions between response modalities. The scatter plot

shows the K–S statistics in the difficult condition as a function of those in
the easy condition. Each data point represents the correct (filled data
point) or incorrect (open data point) trials of one participant. Linear re-
gression lines are illustrated for correct (solid line) and incorrect (dashed
line) trials
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Additional measures from joystick trajectories

In the joystick session, the participants’ movement trajec-
tories were close to the four cardinal directions (Fig. 4a).
Continuous movements with the joystick enabled us to
acquire additional single-trial behavioral measures beyond
those possible from simple key presses. We examined
three such measures: peak velocity (Fig. 4b), acceleration
time (Fig. 4c), and trajectory length (Fig. 4d). These ad-
ditional joystick measures were analyzed subsequently to
accuracy and RT. In the present study, we did not expect

them to have a critical influence on the two primary be-
havioral measures. Hence, our analyses were focused on
the effects of movement direction and task difficulty on
the trajectory measures. However, we acknowledge that,
in experiments with more complex movement trajectories,
decisions might be more directly coupled to continuous
motor responses (Song & Nakayama, 2009).

We calculated the action velocity as the rate of change
of joystick position. There was a single peak of action
velocity in each trial, consistent with the ballistic nature
of the movement. We found strong evidence for the main

a) b) c) d)

Fig. 3 Posterior predictive response time (RT) distributions from the
fitted drift-diffusion model. Each panel shows normalized histograms of
the observed data (blue bars, correct responses; red bars, incorrect re-
sponses) and the model predictions (black lines) across participants.
The RT distribution along the positive x-axis is from correct responses,
and the areas under the curve on the positive x-axis correspond to the

observed and predicted accuracy. The RT distribution along the negative
x-axis is from error responses, and the areas under the curve on the
negative x-axis correspond to the observed and predicted errors. The
posterior predictions of the model were generated by averaging 500 sim-
ulations of the same amount of model predicted data that were observed
in the experiment, using posterior parameter estimates
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effect of response direction on the peak velocity [Fig. 4b,
BF10 = 3.900 × 1024; F(2.000, 40.002) = 39.25, p < .001],
moderate evidence for the main effect of difficulty [BF10
= 4.612; F(1, 20) = 22.70, p < .001], and strong evidence
for the interaction between direction and difficulty [BF10
= 58.433; F(2.841,56.813) = 30.58, p < .001].

We calculated the acceleration time as the latency between
the RT and the time of peak velocity (Fig. 4c). There was
strong evidence for the main effect of response direction
[BF10 = 1,147.376; F(2.253, 45.05) = 4.741, p = .011]. We
found moderate evidence against an effect of difficulty level
[BF10 = 0.172; F(1, 20) = 0.178, p = .677]. Frequentist
ANOVA showed a significant interaction between the re-
sponse direction and difficulty level [F(2.853, 57.053) =
4.470, p = .008], which was not supported by the Bayes factor
(BF10 = 0.256).

We calculated the trajectory length as the sum of the
Euclidean distances between adjacent joystick positions
in each trial (Fig. 4d). There was no compelling evidence
for the main effect of response direction on trajectory
length [BF10 = 1.759; F(3, 60) = 1.944, p = .151], nor a
main effect of task difficulty [BF10 = 0.450; F(1, 20) =
3.171, p = .09]. The evidence against the interaction be-
tween direction and difficulty was strong [BF10 = 0.090;
F(3, 60) = 0.978, p = .409].

In summary, the peak action velocity of joystick move-
ments was affected by both action direction and task diffi-
culty, and acceleration time was affected only by trajectory
direction. There was no compelling evidence to support
that trajectory length was affected by either action direc-
tion or task difficulty.

Discussion

In the present study, we systematically compared the consis-
tency between continuous and discrete responses during rapid
decision-making. In a four-alternative motion discrimination
task, joystick movements and key presses led to similar accu-
racy and mean RTs. Further modeling analysis with a hierar-
chical DDM showed no evidence in supporting a change of
any model parameters between response modalities. Together,
our findings provide evidence for the validity of using contin-
uous joystick movement as a reliable response modality in
behavioral experiments.

