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The evolving biology of
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Richard M. Jones, Kristin N. Adams, Hassan E. Eldesouky
and David R. Sherman*

Department of Microbiology, University of Washington, Seattle, WA, United States
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb) is an ancient

disease that has remained a leading cause of infectious death. Mtb has

evolved drug resistance to every antibiotic regimen ever introduced, greatly

complicating treatment, lowering rates of cure and menacing TB control in

parts of the world. As technology has advanced, our understanding of

antimicrobial resistance has improved, and our models of the phenomenon

have evolved. In this review, we focus on recent research progress that

supports an updated model for the evolution of drug resistance in Mtb. We

highlight the contribution of drug tolerance on the path to resistance, and the

influence of heterogeneity on tolerance. Resistance is likely to remain an issue

for as long as drugs are needed to treat TB. However, with technology driving

new insights and careful management of newly developed resources,

antimicrobial resistance need not continue to threaten global progress

against TB, as it has done for decades.
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Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), has remained a

centrally important cause of morbidity and mortality for centuries, but our

understanding of TB disease, what causes it and how to combat it has evolved

substantially over that time. In some of the earliest written records of the disease, the

ancient Greeks recognized that TB was especially deadly, with the venerable “Father of

Medicine”Hippocrates warning other physicians against treating advanced cases because

the inevitable bad outcomes would damage the doctor’s reputation (Herzog, 1998).

Eventually, the 19th century discovery of the TB bacillus and the 20th century

introduction of effective chemotherapies seemed to promise a new era in which TB

was tamed if not eliminated (Daniel, 2006; Barberis et al., 2017). However, the emergence

of drug-resistant isolates was noted in the very first TB chemotherapy trials, and
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resistance has appeared whenever a new anti-TB agent is

introduced (Crofton and Mitchison, 1948; Gillespie, 2002).

With an estimated 1.3 million deaths in 2020 (WHO, 2021b),

and given the dramatic change in world population, TB may

claim as many total lives today as in the years before TB

chemotherapy was available. This dismal situation has several

causes, including co-morbidities like HIV and diabetes, and gaps

in timely diagnosis and treatment, but drug resistance stands

widely recognized as one of the major challenges to effective TB

control worldwide.
The classical model of drug treatment
and resistance

Just as ideas about TB have changed, thinking about drug

resistance has undergone a significant evolution over time.

Antibiotics were initially hailed as “magic bullets”, capable of

stopping even lethal infectious diseases in their tracks, but the

emergence of resistance-fueled treatment failures led to deeper

investigations into the biology of drug response. Driven by

powerful advances in genetics and the emergence of molecular

biology in the latter half of the 20th century, a concise model of

antibiotic action and resistance developed over decades. Briefly,

this model proposes that antibiotics work by inhibiting some

essential target, generally an enzyme, in the pathogen. Mutations
Frontiers in Cellular and Infection Microbiology 02
occur at random and exist in each population prior to antibiotic

pressure. Resistance emerges when pre-existing mutations

promote growth or survival in the presence of the drug

(Figure 1, left side). A corollary of this model is that resistance

is a numbers game. Any pathogen population of sufficient size

will harbor at least one mutation conferring resistance to each

agent that can be selected by drug exposure, so adding additional

drugs to a regimen serves to reduce the rate at which

resistance emerges.

