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Aim: We aimed to identify subphenotypes among patients with out-of-hospital cardiac arrest (OHCA) with initial non-shockable
rhythm by applying machine learning latent class analysis and examining the associations between subphenotypes and neurological
outcomes.

Methods: This study was a retrospective analysis within a multi-institutional prospective observational cohort study of OHCA
patients in Osaka, Japan (the CRITICAL study). The data of adult OHCA patients with medical causes and initial non-shockable rhythm
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presenting with OHCA between 2012 and 2016 were included in machine learning latent class analysis models, which identified sub-
phenotypes, and patients who presented in 2017 were included in a dataset validating the subphenotypes. We investigated associa-
tions between subphenotypes and 30-day neurological outcomes.

Results: Among the 12,594 patients in the CRITICAL study database, 4,849 were included in the dataset used to classify subpheno-
types (median age: 75 years, 60.2% male), and 1,465 were included in the validation dataset (median age: 76 years, 59.0% male).
Latent class analysis identified four subphenotypes. Odds ratios and 95% confidence intervals for a favorable 30-day neurological out-
come among patients with these subphenotypes, using group 4 for comparison, were as follows; group 1, 0.01 (0.001–0.046); group
2, 0.097 (0.051–0.171); and group 3, 0.175 (0.073–0.358). Associations between subphenotypes and 30-day neurological outcomes
were validated using the validation dataset.

Conclusion: We identified four subphenotypes of OHCA patients with initial non-shockable rhythm. These patient subgroups pre-
sented with different characteristics associated with 30-day survival and neurological outcomes.

Key words: Asystole, cardiac arrest, clustering, latent class analysis, pulseless electrical activity, subphenotype

INTRODUCTION

OUT‐OF‐HOSPITAL CARDIAC ARREST (OHCA)
with non-shockable rhythm (pulseless electrical activ-

ity [PEA] and asystole) is a life-threatening medical situa-
tion with a very low survival possibility.1–3 To select the
optimal resuscitation strategy for patients with OHCA,
including implementation or withdrawal of advanced resus-
citation, understanding the pathogenesis of OHCAwith non-
shockable rhythm and predicting the prognosis during resus-
citation are essential.2,3 The prognosis of OHCA with non-
shockable rhythm is affected by various clinical features,
including patient characteristics, bystander cardiopulmonary
resuscitation (CPR), quality of CPR, pre-hospital care, and
cardiac arrest etiology, making it difficult to predict progno-
ses and make effective clinical decisions.2,3

Recently, some studies have focused on identifying sub-
phenotypes through unsupervised machine learning tech-
niques, including latent class analysis conducted among
patients with sepsis or acute respiratory distress syndrome,
to overcome patient heterogeneity before selecting appropri-
ate treatment strategies.4–10 A phenotype is defined through
patient groups with common clinical features, including spe-
cific syndromes (e.g., sepsis or acute respiratory distress
syndrome), whereas a subphenotype is defined as a sub-
group within a given phenotype with distinct clinical fea-
tures and response to treatment compared to other subgroups
of the same phenotype.11 Subphenotype identification likely
plays a valuable role in understanding pathophysiology and
the prediction of prognoses and may be used to implement
precision treatments that could reduce mortality or avoid
undesirable invasive treatment.12 However, few clinical
studies have investigated clinical subphenotypes associated
with OHCA using machine learning latent class analysis.
We aimed to identify the subphenotypes based on the physi-
ological features using a machine learning-based

unsupervised clustering technique and to evaluate associa-
tions between subphenotypes and clinical outcomes.

METHODS

THE ETHICS COMMITTEE of Kyoto University and
each participating institution approved this study proto-

col and retrospective analysis (approval ID: R1045); the
requirement for written informed consent was waived. This
study was conducted in accordance with the principles of
the Declaration of Helsinki.

