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Abstract: In this paper, we propose joint optimization of deep neural network (DNN)-supported
dereverberation and beamforming for the convolutional recurrent neural network (CRNN)-based
sound event detection (SED) in multi-channel environments. First, the short-time Fourier transform
(STFT) coefficients are calculated from multi-channel audio signals under the noisy and reverberant
environments, which are then enhanced by the DNN-supported weighted prediction error (WPE)
dereverberation with the estimated masks. Next, the STFT coefficients of the dereverberated
multi-channel audio signals are conveyed to the DNN-supported minimum variance distortionless
response (MVDR) beamformer in which DNN-supported MVDR beamforming is carried out with
the source and noise masks estimated by the DNN. As a result, the single-channel enhanced STFT
coefficients are shown at the output and tossed to the CRNN-based SED system, and then, the three
modules are jointly trained by the single loss function designed for SED. Furthermore, to ease the
difficulty of training a deep learning model for SED caused by the imbalance in the amount of data
for each class, the focal loss is used as a loss function. Experimental results show that joint training of
DNN-supported dereverberation and beamforming with the SED model under the supervision of
focal loss significantly improves the performance under the noisy and reverberant environments.

Keywords: sound event detection; dereverberation; acoustic beamforming; convolutional recurrent
neural network; joint optimization

1. Introduction

Sound event detection (SED) is desired as a task that detects the onset and offset times for each
sound event in an audio segment. Various sounds always occur around us, and SED enables many
services, including social care [1], audio surveillance [2,3], drone detection [4], and bird detection [5],
by allowing machines to recognize sound events like the human auditory system. In recent years, the
Detection and Classification of Acoustic Scenes and Events (DCASE) challenge and deep learning have
significantly accelerated the research of SED. In the first DCASE challenge held in 2013, all proposed
algorithms were based on shallow learning such as the hidden Markov model (HMM), support vector
machine (SVM), and the Gaussian mixture model (GMM). In DCASE 2013, only a small number of
teams participated, and the performances of the systems turned out not to be desirable [6]. Since
the deep neural network (DNN)-based polyphonic SED algorithm was proposed in 2015 [7], deep
learning-based SED studies have begun to pour out with the DCASE challenge (2016, 2017, 2018,
2019). In particular, deep learning structures based on the convolutional neural network (CNN) [8,9],
recurrent neural network (RNN) [10-12], and convolutional recurrent neural network (CRNN) [13]
showed the state-of-the-art performance, and data augmentation methods were proposed to maximize
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the learning ability of deep learning models [14]. Since the CNN can extract optimized features with
trainable convolutional filters, it achieves a better performance than image-like inputs such as the
log-scale Mel filter bank (LMFB), which is most used in the SED domain. Furthermore, the RNN, which
can remember previous inputs through time, also performs well due to the time-series characteristics
of the audio signal. Recently, the CNN and CRNN models with additional techniques, including the
modified CNN [15] and pooling methods [16], were proposed. Furthermore, further studies combined
with other tasks such as sound event detection and segmentation using the weakly labeled data [17]
and joint sound event detection and localization [18] were proposed.

In contrast, in the speech recognition domain, the use of the LMFB as a feature vector and the
CNN, RNN, and CRNN as the classifiers for the acoustic model are similar to the SED, but studies
of integrating a preprocessor, such as acoustic beamforming or dereverberation with the acoustic
model using multi-channel audio signals, have been actively conducted to improve recognition
accuracy [19-21]. Furthermore, the joint optimization method on DNN-supported dereverberation
and beamforming with an end-to-end speech recognition model was recently proposed [22]. Similarly,
the joint optimization onto DNN-supported dereverberation and beamforming with the x-vector net
was introduced in the speaker verification domain [23]. However, unlike speech recognition and
speaker verification, there have not been many studies to enhance the audio signals for the SED
because it is challenging to distinguish the evident audio from ambient noise due to the wide variety
of target sounds. Sometimes, audio enhancement even degrades the SED performance, so some
studies have been conducted on a limited basis with a weak level of noise reduction [24] or adaptive
noise reduction [25] for the SED. Additionally, when using multi-channel audio signals, only studies
using binaural features [26] or spatial features [27] and classification with the 3D CNN [28] have been
reported, rather than combining them with preprocessing algorithms. Nevertheless, research on the
combination of the preprocessor and the SED to take advantage of the multi-microphone has to be
carried out for further performance enhancement.