Grounded in Darwinian natural selection, this model has

long provided a useful framework for exploring antibiotic action

and resistance. However, the available data have never all fit

comfortably within this paradigm. For example, while current

treatment for drug-susceptible TB is ~95% effective, most

treatment failures are due to relapses with drug sensitive bacilli

(Colangeli et al., 2018). These relapses are hard to explain with

the classical model of drug treatment and resistance, since any

drug-susceptible bacterium exposed to antibiotics should be

eliminated. This phenomenon is not unique to TB – studies

with many different bacteria have long revealed curious

phenotypes of enhanced survival in the absence of any

heritable resistance that are not readily explained by the

classical model (Bigger, 1944; Levin and Rozen, 2006). Further,

the rate of spontaneous resistance to a three-drug combination

has been estimated at greater than 1 in 1018 bacteria (Gillespie,

2007), many orders of magnitude greater than the number of TB
FIGURE 1

Visual representation of the classical and updated models for development of antibiotic resistance in Mtb. The top portion shows a population of
Mtb in the absence of drug selection (- DRUG). In the classical model, pre-existing resistant bacilli (red) in the population grow despite the addition
of drug (+ DRUG) and susceptible bacteria (gray) are eliminated over time until only resistant cells remain. In the updated model, pre-existing
resistance may still be present, but tolerant bacilli (yellow) may also be present and/or be induced by drug exposure. With drug selection,
susceptible bacteria are again eventually eliminated, with resistance dominating the population over time. Figure created with BioRender.com.
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bacilli in any one patient, possibly more than in all current

patients combined. Even considering how some drugs are

excluded from some niches in vivo (Strydom et al., 2019), it is

difficult to reconcile the not-infrequent emergence of

widespread resistance to 3 or more agents using the classical

model alone. Now, driven again by advances in molecular

genetics and especially sequencing, thinking about the

evolution of resistance in TB has itself evolved. Here we

explore how new observations and insights are promoting an

updated model of TB drug resistance, with the promise of new

ways to combat the resistance problem.
Classical resistance determinants in Mtb

Antibiotic resistance is defined as a heritable trait that

enables a bacterial population to both survive and replicate in

the presence of an otherwise inhibitory antibiotic treatment (Box

1). Bacteria can evolve resistance through several well-known

mechanisms including alteration of sequence or expression of

the target (Ince and Hooper, 2003), alteration of drug

modification enzymes (Robicsek et al., 2006), drug efflux

(Nikaido, 2009), or gene amplification (Andersson and

Hughes, 2009; Sandegren and Andersson, 2009). However,

unlike in other bacteria, genetic resistance in Mtb is not

known to be associated with horizontal gene transfer and

instead is commonly the result of single nucleotide

polymorphisms and insertions or deletions (Namouchi et al.,

2012; Dookie et al., 2018). This lack of promiscuous gene

transfer somewhat simplifies the process of uncovering genetic

determinants of drug resistance in Mtb, however complexities

remain at every level.

Resistance to first- and second-line anti-TB drugs is

generally associated with known mutations at particular loci.

These mutations have been reviewed previously (Almeida Da

Silva and Palomino, 2011; Cohen et al., 2019) and are

summarized in Table 1. Nearly all of these mutations confer

resistance through the alteration of a drug target or activator. For

example, the target of rifampin (RIF) is the b subunit of bacterial

RNA polymerase (RNAP), which is encoded by the rpoB gene

(Goldstein, 2014). Mutations in rpoB have been used to predict

resistance to RIF with such a high degree of success (Goldstein,
Frontiers in Cellular and Infection Microbiology 03
2014) that an 81-bp region of the rpoB gene is now designated

the RIF resistance-determining region (Ohno et al., 1996;

Ramaswamy and Musser, 1998). However, not all cases of RIF

resistance are so straightforward. Distinctions have been drawn

between high- and low-level RIF resistance, phenotypes caused

by mutations within and outside of the known RIF resistance-

determining region of rpoB (Shea et al., 2021). Similarly, the

presence of mutations in rpoA and rpoC (Andersson, 2006) as

well as secondary site mutations in rpoB (Brandis and Hughes,

2013; Meftahi et al., 2016) are now known to play a role in the

Mtb RIF resistance profile. Additionally, mutation, and therefore

resistance, can be induced under drug pressure. For example, the

mutation frequency to RIF was found to increase more than a

thousand-fold during 14-days of monotherapy (Kayigire

et al., 2017).

The classical model can shed light on most drug resistant

Mtb strains circulating today. Indeed, identifying point

mutations in specific loci is the basis of highly successful PCR-

based tests for Mtb drug resistance (Stevens et al., 2017).