Study design and settings

This study was a retrospective analysis conducted within a
multi-center prospective observational cohort study using the
CRITICAL study database, consisting of pre-hospital and in-
hospital data among OHCA patients in Osaka, Japan. Details
of this database and prehospital emergency care system in
Japan have been published previously13–16 and are described
in Appendix S1 in the Supporting Information. Pre-hospital
data were obtained from the All-Japan Utstein Registry (from
the Fire and Disaster Management Agency), and in-hospital
data were obtained from 16 tertiary critical care medical cen-
ters and one other community hospital.13,17–19

Study participants

This study included adult OHCA patients (≥18 years of age)
from the CRITICAL database presenting with medical
causes and an initial non-shockable rhythm and transferred
to the hospitals between July 1, 2012 and December 31,
2017. Medical causes are defined as cases in which the cause
of the cardiac arrest is presumed to be cardiac arrest because
of cardiac etiology, other internal medical causes (e.g.,
asthma, gastrointestinal bleed), or in cases with no obvious
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cause of cardiac arrest based on the standardized recording
format.20 Initial non-shockable rhythm was defined as either
PEA or asystole and was confirmed by paramedics at the
scene because current guidelines regarding advanced life
support propose different resuscitation algorithms based on
specific initial rhythms.1 The exclusion criteria were as fol-
lows: no resuscitation or treatment at the hospital, unavail-
able pre-hospital records, <18 years of age (or unknown
age), external mechanism of cardiac arrest, or return of spon-
taneous circulation on contact with paramedics, with no
resuscitation attempts performed by paramedics.

Derivation and validation datasets

Patient data were placed in a derivation dataset to identify
subphenotypes and a validation dataset to evaluate the valid-
ity of subphenotype identification. The derivation and vali-
dation datasets were based on patient data from OHCA
incidents occurring between 2012 and 2016 and in 2017,
respectively. Generally, external validation requires different
patient profiles in the same target population. Therefore, we
split the dataset based on temporal conditions, and each
cohort was expected to be heterogeneous and consist of dif-
ferent patient profiles.12,21

Latent class analysis

Latent class analysis is an unsupervised machine learning
method used to cluster groups of people with similar charac-
teristics, such as demographic and clinical characteristics. It
is different from the k-means clustering method, which is
not compatible with categorical variables; therefore, we
selected latent class analysis because it can handle specific
combinations of observed categorical and continuous vari-
ables.12,22 The term “latent” is derived from the concept that
the subgroups potentially exist, but it cannot be directly
observed.12,22 The concept of latent class analysis is shown
in Appendix S1. We consider that latent class analysis is
more suitable for exploring subphenotypes of OHCA
patients because OHCA patients have some clinically impor-
tant categorical variables, such as witnesses, the existence of
bystander CPR, or cardiac rhythm. We performed latent
class analysis with variable selection to classify subpheno-
types according to previously suggested key steps.12 Details
of variable selection and methodology are described in
Appendices S1 and S3.

Selected variables

We selected clinically relevant variables that were measur-
able at hospital admission and registered in the database

because identifying subphenotypes using readily available
emergency department variables can be expected to con-
tribute to determining resuscitation strategy. Fifteen clini-
cally important variables were selected for analysis.
Variables included demographic information (age and sex),
pre-hospital data (e.g., bystander CPR, initial cardiac
rhythm, and witness of collapse), and in-hospital data
(e.g., cardiac rhythm on hospital arrival, blood gas analy-
sis, and laboratory data obtained on hospital arrival).
Details of the variables are described in Appendix S3. The
outcomes described below were not included in the clus-
tering. Prehospital adrenaline administration and advanced
airway management were not included in the analysis
because these were not patients’ physiological features and
it is influenced by the policy of local medical control com-
mittee, the treating paramedics’ intentions or skill, by the
physicians supervising the paramedics or clinical context
at the scene.

Data setup

Implausible data and outliers were verified and treated as
missing in the data cleaning process, similar to that
described in previous studies.13 Because of the advantages
of random forest imputation for mixture data, missing data
were imputed using the “missForest” package before vari-
able selection (Table S1).7,23,24 Variables with a correlation
coefficient >0.5 were filtered, and only the most clinically
relevant variable among correlated variables was selected
(Appendices S2 and S3, Table S2).7,12 For sample size,
although there is no standard method to estimate adequate
sample size in latent class analysis, and it is data-driven,
some simulation studies indicate that sample sizes >500 are
adequate to obtain consistently high accuracy.12,25

Fitting the model

In the model derivation, we explored the optimal number of
clusters between two and determined optimal clustering
based on the “Elbow method” for the Bayesian information
criterion value suggested in a previous study12 because we
aimed to identify novel subphenotypes that have potential
value in clinical decision-making or further research. The
discriminative power of each variable was calculated, as the
logarithm of the ratio of the probability that the variable is
relevant for clustering to the probability that it is not. Dis-
criminative power was scaled such that the sum value was
100%. A higher variable index indicated a higher relevance
to clustering. For model fitting, we used the “VarSelLCM”

package in R (R Foundation for Statistical Computing,
Vienna, Austria).
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Evaluating the model

Once subphenotypes were identified, we described differ-
ences in demographics, pre-hospital data, and in-hospital
data. Continuous variables were summarized as boxplots
indicating medians and interquartile ranges (IQRs), whereas
categorical variables were summarized as frequencies and
percentages.