In this paper, we propose a joint optimization method on DNN-supported dereverberation
and beamforming for the SED under noisy and reverberant conditions. Because deep learning
seamlessly optimizes beamforming and dereverberation through training, it is possible to
combine beamforming and dereverberation with the SED to obtain optimized overall performance.
One significant contribution compared to previous studies is the effectiveness of the cascade of
DNN-supported weighted prediction error (WPE) dereverberation, the DNN-supported minimum
variance distortionless response (MVDR) beamformer, and the SED network. Further, we present
jointly training the final objective, the cost function, of the SED task. Furthermore, we employ the
focal loss [29] within this task, since it is challenging to equalize the data amount of each sound
class because the audio lengths of each class are all different in reality. Specifically, a mini-batch
balancing method [30] in the training process is proposed to overcome this problem, but focal
loss further helps to compensate this problem naturally in the training process. The evaluation
was conducted based on the Tampere University (TAU) Spatial Sound Events 2019 dataset (http:
/ /dcase.community/challenge2019/task-sound-event-localization-and-detection), which showed
significant improvement compared to conventional methods in the F-score and error rate.

Section 2 describes the proposed system, which is composed of the DNN-supported WPE
dereverberation, DNN-supported MVDR beamformer, and SED. The dataset, evaluation metrics,
experimental setup, and results are described in Section 3. Finally, conclusions are provided in
Section 4.

2. Proposed System Overview

In this section, we fully describe our proposed system, which consists of three parts, as depicted
in Figure 1. The first part of the system is designed for dereverberation by the DNN-supported
WPE using multi-channel signals (in Section 2.1). In the second part, the DNN-supported MVDR
beamforming is performed using the multi-channel output of the first part, and the single-channel
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beamformed signal is estimated as a result. Finally, the CRNN based SED assesses the presence or
absence of sound events, including the onset and offset detection. Then, all the parts of the system are
jointly optimized with the focal loss as a loss function. The details of each part of the proposed system
are described in the following subsections.

Backpropagation
D-channel ‘ l System
Audio Input Output
CRNN
| RIRIG | WPE RIRIG] | MVDR Mel
o > . ' > Based >
S Filter Source| Filter Filter
ollo] 9 ekl | SED
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Derevberation Beamforming Sound Event Detection

Figure 1. Block diagram of the proposed system. WPE, weighted prediction error; MVDR, minimum
variance distortionless response; SED, sound event detection.

2.1. DNN-Supported WPE Dereverberation

This subsection explains in detail the DNN-supported WPE dereverberation part including
classical WPE dereverberation and DNN-supported WPE dereverberation reported in [20-23].
When we observe a signal using D microphones in a noisy and reverberant environment, the observed
signal y; ¢ 4 can be represented in the short-time Fourier transform (STFT) domain as follows:

1 1
Viga = Xpd XD g (1)

where xii?ﬁw, xg;ffl), and n; r 4 denote the source signal convolved with the early part of the room
impulse response (RIR) and with the late reflection and noise signal, respectively. Furthermore, ¢ is the
time frame index; f is the frequency bin index; and d is the microphone channel index, respectively.
We assume that the first 50 ms after the main peak of the RIR contributes to the early reflection, and the
remaining part becomes the late reflection. The purpose of dereverberation is to subtract late reflection
components from the observed signal as follows:

(earl _
xi,efa;lw =Yifd— G?dYt—A,f )

where Gf & Yi-af, and A are the stacked representations of the linear prediction (LP) filter (WPE
filter in Figure 1), the observation, and a delay for LP, respectively. To estimate the early reflection
component, the classical WPE algorithm finds the LP filter based on the maximum likelihood (ML) for
which the WPE assumes that the desired signal follows a zero-mean complex Gaussian distribution
with a time-varying variance A; . There is no closed-form solution of the ML optimization problem, but

an iterative procedure alternates between estimating the filter coefficients G? 4 and the time-varying

variance Ay ¢ to find G? ; as follows:
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t+o (early)
)\t,f m ;5 ; | tf d (3)
R, - Veaf¥iar ke )
t At,f
VirYiia f
p, = VLA ¢ CDKxD 5
; Xt: T ®)
G/ = Rfll’f ¢ CDKxD (6)

where (0 + 1 + J) means the number of context frames to improve the variance estimate, Ry is the
correlation matrix, Py is the correlation vector, and K is the order of the LP filter. DNN—supported WPE

dereverberation replaces the iterative procedure to estimate power spectrum |x§e]?;y>| in Equation (3).

For this, we estimate the masks for calculating the desired power spectrum |% t;fiy | from the given

input power spectrum |y f/d\ . Specifically, the log-scale power spectra (LPS) y; f 4 are used as the

input of the DNNs, which use ReLU with max clamp of one for the activation function of the output

layer so as to limit the estimated masks within [0,1]. We can calculate |xtefagw| with |y, f,d|2 and

estimated masks. Finally, £ A(e;r Y) is estimated by following sequence (3) — (4) — (5) — (6) — (2),

and it is tossed as the input of the DNN-supported MVDR beamformer part. Since the range of the
masks is bounded within [0, 1], the DNN is easier to optimize than the direct prediction method of the
desired power spectrum when jointly training the full networks [22].

2.2. DNN-Supported MVDR Beamformer

Originally, the MVDR beamformer used the steering vector, which depends on the angle of the
desired signal from the source to minimize the residual noise while constraining the distortion of the
signal. The steering vector can be obtained from an estimate of the direction of arrival (DoA) and
the optimal signal is calculated by inducing the maximum beam gain in the steering vector direction
and the minimum beam gain in the remaining direction. However, the MVDR beamformer also can
be derived by speech and noise power spectral density (PSD) matrices without the steering vector.
According to [31], the enhanced single-channel output £; y can be found by multiplying the gain
HE, Hr (MVDR filter in Figure 1) by the observed multi-channel input signal y;  as follows:

@l
Hyjypr = — 22— —u ecP ()
tr(Ppp Py
R f= HJI\{AVDRYt,f (8)

where ®,, and ®,,;, respectively denote the PSD matrices of the source and noise components and
u is a one-hot vector for the reference microphone. In addition, {r means the trace of the matrix.
In the DNN-supported MVDR beamformer, similar to the DNN-supported WPE dereverberation, two
networks are separately trained for estimating masks in calculating the source and noise PSD matrices,
where v denotes the signal attribute and 6 ¢ is a predefined decision threshold, respectively [19,20,22,23].
These masks are averaged over the microphone channel d. As a result, the PSD matrices of the source
and noise are found as follows:

Dy = ;Mﬁlz})yt’fy{}/;mg,? [AS {X,Tl} 9)

where M° f) € [0,1] denotes the estimated time-frequency mask calculated by the DNN, which uses
the sigmoid as the activation function of the output layer. Finally, single-channel beamformed STFT
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coefficients %, ¢ are estimated by following order (9) — (7) — (8). Then, £, f is conveyed to the SED
model for predicting sound events.