Behavioral measures

In both joystick and keyboard sessions, participants had
lower accuracy and longer mean RTs in the more difficult
condition (i.e., lower motion coherence), in line with pre-
vious findings with similar tasks (Britten et al., 1992; Pilly
& Seitz, 2009; Ramachandran & Anstis, 1983; Roitman &
Shadlen, 2002). Using Bayesian statistics, we found evi-
dence that response modality (joystick motion or key
press) did not affect either accuracy or mean RT,
confirming the validity of using joystick as a response
device in decision-making tasks. Importantly, across par-
ticipants, the difference in the RT distributions between
response modalities was positively correlated between
easy and difficult conditions. Therefore, participants with
similar behavioral performance between response modali-
ties maintained their consistency between experimental
conditions.

Table 1 Posterior estimates of the hierarchical drift-diffusion model parameters (decision threshold a, mean drift rate v, nondecision time Ter, trial-by-
trial drift rate variability sv, and trial-by trial nondecision time variability st)

Joystick (mean ± SD) Keyboard (mean ± SD) 95% HDI PP|D

a 1.508 ± 0.072 1.572 ± 0.073 [– 0.270, 0.120] .872

v Easy Up 1.694 ± 0.263 1.269 ± 0.260 [– 0.300, 1.144] .720

Down 1.765 ± 0.264 1.454 ± 0.261 [– 0.460, 0.999] .810

Left 2.169 ± 0.267 1.906 ± 0.260 [– 0.450, 1.020] .789

Right 2.351 ± 0.267 2.187 ± 0.262 [– 0.580, 0.880] .863

Difficult Up 0.477 ± 0.257 0.291 ± 0.263 [– 0.526, 0.896] .866

Down 0.144 ± 0.262 0.202 ± 0.256 [– 0.822, 0.603] .932

Left 0.441 ± 0.261 0.216 ± 0.257 [– 0.529, 0.909] .854

Right 0.533 ± 0.263 0.597 ± 0.261 [– 0.769, 0.685] .964

Ter 0.613 ± 0.028 0.556 ± 0.028 [– 0.025, 0.130] .658

sv 0.992 ± 0.047 0.916 ± 0.042 [– 0.039, 0.203] .669

st 0.268 ± 0.007 0.283 ± 0.007 [– 0.035, 0.004] .641

The first two data columns show the posterior means and standard deviations of the parameters in the joystick and keyboard sessions. The 95% HDI
column contains the 95% highest density intervals for the parameter differences between the joystick and keyboard sessions. PP|D denotes the Bayesian P
value for the parameters being equal between response modalities
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Joystick positions estimated at a high sampling rate en-
abled additional behavioral measures beyond on/off key
presses. In the present study, most of the movement trajec-
tories were along the four cardinal directions (Fig. 4a). The
averaged trajectory length was close to 1 (Fig. 4d), which
was the shortest distance from the joystick’s neutral posi-
tion to the maximum range, suggesting that the participants
were able to make accurate and ballistic movements fol-
lowing the task instructions. Nevertheless, it is worth not-
ing that the movement direction affected the peak velocity
and acceleration time. This might have be due to the dif-
ference in upper limb muscle contractions when moving
the joystick toward different directions (Oliver, Northey,
Murphy, MacLean, & Sexsmith, 2011). Therefore, for fu-
ture behavioral experiments relying on sensitive trajectory
measures, we suggest extra caution be used in interpreting

the effects of ergonomics and human motor physiology,
especially for rapid movements, as in the present study.
One potential solution would be to acquire baseline record-
ings of the movements to be expected during the experi-
ment, which could then be used to compensate for mea-
surement biases.

Model-based measures

The DDM and other sequential-sampling models are com-
monly used to investigate the cognitive processes under-
lying rapid decision-making(Bogacz et al., 2006; Smith &
Ratcliff, 2004). In the present study, the mean drift rate
increased in the easier task condition, consistent with pre-
vious modeling results (Ratcliff & McKoon, 2008). The
combination of posterior parameter estimation and

a) b)

c) d)

Fig. 4 Measures from joystick trajectories. a Summary of movement
trajectories and final positions. The heat map in the center represents
the proportions of the total joystick positions across trials and
participants. The histograms on the edge represent the distributions of
final positions. Solid line represents correct responses. Dashed line

represents incorrect responses. b Peak velocities of joystick movements,
averaged across participants. c Mean acceleration times of joystick
movements, averaged across participants. d Mean trajectory lengths,
averaged across participants. The error bars denote the standard errors
of the means. a.u., arbitrary units
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Bayesian inference allowed us to obtain the probability of
the parameter being practically equal, a more informative
measure than frequentist p values (Kruschke, 2015).
Although our results suggested that most parameter values
had high probabilities to remain the same between re-
sponse modalities (Table 1), we could not accept the null
hypothesis for certain (which requires PP|D = 1) and need
more data to confirm the inference.