Associations between subphenotypes and
outcomes

The primary outcome was defined as 30-day survival with a
favorable neurological outcome (Cerebral Performance Cat-
egory 1 or 2).26 Based on the All-Japan Utstein Registry
from the Fire and Disaster Management Agency, all survi-
vors were followed up to confirm the outcome at 30-day
after OHCA. The secondary outcome was 30-day survival.
The outcomes were assessed by the supervising physician in
charge of patient care through a follow-up interview. To
identify associations between groups and outcomes, we per-
formed logistic regression analysis to generate odds ratios
(ORs) with 95% confidence intervals (CIs) for each group.
We did not adjust for confounders because the potential con-
founders were used as variables to identify subphenotypes,
and these were conditioned in each group.

Regarding the discriminatory ability for groups and out-
comes, we calculated the area under the curve (AUC) of the
receiver-operating curve (ROC) and presented the 95% CI
of the AUC.

External validation of the derived
subphenotypes

The model for clustering was applied to the validation data-
set from 2017 using the “predict” function of the “Var-
SelLCM” package to evaluate external validation and
reliability. The characteristics and outcomes of each subphe-
notype in the validation data were described. Further, we
calculated the OR and 95% CI for each group regarding the
outcomes, along with the AUC of the ROC (with 95% CI)
as mentioned above, to confirm the replicability of our
findings.

RESULTS

AMONG THE 12,594 patients in the CRITICAL data-
base, 6,314 OHCA patients with initial non-shockable

rhythm were included in the analysis: 4,849 in the derivation
dataset (median [IQR] age, 75 [65–83]; men, 2,920
[60.2%]) and 1,465 in the validation dataset (median [IQR]

age, 76 [66–84]; men, 2,874 [59%]). The study flowchart is
included in Figure S1. Patient characteristics and in-hospital
data are described in Table 1 and Table S3. Regarding the
outcomes in the datasets, the rates of 30-day-survival and
30-day survival with favorable neurological outcomes were
4.4% (n = 211) and 1.8% (n = 87) in the derivation dataset
and 4.2% (n = 62) and 1.5% (n = 22) in the validation data-
set, respectively.

Clustering subphenotypes in the derivation
dataset

After removing variables with high degrees of correlation
in the derivation dataset, 15 variables were used to clus-
ter subphenotypes (Appendices S1 and S3, Table S2).
The optimal number of clusters was four, based on
Bayesian information criterion values (Figs. S2 and S3).
To identify these 4 clusters, 14 of 15 variables were
selected to the model, and variables with the highest dis-
criminative power were partial pressure of oxygen (PO2),
age, serum potassium, and estimated glomerular filtration
rate (eGFR; Fig. 1). The characteristics and distribution
of variables with high discriminative power among the
patients were modeled by the groups in the derivation
dataset (Table 1, Fig. 2).

Association between subphenotypes and
outcome in derivation dataset

For the primary outcome, the 30-day neurological favorable
outcomes were group 1, 0.1% (1/1,386); group 2, 0.7% (13/
1,896); group 3, 1.2% (7/571); and group 4, 6.6% (66/996)
(Fig. 3). The ORs (95% CI) of each group for the 30-day
neurological favorable outcome were group 1, 0.01 (0.001–
0.046); group 2, 0.097 (0.051–0.171); and group 3, 0.175
(0.073–0.358) compared to group 4. The AUC of ROC
(95% CI) of groups was 0.819 (0.784–0.855).

For the secondary outcome, the 30-day survival outcomes
in each group were group 1, 0.4% (5/1,386); group 2, 2.2%
(42/1,896); group 3, 2.6% (15/571); and group 4, 15% (149/
996) (Fig. 2). The ORs (95% CI) of each group for the 30-
day survival outcome were group 1, 0.021 (0.007–0.045);
group 2, 0.129 (0.09–0.181); and group 3, 0.153 (0.086–
0.255) compared to group 4. The AUC of ROC (95% CI) of
groups was 0.798 (0.771–0.825).

Subphenotype and outcome in validation
dataset

The clustering model was fitted and identified the subpheno-
types in the validation dataset. The characteristics of the four
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groups were similar to that of derivation dataset (Table S3,
Fig. S4).