Recently, the WHO has catalogued whole genome sequences

and drug resistance profiles of 38,215 Mtb clinical strains

(WHO, 2021a). This catalogue makes clear the value of the

classical resistance model, while also revealing many mutations

of unknown mechanism are linked to resistance. Indeed, for

every anti-TB agent, there are resistant strains that continue to

elude molecular genetic characterization. In addition, the pre-

existing mutation model sheds little light on how drug resistance

evolves in Mtb. However, in recent years an updated model has

emerged that seeks to incorporate older, seemingly anomalous

observations with newer, technology-driven insights to explain

more completely the global Mtb drug resistance landscape. To

take the 18th century writer and polymath Johann Wolfgang von

Goethe badly out of context, “tolerance comes of age”.
The updated model: Tolerance on
the pathway to resistance

In 1944, Joseph Bigger described a subpopulation of

Staphylococci that survived exposure to penicillin without

generating heritable resistance. When those cells were cultured

in fresh media and then re-exposed to penicillin, they retained
Box 1. Definitions
Antibiotic resistance is a stably heritable trait that enables a bacterial population to both survive and replicate in the presence of an otherwise inhibitory antibiotic
concentration. Mechanisms of antibiotic resistance are tightly associated with mutations in drug targets, activating enzymes, efflux systems, or membrane porins. Of
these, mutations in targets and activators are by far most common in Mtb.
Antibiotic tolerance. We refer to bacteria that survive high or prolonged concentrations of antibiotics in the absence of stably heritable mechanisms of resistance as
drug tolerant persisters. Progeny of tolerant cells exhibit a drug susceptibility profile similar to that of the parental strain. Of note, the nomenclature of drug tolerance
can be challenging, as some researchers employ different terms (eg. – phenotypic resistance; non-heritable resistance, antibiotic indifference), and others define
tolerance and persistence in more limited ways e.g. (Brauner et al., 2016; Balaban et al., 2019; Urbaniec et al., 2022). In general, these nomenclature distinctions serve
to highlight particular subsets of tolerance. Mechanisms of drug tolerance are varied, including reduced metabolic activities, low ATP levels, toxin-antitoxin systems,
and stringent response. Note that the definition we employ for drug tolerant persisters is agnostic as to form of tolerance or mechanism.
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the parent strain’s level of susceptibility (Bigger, 1944). Since

then, non-heritable survival in the face of antibiotics has been

noted in a variety of bacteria exposed to different agents,

including Mtb and the phenomenon has been given many

names (McCune and Tompsett, 1956; Levin and Rozen, 2006).

Here we refer to bacteria that do not harbor stably heritable

resistance and yet survive significant antibiotic exposure as drug

tolerant persisters (see Box 1). Note that our definition is

agnostic as to the mechanism(s) by which tolerance occurs.

A possible link between tolerance and the evolution of

resistance immediately suggests itself – other things being

equal, the longer bacteria survive, the greater the opportunity

to mutate to a stably antibiotic resistant state. This reasoning

underpins mathematical models that link the two phenomena

(Levin-Reisman et al., 2019), and explains why we discuss

tolerance in a review about drug resistance. However, it is

important to bear in mind that experimental validation for

this link is so far limited to a very small number of examples

(Levin-Reisman et al., 2017; Sebastian et al., 2017).
Tolerance and heterogeneity

It was recognized early on that most drugs are less effective

on Mtb during infection than they are in vitro (McCune and

Tompsett, 1956). One important reason is that most antibiotics

work best on actively dividing cells, but a robust immune

response is one of several mechanisms to slow the Mtb

replication rate (Gill et al., 2009; Ford et al., 2011; Colangeli
Frontiers in Cellular and Infection Microbiology 04
et al., 2014). More recently it has become evident that Mtb has

evolved multiple strategies to generate subpopulations of

phenotypically distinct bacteria, each with separate growth

rates and levels of drug tolerance (Aldridge et al., 2012;

Sarathy et al., 2018; Richards et al., 2019). In any given

mycobacterial population, variations in replication, DNA

repair, transcription, translation, metabolism, and efflux all

promote bacterial heterogeneity and are also linked to drug

tolerance (Szumowski et al., 2013; Chung et al., 2022). A similar

phenomenon is evident within the human lung, where some

lesions can support Mtb growth and expand during drug

treatment even as other lesions shrink and the patient

improves overall (Akira et al., 2000; Xie et al., 2021). Finally,

heterogeneity exists among Mtb strains worldwide, driving

differences in the accumulation and spread of drug resistance.