2.3. Sound Event Detection

For the SED, the LMFB is used as an input feature, which can be calculated by multiplying
the magnitude spectrum with the Mel filter and then taking the logarithm. The input features are
normalized using the global mean and variance statistics before being fed to the CRNN-based SED
model, which is illustrated in Figure 2. Figure 2a—c show the CRNN-based SED model, the conventional
convolutional block of the DCASE 2019 Task 3 baseline [18], and the proposed convolutional block,
respectively. Unlike the conventional method using the three layers of the 3 x 3 convolution filter, the
proposed convolutional block consists of two parallel parts inspired by VGGNet [32] and Inception
V2 [33]. The first part conducts the convolution in the direction of the frequency axis only, and the
second part performs the convolution in the direction of the time-frequency axis, then the two parts
are concatenated. For the second part, the 3 x 3 convolution is divided into 1 x 3 convolution and 3
x 1 convolution. Finally, 1 x 1 convolution is used to reduce the computational cost. The output of
the convolutional block is fed to the two layers of the bi-directional gated recurrent unit (GRU) RNN.
Next, the output of the bi-directional GRU is connected to the fully connected layers and the output
layer with the sigmoid function as an activation function, so that the value of the outputs is selected
between zero and one for each class.
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Figure 2. Overview of the SED model: (a) convolutional block of the Detection and Classification
of Acoustic Scenes and Events (DCASE) 2019 Task 3 baseline [18]; (b) CRNN-based SED model;
(c) proposed convolutional block. LMFB, log-scale Mel filter bank.

2.4. Joint Optimization

This section summarizes and explains how the DNN-supported dereverberation, beamforming,
and the CRNN-based SED models are organized into a cascaded network. First, when the D-channel
audio signal is input, the magnitudes of the STFT coefficients are calculated and then fed to the DNN.
The DNN estimates the dereverberation mask, and then the magnitudes of the STFT coefficients of
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the dereverberated signal can be calculated using Equations (2), (3) and (6). Next, this output is fed
into another DNN to estimate the source and noise masks for the neural MVDR beamformer. Using
Equations (7)—(9), the magnitudes of the STFT coefficient of the single-channel enhanced signal are
obtained. Then, multiplying these values with the Mel filters, the LMFB is calculated, which serves as
an input for the CRNN-based SED model. The whole network is trained by the loss, which is calculated
with the label and the SED output. At this time, the focal loss is considered as a loss function for further
improving the performance. As for the SED, equalizing the data amount of each class is challenging
because the audio lengths of each class are all different. The focal loss is useful for compensating for
this problem naturally when training the deep learning model by giving a stronger loss to those that
fail to estimate [29]. The focal loss is defined as follows:

FL(pt) = —(1 = ps)" log(p:) (10)
, if gt=1

pi = { oo T8 (1
1—p, otherwise

where gt represents the ground truth, p € [0, 1] is the model’s estimated probability, and y denotes the
tunable focusing parameter.

All of the processes described above are differentiable, so the backpropagation with the chain rule
is possible. Motivated by this, in the end, we perform joint training for the cascaded architecture of
DNN-supported WPE dereverberation, the DNN-supported MVDR beamformer, and the SED network
according to the focal loss, as depicted in Figure 2.

As for the joint optimization, we demand complex-valued operations including the
complex-valued inverse in Equations (6) and (7). As in [19,23], the complex-valued operations using
real-valued operations are implemented by separately computing real and imaginary parts. When C is
a complex-valued matrix and A and B are real-valued matrices corresponding to real and imaginary
parts, C can be expressed as C = A + iB. At this time, the complex-valued matrix inverse operations
can be calculated as follows [34]:

R(C)=(A+BA'B)! (12)
3(C ) =—-(A+BA'B) 'BA"! (13)

3. Experiments and Results

3.1. Dataset

The proposed algorithm was evaluated with the TAU Spatial Sound Events 2019 dataset.
The dataset consists of the two datasets, Ambisonic and Microphone Array [35]. The TAU Spatial
Sound Events 2019-Ambisonic dataset provides four-channel first-order ambisonic (FOA) recordings,
while the TAU Spatial Sound Events 2019-Microphone Array dataset provides four-channel directional
microphone recordings from a tetrahedral array configuration. Each dataset consists of 500 audio
files, 400 for development and 100 for evaluation. The records are one minute long, the sampling
frequency 48,000 Hz, and the signal-to-noise ratio (SNR) for sound events and ambient noise 30 dB.
These recordings were synthesized using the spatial room impulse response (IRs) collected from five
indoor locations at 504 unique combinations of azimuth-elevation-distance. The collected IRs were
convolved with the DCASE 2016 Task 2 dataset. In the DCASE 2016 Task 2 dataset, there are 11
classes of sound events such as clearing throat, coughing, door knock, door slam, drawer, laughter,
keyboard, keys (putting on table), page-turning, phone ringing, and speech, and each class consists of
20 audio files. Finally, each development dataset was divided into four cross-validation [36] splits of
100 recordings each. Additionally, to consider the noisy environment, we mixed the datasets with the
ambient noise recorded at an indoor location inside the Hanyang University campus in Seoul, Korea,
under 10 dB SNR. Two simple data augmentation methods (pitch shifting [14] and block mixing [10]
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using monophonic audio clips) were applied in the training process for the model generalization to
reduce overfitting.