For the primary outcome, the 30-day neurological
favorable outcomes were group 1, 0% (0/408); group 2,
0.5% (3/569); group 3, 1.2% (2/163); and group 4, 5.2%
(17/325; Fig. 3). The ORs (95% CI) of each group for
the 30-day neurological favorable outcome were group 1,
not available because of zero value; group 2, 0.096
(0.022–0.289); and group 3, 0.225 (0.035–0.798) com-
pared to group 4. The AUC of ROC (95% CI) of
groups was 0.822 (0.759–0.885).

For the secondary outcome, the 30-day survival outcomes
in each group were group 1, 0% (0/408); group 2, 2.3% (13/
569); group 3, 2.5% (4/163); and group 4, 13.8% (45/325).
The ORs (95% CI) of each group for the 30-day survival

outcome were group 1, not available because of zero value;
group 2, 0.145 (0.074–0.266); and group 3, 0.157 (0.047–
0.394) compared to group 4. The AUC of ROC (95% CI) of
groups was 0.804 (0.76–0.847).

DISCUSSION

Key observations

WE IDENTIFIED FOUR subphenotypes of OHCA
patients with initial non-shockable rhythm. These

patient subgroups presented with different characteristics
associated with 30-day survival and neurological outcomes.
The replicability of these subphenotypes was confirmed
using the validation dataset.

Table 1. Characteristics in derivation cohort

Characteristics Subphenotypes

Overall

(N = 4,849)

Group 1

(N = 1,386)

Group 2

(N = 1,896)

Group 3

(N = 571)

Group 4

(N = 996)

Sex (men) 2,920 (60%) 781 (56%) 1,159 (61%) 406 (71%) 574 (58%)

Age (years) 75.0 (65.0, 83.0) 78.0 (71.0, 85.0) 77.0 (68.0, 83.0) 46.0 (39.0, 52.0) 75.0 (66.8, 82.0)

Initial cardiac rhythm

Asystole (%) 2,027 (42) 306 (22) 936 (49) 177 (31) 608 (61)

PEA (%) 2,822 (58) 1,080 (78) 960 (51) 394 (69) 388 (39)

Witness (%) 2,129 (44) 231 (17) 1,064 (56) 193 (34) 641 (64)

Bystander CPR (%) 1,861 (38) 586 (42) 693 (37) 238 (42) 344 (35)

Time from call to hospital

(min)

32 (27, 40) 33 (27, 39) 32 (26, 40) 33 (28, 41) 33 (27, 41)

Cardiac rhythm at hospital arrival

VF/VT (%) 87 (1.8) 12 (0.9) 37 (2.0) 11 (1.9) 27 (2.7)

PEA (%) 1,110 (23) 97 (7.0) 556 (29) 88 (15) 369 (37)

Asystole (%) 3,382 (70) 1,276 (92) 1,277 (67) 458 (80) 371 (37)

ROSC (%) 270 (5.6) 1 (<0.1) 26 (1.4) 14 (2.5) 229 (23)

BT (°C) 35.4 (34.7, 36.1) 35.2 (34.1, 35.9) 35.6 (35.0, 36.1) 35.3 (34.4, 36.0) 35.4 (34.6, 36.1)

PCO2 (mm Hg) 84 (64, 106) 100 (72, 131) 84 (71, 98) 97 (77, 126) 59 (40, 80)

PO2 (mm Hg) 38 (19, 73) 32 (17, 61) 30 (16, 47) 31 (17, 56) 127 (81, 234)

BE (mEq/L) �17.6 (�22.6,

�13.2)

�21.8 (�25.5,

�17.2)

�15.7 (�18.2,

�11.4)

�20.8 (�25.6,

�16.8)

�16.5 (�21.6,

�10.9)

Glu (mg/dL) 226 (139, 304) 166 (90, 256) 242 (172, 297) 271 (154, 368) 250 (160, 344)

Alb (g/dL) 3.1 (2.8, 3.3) 3.0 (2.6, 3.2) 3.1 (2.9, 3.3) 3.4 (3.1, 3.6) 2.9 (2.5, 3.3)

Na+ (mEq/L) 140 (138, 142) 140 (136, 143) 140 (139, 142) 140 (137, 143) 139 (136, 142)

K+ (mEq/L) 6.3 (5.1, 7.7) 8.3 (7.2, 9.7) 5.7 (5.0, 6.5) 6.8 (5.3, 9.2) 5.2 (4.2, 6.2)

eGFR (mL/min/1.73 m2) 37 (25, 49) 30 (18, 43) 37 (29, 45) 48 (34, 61) 43 (28, 60)