We highlighted two model parameters with low PP|D

values, which indicate that, with additional observed data
from future experiments, the posterior model parameters
might be in favor of the alternative hypothesis (i.e., a dif-
ference between response modalities). First, when
switching from key presses to joystick movements, there
was a small increase in the mean nondecision time (PP|D =
.658). Second, responding with a joystick resulted in a
slightly decreased decision threshold (PP|D = .872).
Several previous studies have shown that instructing to
respond faster or more accurately could efficiently modu-
late participants’ behavior (Beersma et al., 2003; Schouten
& Bekker, 1967; Wickelgren, 1977). The decision thresh-
old plays a substantial role under such speed–accuracy in-
structions (Mulder et al., 2013; Rae, Heathcote, Donkin,
Averell, & Brown, 2014; Ratcliff & McKoon, 2008;
Starns & Ratcliff, 2014; Zhang & Rowe, 2014): A decrease
of threshold is accompanied with faster reaction speed and
lower accuracy. If participants do implicitly trade accuracy
for speed when switching from keyboard to joystick move-
ments, this cognitive discrepancy needs to be considered
when conducting experiments involving continuous re-
sponses. One hypothesis for this potential behavioral
change is that continuous joystick movements allow par-
ticipants to change or correct their responses later in a trial
(Albantakis & Deco, 2009; Gallivan & Chapman, 2014;
Gallivan, Logan, Wolpert, & Flanagan, 2016; Selen,
Shadlen, & Wolpert, 2012), and this response flexibility
may lead to reduced deliberation in initial movements.

The trial-by-trial variabilities in drift rate and nondeci-
sion time also had PP|D values. Empirically, across-trial
variability was introduced in DDM to improve the model
fit to RT distributions (Ratcliff & McKoon, 2008), al-
though the functional significance of these parameters to
the decision process is still unclear. Across-trial variability
in the drift rate produces different RT between correct and
error trials (Ratcliff & Rouder, 1998), and across-trial var-
iability in nondecision time accounts for the large variabil-
ity in trials with short RTs across experimental conditions
(Ratcliff & Tuerlinckx, 2002). These model parameters al-
low the DDM to account for the subtle differences in the
shape of RT distributions between response modalities.
Future studies could apply formal model comparison to
evaluate the need of trial-by-trial variability in modeling
joystick responses.

The use of joystick and its validity

We aimed to establish the validity of joystick responses in
rapid decision-making tasks. More specifically, we examined
whether response modality (joystick movements vs. key
presses) alters the raw behavioral measures (RT and accuracy)
and underlying cognitive processes. We found that both be-
havioral measures and model parameters from cognitive
modeling did not differ significantly between response modal-
ities. In other words, using joystick movements to indicate
choices of perceptual decisions elicit behavioral and cognitive
characteristics similar to those from conventional key presses.

Motion discrimination based on random-dot kinematogram
is a typical paradigm for simple decisions. The same compu-
tational mechanism of evidence accumulation has been sug-
gested to account for the cognitive processes underlying a
broad range of decision-making tasks, spanning across senso-
ry modalities (O’Connell, Dockree, & Kelly, 2012) and cog-
nitive domains (Gold & Shadlen, 2007). Therefore, we expect
that the validity of joystick response established in the present
study can be extended to experimental paradigms in which
participants make rapid choices with motor actions (Ratcliff
& McKoon, 2008).