3.2. Evaluation Metrics

To evaluate the performance of the SED model, we measured the segment-based F-score and error
rate (ER) in the same way as the DCASE 2019 Task 3. The F-score and ER were calculated in segments
of one second with no overlap [37,38]. Therefore, the labels and the SED outputs were generated
on average for segments of one second to calculate metrics. First, the F-score, which measures the
effectiveness of retrieval, is calculated as follows:

_ 2-YK | TP
2. 9K, TP+2- YK FP+2- YK FN

F (14)

where K is the number of segments and TP (k) denotes the number of true positives, which is the total
number of sound event classes that were active in both the reference and predictions for the segment.
In addition, FP(k) denotes the number of false positives, which is the number of sound event classes
that were active in the prediction, but were inactive in the reference. Similarly, FN (k) is the number of
false negatives, which is the number of sound event classes inactive in the predictions, but active in
the reference. Additionally, the ER, which measures the amount of errors, is given as follows:

_ 25:1 S(k) + 25:1 D(k) + Zf:l I(k)

ER
Y N(k)

(15)

where N (k) is the total number of active sound event classes in the reference. In addition, S(k), D(k),
and I(k) are called the substitution, deletion, and insertion, respectively, which are mathematically

defined as:
S(k) = min(FN(k), FP(k)), (16)
D(k) = max(0, FN (k) — FP(k)), 17)
I(k) = max(0, FP(k) — FN(k)). (18)

As for the ideal case, it is noted that the F-score and ER become one and zero, respectively.

3.3. Experimental Setup

The evaluation was performed with a window length of 40 ms, a hop length of 20 ms, and a fast
Fourier transform (FFT) size of 2048 points. Therefore, we obtained 3000 frames in one file since the
file was 60 seconds long, and the input sequence length T for training was 128. For dereverberation
and beamforming, the multi-layer perceptron, which consisted of three hidden layers with 1024 nodes,
was used. ReLU was chosen for the activation function at the hidden layers. For the DNN input, we
used the log-scale power spectra (folded frequency bins were discarded) as features that were spliced
with three left and three right context frames. Note that the parameters of the LP filter for the WPE
were fixed to (A, K) = (3,10). For sound event detection, first, the number of Mel filters for LMFB C
was 240. Next, the number of CNN filters for each layer was [64, 64, 64], and the max pooling sizes
along the frequency axis (MP;, M P>, and MP3) were 6, 5, and 4, respectively. Additionally, the size of
two GRU layers and two fully connected (FC) layers was [128, 128] and [256, 256], and the drop-out
rate for the FC layers was 0.5. We summarize the configurations of the neural networks in Tables 1
and 2. The batch size was 16, and an early stopping method was applied. Batch normalization [39]
was applied to all networks, and the networks were optimized by Adam [40]. The focus parameter
of the focal loss was set to two.
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Table 1. Configuration of DNNs for dereverberation and the beamformer.

Output size

Layers (Channels X Frames X Frequency Bins)
Input 4 x 128 x (1025 x 7)
(Log power spectra)  (Including left and right context frames)
Hidden Layer 1 4 x 128 x 1024
Hidden Layer 2 4 x 128 x 1024
Hidden Layer 3 4 x 128 x 1024
Output
(Mask) 4 x 128 x 1025

Table 2. Configuration of CRNN.