Continuous variables were summarized as median and interquartile range (IQR), whereas categorical variables were summarized as fre-

quencies and percentages (%).
Alb, albumin (g/dL); BT, body temperature (°C); CPR, cardio-pulmonary resuscitation; eGFR, estimated glomerular filtration rate (mL/min/

1.73 m2); Glu, glucose (mg/dL); K+, serum potassium (mEq/L); Na+, serum sodium (mEq/L); PCO2, partial pressure of CO2 (mm Hg); PEA, pul-

seless electrical activity; PO2, partial pressure of O2 (mm Hg); ROSC, return of spontaneous circulation; VF, ventricular fibrillation; VT, pulse-

less ventricular tachycardia.
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Strengths

This study had several strengths compared with previous
studies. First, to the best of our knowledge, this was the first
study to investigate subphenotypes of OHCA patients with
initial non-shockable rhythm. Previous studies used tradi-
tional methods, including logistic analysis, to identify fac-
tors associated with survival and clinical outcomes
(including age, presence of witnesses, bystander CPR, a
shorter ambulance response time, initial PEA, cardiac
rhythm conversion to shockable rhythm, early administra-
tion of adrenaline, and biomarker levels).3,27–30 However,
analysis by logistic model is intended to investigate the inde-
pendent association between the factors and outcomes, and
these individual factors are generally not suitable for distin-
guishing heterogenic patients when other factors are not
considered.22 However, this study is focused on the distribu-
tion of variables for capturing the features of the data and
suggests the novel concept of subgroups among OHCA
patients with non-shockable rhythm, which have not been
realized using traditional analyses. This concept is likely to
help promote understanding of the underlying pathogenesis,
prompt hypotheses, contribute to developing a prediction
model, and aid in investigating the heterogeneity of treat-
ment, which may further enhance precision medicine. Sec-
ond, the latent class analysis in this study includes clinically
relevant categorical variables, including cardiac rhythm on
hospital arrival or the presence of witnesses at the event. In
contrast, only continuous variables were included in the
analysis in previous studies implementing other clustering
methods, including k-means.4,8–10 Therefore, our study char-
acterizes subphenotypes more comprehensively by consider-
ing categorical variables. Third, in this clustering approach,

there is some concern regarding validation and replicabil-
ity.22 However, this study confirmed that the identified sub-
phenotypes were replicable using the validation dataset;
therefore, these results may be generalizable to similar
settings.

Interpretation

The results of this study can be reasonably explained by the
following potential mechanisms. First, PO2 in arterial blood
indicates alveolar oxygenation and oxygen delivery in the
systemic circulation. During resuscitation, a high PO2 value
may indicate good CPR quality, return of spontaneous circu-
lation, or a situation in which spontaneous circulation is
slightly maintained, but the carotid pulse is not detectable
because of hypotension, and this parameter was reportedly
associated with the return of spontaneous circulation and
survival discharge.31,32 Similarly, in our previous study
investigating the subphenotypes among patients with OHCA
and a shockable rhythm, PO2 in blood gas assessment is also
the variable with the highest discriminative power. Accord-
ingly, we suggest that the PO2 value may play an important
role in identifying subphenotypes among patients with
OHCA. Second, age is one of the most relevant factors
influencing the prognosis for patients with cardiac
arrest,33,34 and we consider that age has high discriminative
power. However, in a previous study involving patients with
OHCA and an initial shockable rhythm, age was reported to
have minimal discriminative power for the subphenotypes.35

This may have been because patients in this study were
older than those in the previous study (median age, 65 [IQR:
53–75] years), and age becomes more relevant among older
populations, as in our study. Third, increased serum

Fig. 1. Discriminative power. Alb, albumin; BE, base excess, BT, body temperature; CPR, cardio-pulmonary resuscitation; eGFR, esti-

mated glomerular filtration rate; Glu, glucose; K+, Serum potassium; Na+, serum sodium; PCO2, partial pressure of carbon dioxide;

PO2, partial pressure of oxygen. The discriminative power of each variable was calculated as the logarithm of the ratio between the

probability that the variable is relevant for clustering and the variable is irrelevant for clustering. It is scaled as the sum value is 100%.
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potassium levels may be representative of organ injury.
Because increases in serum potassium are associated with
cell lysis after cell death, indicating the futility of resuscita-
tion attempts.16,36 Fourth, chronic kidney disease (defined as
low eGFR) is a well-known major risk factor for cardiovas-
cular events or sudden death and is associated with mortality

and unfavorable neurological outcomes in OHCA
patients.37–39 Based on these findings, these parameters may
be relevant when identifying the subphenotypes of OHCA
patients with non-shockable rhythm.