Recently appreciation has been growing for how widely different

mechanisms that promote and maintain bacterial heterogeneity

are linked to drug tolerance, treatment failure, and ultimately the

evolution of resistance. While this review makes no attempt to be

comprehensive, some relevant examples of these mechanisms

are provided below (Figure 2).
DNA replication, growth and division

Unlike other bacterial species, mycobacteria elongate from

the cell poles, providing a straightforward opportunity for

asymmetric growth and division leading to daughter cells with

different sizes and growth rates (Aldridge et al., 2012; Santi et al.,
TABLE 1 Examples of resistance mutations and compensatory mechanisms in Mtb.

Drug Major resistance
mutation

Compensatory mechanism References

Rifampin (RIF) rpoB rpoA, rpoC (Telenti et al., 1993; Ohno et al., 1996; Ramaswamy and Musser,
1998; Comas et al., 2011; Shea et al., 2021)

Pyrazinamide (PZA) pncA pnaB2 (epistatic) (Konno et al., 1967; Scorpio and Zhang, 1996; Muzondiwa et al.,
2021)

Para-aminosalicylic acid
(PAS)

thyA thyX–hsdS.1 intergenic region associated, but
not shown to be compensatory

(Rengarajan et al., 2004; Zhang et al., 2013; Coll et al., 2018)

Ethambutol (EMB) embCAB operon aftA (Rv3792) (Alcaide et al., 1997; Telenti et al., 1997; Safi et al., 2013)

Isoniazid (INH) katG,
inhA

ahpC promoter (Zhang et al., 1992; Heym et al., 1995; Sherman et al., 1996)

Fluoroquinolones (FQ) gyrA Extragenic Rv0890c,
Insertions in glgC in Mycobacterium aurum

(Takiff et al., 1994; Pi et al., 2020)

Bedaquiline (BDQ) mmpR (Rv0678), atpE,
pepQ

atpB? (suggested) (Andries et al., 2005; de Jonge et al., 2007; Huitric et al., 2010;
Andries et al., 2014; Nieto Ramirez et al., 2020)

Clofazimine (CFZ) pepQ, mmpR Unknown (Almeida et al., 2016)

Pretomanid (PA-824)/
Delaminid (DLM)

ddn, fgd1, fbiA, fbiB,
fbiC, and fbiD

Unknown (Haver et al., 2015; Gomez-Gonzalez et al., 2021)

Linezolid (LZD) rrl, rplC Unknown (Hillemann et al., 2008; Beckert et al., 2012)

Capreomycin (CAP) A1408G mutation in 16S
rRNA gene (rrs)

Increased expression of tlyA leading to
methylation of C1409

(Maus et al., 2005; Freihofer et al., 2016)

Streptomycin (STR) rpsL, rrs, gidB rpsD?, rpsE? (proposed) (Nair et al., 1993; Meier et al., 1994)
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2013; Chung et al., 2022). A key member of mycobacterial

divisome complex, LamA has been identified as a mediator of

asymmetric growth by inhibiting cell-wall synthesis at the new

poles (Rego et al., 2017). In the absence of lamA, daughter cells

are less heterogeneous in size and also display increased

sensitivity to RIF and vancomycin compared to wild-type cells

(Rego et al., 2017). During in vitro growth, Mtb cells shorter in

length were found to be more susceptible to RIF, along with

being more sensitive to oxidative and nitrite stress (Vijay et al.,

2017). Clinically, Mtb with an increased cell length has been

associated with host stresses such as iron deficiency and

oxidative stress along with an increase in severe pulmonary

disease (Vijay et al., 2017). Multidrug-resistant (MDR)-Mtb

strains were also found to exhibit increased heterogeneity in

cell length compared to drug-sensitive strains during

intramacrophage growth and during RIF exposure, which

when combined, was further associated with an increase in cell

length (Vijay et al., 2017).