Layers Output Size
Input 1 x 128 x 240
(Log Mel filter bank) (Feature maps x Frames x Mel bins)
Convolutional Layer 1 64 x 128 x 40 / 64 x 128 x 40
Convolutional Layer 2 64 x 128 x 8 / 64 x 128 x 8
Convolutional Layer 3 64 % 128 x 2/ 64 x 128 x 2
Concatenate 128 x 128 x 2
1 x 1 Convolution 64 x 128 x 2
GRU Layer 1 128 x 128
GRU Layer 2 128 x 128
Fully Connected Layer 1 128 x 256
Fully Connected Layer 2 128 x 256
Output 128 x 11

(frames x classes)

3.4. Results

Tables 3 and 4 show the results with the TAU Spatial Sound Events 2019-Ambisonic development
dataset and TAU Spatial Sound Events 2019-Microphone Array development dataset, respectively.
First, by replacing the convolutional block, the F-score increased by approximately 1.6% on average
compared to the conventional method in both datasets, and the ER also improved to 0.05. This result
exhibited that using the different types of blocks in the convolutional block to extract features and
concatenate them also worked well for the SED. Next, the performance was improved in all cases
where the WPE was combined with the SED, the MVDR was combined with the SED, and the WPE
and MVDR were connected with the SED and then jointly trained, respectively. The one point of
these results was that MVDR was much more useful than WPE. However, this may be because the
reverberation of the dataset was not active. Finally, the focal loss also turned out to be helpful in
gaining the performances for the unbalanced dataset. The performance of Split 2, which had a slightly
lower performance than the other splits, was relatively increased. Subsequently, the average F-score
increased by 13.1%, and the ER improved 0.23 compared to the conventional method. For the DCASE
2019 Task 3 challenge results, two systems showed better performance than our proposed system with
this dataset, and they achieved the F-score of 98.2%, while Xue_JDAI_task3_1 [41] achieved the F-score
of 93.4%. However, MazzonYasuda_NTT_task3_3 [42] used 134M parameters for a vast ensemble
model because the DCASE 2019 challenge did not require limited complexity. In contrast, the number
of parameters in our system was 21M only. Tables 5 and 6 show the results at 10 dB SNR for the
Ambisonic and Microphone Array development datasets, respectively. Similar to the original 30 dB
datasets, the performance in the noisy environment was also improved in all cases where the WPE
was combined with the SED, the MVDR was combined with the SED, and the WPE and MVDR were
attached to the SED and then jointly trained, respectively. Table 7 shows the F-score and ER results
of the evaluation dataset. Compared to the DCASE 2019 Task 3 algorithms, the proposed algorithm
showed 4% better performance under the 10 dB SNR environment.
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Table 3. F-score and error rate (ER) results on the TAU Spatial Sound Events 2019-Ambisonic
development dataset.

Proposed
DCASE 2019 Proposed Proposed Proposed
Task 3 Pr‘;%‘:;’ed V\[/,PE M{,IDR WPEfMVDR WPE’;IE/[]X DR
Baseline [18] +SED +SED +SED +
+FL
Split 1 81.2 82.8 83.0 89.6 91.7 9.5
Foscore  SPIt2 78.0 80.1 81.2 88.1 90.8 92.0
o Split 3 80.5 81.2 825 89.5 915 93.0
Split 4 79.8 80.8 82.0 89.4 91.2 935
Overall 79.9 81.2 82.2 89.2 913 92.8
Split 1 0.31 0.28 0.27 0.15 0.14 0.12
Errop | SPIit2 0.37 0.32 0.31 0.17 0.16 0.14
e Split3 0.33 0.30 0.28 0.15 0.15 0.13
Split 4 0.34 031 0.28 0.16 0.15 0.12
Overall 0.34 0.30 0.29 0.16 0.15 0.13

Table 4. F-score and ER results on the TAU Spatial Sound Events 2019-Microphone Array
development dataset.