Some results are somewhat counterintuitive. For example,
group 3 was younger than group 4; however, group 3 had

Fig. 2. Distributions of variables with the highest discriminative power in the derivation dataset. The box plot indicates median and

interquartile range. Age, year; eGFR, estimated glomerular filtration rate (mL/min/1.73 m2); PO2, partial pressure of oxygen (mm Hg).
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lower survival outcomes than group 4. Based on the results,
although it appears that age is an important variable to dif-
ferentiate the groups, age is not a single dominant variable
to differentiate patient prognosis, and the combination of
other variables, such as PO2, should be considered. Clini-
cally, it stands to reason that the OHCA patients who are
young (e.g., 50 years old) with lower PO2 values (e.g.,
20 mm Hg) had lower survival probability than those who
are elderly (e.g., 75 years), but had high PO2 values (e.g.,
140 mm Hg). This is because PO2 of 20 mm Hg indicates a
severe lack of oxygen delivery to vital organs, and this
seems to lead to critical injury of the brain and other organs,
even in young patients.

Clinical and research implications

Distinguishing subphenotypes may be helpful to understand
the underlying pathogenesis of cardiac arrest, suggest a
novel hypothesis, or contribute to developing a prediction
model. Discriminatory abilities (i.e., the AUC of the ROC)
for neurological outcomes were relatively high in both
datasets for developing prediction models. Therefore,

subphenotype features could be used to develop more accu-
rate prediction models. Further, the fourth-highest discrimi-
native power variable was eGFR, although differences in
eGFR between the subphenotypes were relatively small.
This result may suggest that even minor differences in eGFR
may be relevant to patient outcomes. This finding may lead
to further research to explore the role of eGFR in patient
resuscitation.

Moreover, identifying these subphenotypes may be valu-
able when investigating the potential heterogeneity in the
effect of resuscitation interventions. Previously, we reported
that subphenotypes of patients with OHCA and an initial
shockable rhythm might have potential heterogeneity in the
effect of extracorporeal CPR on the outcomes,35 and we
consider that the results in that previous study may be of
value in identifying an appropriate target population for
extracorporeal CPR. In this study, the outcomes in groups 2
and 3 were equivalent; however, the characteristics differed,
and there may have been some potential heterogeneity in
terms of the effect of the intervention. In this study, although
we did not explore the heterogeneity of the effect of inter-
vention because there is no established intervention to

Fig. 3. Primary and secondary outcomes by dataset.
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improve outcomes for patients with OHCA patients and a
non-shockable rhythm, the concept of subphenotypes may
be valuable for further research to investigate the potential
heterogeneity of the treatment effect.

Limitations

This study had several limitations. First, although pre-
hospital and in-hospital data were collected prospectively
using the pre-specified data extraction sheet, some data may
have been missed or measurement errors may have occurred.
It is particularly concerning that blood test results were
based on the blood sample collected on hospital arrival;
however, the timing of blood collection may not have been
uniform in all patients. Therefore, we should be cautious
when interpreting the results because of the risk of bias. Sec-
ond, the data available for this study were somewhat limited.
We may have obtained different results with comprehensive,
clinically significant data. For example, information on
patient characteristics that include comorbidities or the situa-
tion in which the cardiac arrest occurred may have been
valuable when developing subphenotype profiles. Further,
the available outcome data is limited to only survival or
Cerebral Performance Category status. If more clinically rel-
evant outcome data, such as health-related quality of life,
were available, the results of this study would have been
more clinically valuable. Third, although there is no estab-
lished standard to estimate the sample size required for suffi-
cient statistical power, the small sample size in this study
poses a risk of inaccurate estimation. Fourth, there is no gold
standard to validate data clustering results. Therefore, the
replicability and generalizability of these results to other set-
tings is unclear. Further research is needed to address the
risks of bias and concerns of applicability.

CONCLUSIONS

WE IDENTIFIED THE subphenotypes associated with
favorable neurological outcomes using an unsuper-

vised machine learning-based clustering technique. The rep-
licability of these subphenotypes was confirmed with a
validation dataset. Further research is necessary to validate
these subphenotypes.
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