The joystick as a response modality has been successfully
applied in ageing and clinical populations, in which conven-
tional key presses may be error-prone due to impaired dexter-
ity. Both older and young adults can operate joysticks in
visuomotor tasks with similar response patterns (Kramer,
Larish,Weber, & Bardell, 1999). Previous studies showed that
older adults can complete multiple hour-long cognitive train-
ing sessions with joystick responses, and the performance
benefit persisted for six months after training (Anguera
et al., 2013). In patients with neurodegenerative diseases, vo-
litional joystick movements have been successfully used to
examine the motor deficits and underlying neural abnormali-
ties (Kew et al., 1993). This evidence suggested that the use of
joystick can be well tolerated in older adults and patients.

In the present study, the participants did not report fatigue
after joystick or keyboard sessions, which lasted approximate-
ly 45 min each. Other paradigms with longer experimental
sessions and more intense joystick movements might impose
a challenge to participants’ stamina. Nevertheless, it is possi-
ble to use measures from the continuous joystick recording
(Kahol, Smith, Brandenberger, Ashby, & Ferrara, 2011) or
concurrent physiological recording (Mascord & Heath,
1992) to identify the onset of fatigue prior to performance
deterioration.

One might ask whether joystick responses provide any ad-
ditional value over conventional key presses. Here, we
showed that, even in simple ballistic movements, joystick-
specific measures (e.g., action velocity) can be affected by
the task difficulty, providing additional information on behav-
ioral performance in addition to RTand accuracy. It is yet to be
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determined whether continuous responses provide informa-
tion independent from discrete responses (Freeman, 2018;
Freeman & Ambady, 2010; Stillman, Medvedev, &
Ferguson, 2017). However, the capacity of recoding continu-
ous responses via joysticks enables new experimental designs
to probe the continuous interplay between action, perception
and cognition. For example, the ongoing locomotion can
modify the sensory information flow (Ayaz, Saleem,
Schölvinck, & Carandini, 2013; Souman, Freeman,
Eikmeier, & Ernst, 2010).

Future directions

Three issues require further consideration. First, we only used
a joystick to record movement trajectories, which is common-
ly used and widely available in behavioral testing labs. Many
other devices are capable for recording continuous responses,
such as computer mouse (e.g., Koop & Johnson, 2011), optic
motion sensor (e.g., Chapman et al., 2010) and robotic arms
(Abrams, Meyer, & Kornblum, 1990; Archambault, Caminiti,
& Battaglia-Mayer, 2009; Burk, Ingram, Franklin, Shadlen, &
Wolpert, 2014; Resulaj et al., 2009; van den Berg et al., 2016).
The present study offered a comprehensive comparison be-
tween key presses and joystick movements, but the measures
from other devices are yet to be validated. We also offered a
practical solution to measure RT from joystick movement
comparable to that from key presses, taking in to account the
small resistive forces near the joystick’s neural position. To
facilitate future research, we have made our data and analysis
scripts openly available (https://osf.io/6fpq4).

Second, we instructed participants to make directional
movements in the joystick session, which allows for intra-
individual comparisons between response modalities.
Motion trajectories suggested that the participants mainly
made ballistic actions toward one of the four cardinal direc-
tions (Fig. 4a). One could explore the further potential of
continuous responses in behavioral tasks, such as in response
to a change of mind (Burk et al., 2014; Resulaj et al., 2009;
van den Berg et al., 2016) or external distractions (Gallivan &
Chapman, 2014).

Third, the DDM requires behavioral data to be presented as
binary choices (Ratcliff & McKoon, 2008). To meet this con-
straint, we simplified our four-choice task data into correct and
incorrect decisions, and incorrect responses contained errors
toward three different directions from the correct motion di-
rection. Our modeling results provided a good fit to the ob-
served data. It would be useful to extend the analysis using
other models that are designed for decision problems with
multiple alternatives (Bogacz, Usher, Zhang, & McClelland,
2007; Brown & Heathcote, 2008; Usher &McClelland, 2001;
Wong & Wang, 2006; Zhang & Bogacz, 2009), although a
hierarchical Bayesian implementation of those more complex
models is beyond the scope of the present study.

In conclusion, our results validated the joystick as a reliable
device for continuous responses during rapid decision-mak-
ing. As compared with key presses, the additional complexity
and continuity associated with joystick movements did not
affect raw behavioral measures such as accuracy and mean
RT, as well as underlying decision-making processes.
However, we highlighted the effects of movement direction
on continuous trajectory measures. Researchers should be
cautious when adopting experimental designs that require
complex movement trajectories.
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