Proposed
DCASE 2019 Proposed Proposed Proposed
Task 3 P“;I]’E‘:;ed WPE MVDR  WPE+MVDR Wpﬁgl;g DR
Baseline [18] +SED +SED +SED
+FL
Split 1 81.5 82.9 83.8 90.5 92.3 93.6
F-score Split 2 79.1 81.5 82.5 89.9 91.5 93.5
%) Split 3 80.5 82.1 83.0 90.3 92.1 93.7
¢ Split 4 79.8 81.5 83.3 90.1 91.9 93.1
Overall 80.2 82.0 83.2 90.2 92.0 93.5
Split 1 0.31 0.28 0.25 0.15 0.14 0.08
Error Split 2 0.37 0.30 0.27 0.17 0.15 0.10
rate Split 3 0.35 0.29 0.27 0.16 0.14 0.09
Split 4 0.33 0.30 0.28 0.18 0.13 0.09
Overall 0.34 0.29 0.27 0.17 0.14 0.09
Table 5. F-score and ER results at 10 dB SNR: Ambisonic development dataset.
DCASE 2019 Proposed Proposed Proposed Proposed
Task 3 Pr‘;%‘]’;ed WPE MVDR  WPE+MVDR WPE‘;Z[]X DR
Baseline [18] +SED +SED +SED
+FL
Split 1 69.4 70.3 72.0 79.4 82.0 82.4
F-score Split 2 68.2 715 72.4 79.0 81.2 81.1
%) Split 3 70.2 72.6 74.4 80.4 83.3 83.2
¢ Split 4 69.6 73.5 73.1 80.2 82.4 83.0
Overall 69.4 72.0 73.0 79.8 82.2 82.4
Split 1 0.51 0.48 0.46 0.35 0.28 0.27
Error Split 2 0.53 0.48 0.45 0.33 0.29 0.29
rate Split 3 0.50 0.47 0.46 0.34 0.28 0.26
Split 4 0.50 0.46 0.46 0.35 0.27 0.25

Overall 0.51 0.47 0.46 0.34 0.28 0.27
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Table 6. F-score and ER results at 10 dB SNR: Microphone Array development dataset.

Proposed
DCASE 2019 Proposed Proposed Proposed
Task 3 P“;I]’E‘]’;ed V\II)PE Mi)fDR WPE+pMVDR WPE;\Z’[];’ DR
Baseline [18] +SED +SED +SED *
+FL
Split 1 70.1 71.0 73.1 78.5 81.5 82.9
F-score Split 2 70.6 71.1 73.4 79.0 80.2 80.8
(%) Split 3 70.4 71.4 74.2 80.6 82.4 82.6
Split 4 70.5 72.4 74.8 79.6 83.4 83.2
Overall 70.4 71.5 73.9 79.4 81.9 82.4
Split 1 0.48 0.48 0.45 0.34 0.29 0.26
Error Split 2 0.51 0.49 047 0.37 0.33 0.30
rate Split 3 0.47 0.45 0.46 0.33 0.29 0.27
Split 4 0.46 0.45 0.43 0.32 0.26 0.24
Overall 0.48 0.47 0.45 0.34 0.29 0.26

Table 7. F-score and ER results: evaluation dataset.

30 dB SNR 10 dB SNR
Algorithms F-Score (%) ER  F-Score (%) ER
Kapka_SRPOL_task3_2 [43] 94.7 0.08 81.0 0.31
Cao_Surrey_task3_4 [44] 95.5 0.08 79.4 0.32
DCASE 2019 Task 3 baseline [18] 85.4 0.28 73.2 0.47
Proposed WPE+MVDR+SED+FL 93.3 0.11 85.3 0.25

4. Conclusions

The CRNN-based SED model, which combines the DNN-supported WPE dereverberation and
the DNN-supported MVDR beamformer, was jointly trained using a single loss function. Since
the DNN-supported WPE dereverberation and MVDR beamformer were all differentiable, the
gradients derived from the SED part could be backpropagated to update all the parameters of the
DNN-supported dereverberation and beamforming. As for the loss function, we used the focal
loss to compensate for the imbalance in the amount of data between classes. Experimental results
showed that the joint training and focal loss improved the F-score and error rate of the SED, especially
noisy environments.
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