In a separate genome-wide association study of clinical Mtb

strains, variants in the essential DNA replication initiation

factor, dnaA, were found to be associated with drug resistance

(Hicks et al., 2020). These dnaA variants enhance Mtb survival

during isoniazid (INH) treatment by interacting with the

Rv0010c-Rv0011c intergenic region and reduced expression of

katG, the activator of INH. However, the connection between
Frontiers in Cellular and Infection Microbiology 05
Rv0010c-Rv0011c and altered katG expression is not currently

understood (Hicks et al., 2020).
Phase variation

Phase variation is an adaptive mechanism that mediates

reversible switching of a gene by genotypic changes, which in

turn can lead to reversible or transient drug resistance. Phase

variation results from insertions or deletions in a homopolymeric

tract (HT) located within the promoter or open reading frame of a

gene. Reversible frameshift mutations in HTs are thought to be a

result of slipped-strand mispairing errors during replication.

Inactivating transient frameshift mutations in the HT of 7

cytosines in the glpK gene, which encodes a glycerol-3-kinase,

were found to confer heritable drug resistance to INH, RIF,

ethambutol (EMB), pyrazinamide (PZA) and moxifloxacin

(MOX), but these changes were reversible with additional

insertions or deletions in the same HT (Bellerose et al., 2019;

Safi et al., 2019). These frameshift mutations were also identified

in Mtb-infected mice and in clinical Mtb strains (Bellerose et al.,

2019; Safi et al., 2019).

In another example, reversible frameshift mutations in the

Mtb orn gene in combination with low-level EMB-resistant

double embB-aftA mutant produced a small colony variant
FIGURE 2

Examples of intracellular mechanisms to generate heterogeneity and tolerance in Mtb. Shown are various cellular processes (blue) at which
heterogeneity and tolerance can be generated. Examples of known mechanisms are given at each level with examples in red. One expected
outcome of these mechanisms is shown at the bottom, with a sensitive population (gray) becoming differentially tolerant (shades of yellow) after
induction of any of these systems. Figure created with BioRender.com.
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with a significantly higher MIC and further culture led to a rapid

reversion of the orn frameshift (Safi et al., 2020).
Genetic regulators mediating tolerance
and resistance

Heterogeneity in levels or activity of proteins and flux of

metabolites is often facilitated by heterogeneity in gene expression.

Recent work has provided examples of transcription factors and

regulatory circuits that directly impact drug susceptibility. For

instance, bedaquiline (BDQ) is a newer antitubercular drug that

inhibits the F1F0-ATP synthase of Mtb. Network analysis of the

Mtb transcriptional response to BDQ suggested that regulators

Rv0324 and Rv0880 played important roles in the response to this

drug (Peterson et al., 2016). Subsequent work showed that

deletion of either Rv0324 or Rv0880 led to improved killing by

BDQ but not other drugs. Exposure to capreomycin and MOX

also induced Rv0324 suggesting potential antagonism with BDQ,

while exposure to pretomanid decreased expression of the Rv0880

BDQ response regulon (Peterson et al., 2016). The addition of

pretomanid to novel BDQ-containing regimens was found to

improve clearance and reduce relapse in several murine models of

TB (Xu et al., 2019), consistent with the synergistic effect of BDQ

and pretomanid predicted by the transcriptional response and

network analysis.

In another example, a network-based genetic screening

approach, the transcriptional regulator-induced phenotype

(TRIP) screen, was used to identify regulators that alter

susceptibility to INH. Expression of mce3R, a TetR family

transcription factor, was found to mediate heightened

sensitivity to INH (Ma et al., 2021), which was linked to

repression of ctpD, a gene encoding a metal binding protein

(Raimunda et al., 2014; Patel et al., 2016; Ma et al., 2021) not

previously known to play a role in INH susceptibility. Disruption

of ctpD conferred hypersusceptibilty to INH, with increased

intracellular accumulation of INH and INH-NAD adduct.
Drug induced tolerance

Drug exposure has also been shown to induce transcriptional

changes conferring tolerance. When exposed to low RIF

concentrations, transcription from one promoter is inhibited,

allowing increased rpoB expression from a second promoter and

after a delay, growth can resume despite ongoing drug exposure

(Zhu et al., 2018). Subsequent studies have found that the

absence of a functional lepA, a translation-associated

elongation factor, increased RIF tolerance by the upregulation

of rpoB expression (Wang et al., 2020). Mutations in lepA found

in clinical Mtb strains were also found to have increased

tolerance to RIF (Wang et al., 2020).
Frontiers in Cellular and Infection Microbiology 06
DNA repair

Environmental stresses such as hypoxia, nutrient deprivation,

and host immune effectors can generate genome-wide mutations

in subsets of cells, leading to heritable genetic resistance (Sebastian

et al., 2017; Ragheb et al., 2019; Hicks et al., 2020; Jakkala et al.,

2020; Swaminath et al., 2020). The activity and efficiency of

different DNA repair pathways influences the rate at which

these cells are a reservoir from which resistant isolates emerge.

A recently described link between DNA repair and drug

resistance involved the DNA translocase protein Mfd. Mfd has

long been thought to initiate nucleotide excision repair at sites of

stalled RNAPs, though Mtb cells deficient in Mfd are not more

sensitive to DNA-damaging agents. However, Mfd is found to

associate with RNAP in the absence of DNA damage and has

also been identified as an anti-backtracking factor for RNAP.

Interactions of Mfd with the b-subunit of RNAP promote

mutagenesis leading to drug resistance in several bacterial

pathogens, including Mtb. Deletion of mfd led to a decrease in

the number of spontaneous resistant mutants to RIF, EMB and

ciprofloxacin (Ragheb et al., 2019). Recently, Rv1019, a

transcriptional regulator of the TetR family, was found to

negatively regulate mfd expression. Overexpression of Rv1019

leads to the downregulation of mfd and decreased Mtb survival

under oxidative stress (Pushparajan et al., 2020). Since Rv1019 is

differently expressed during hypoxia and reactivation (Schubert

et al., 2015), it would be interesting to know if Rv1019 is the key

regulator of Mfd-mediated changes in Mtb leading to

drug resistance.

In an in vitro persistence model, Mtb was found to develop

resistance to RIF or MOX at a much higher frequency than

predicted when exposed to continuous lethal concentrations of

RIF (Sebastian et al., 2017). Mtb in the RIF persistence-phase

was found to carry elevated levels of hydroxyl radicals leading to

genome-wide randommutagenesis, generating not only mutants

in rpoB, but also in gyrA demonstrating that exposure to one

antibiotic can generate genetic resistance to a different antibiotic

(Sebastian et al., 2017). Similarly, exposure to lethal

concentrations of MOX also generated high levels of hydroxyl

radicals leading to resistance not only to MOX but also to EMB

and INH (Swaminath et al., 2020).
Mistranslation during protein synthesis

Mistranslation happens when an error occurs during the

protein synthesis yielding either incorporation of an incorrect

amino acid or a truncated protein product. Generally

deleterious, mistranslation can be adaptive in the presence of

RIF. As noted above, most RIF resistance is due to mutation in a

small region of rpoB, the RIF resistance determining region

(Gagneux et al., 2006b). Increasing the mistranslation rate in M.
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smegmatis led to substitutions of glutamate for glutamine and

aspartate for asparagine within the same region, which improved

survival during RIF exposure (Javid et al., 2014). This effect is

regulated by levels of the GatCAB enzyme complex, where

reduced expression results in increased mistranslation and RIF

tolerance (Su et al., 2016). Clinical strains with mutations in

gatA, cause a partial loss of function of the complex along with

increased mistranslation and increased RIF tolerance (Su et al.,

2016; Li et al., 2021).
Metabolic regulation

Mtb can utilize a wide variety of carbon sources to support

in vitro growth. However, Mtb resides in vivo within

intracellular and extracellular niches where the nutrient

composition is thought to be sparse and growth-limiting

(Berney and Berney-Meyer, 2017; Sarathy et al., 2018). This

slowed growth has traditionally been associated with drug

tolerance, as most antibiotics target metabolically active Mtb

(Schaefer, 1954). In Mtb, the regulation of several

interconnected pathways that control carbon and lipid

metabolism contribute to this metabolic slowdown.

Rerouting pathways from energy-generation towards energy

storage is associated with growth arrest and reduced drug

susceptibility. Importantly, even stochastic differences in

expression or activity of regulators and rate-limiting steps in

these pathways results in bacterial heterogeneity and

differential susceptibility to drugs.

For instance, under stress conditions (including drug

pressure), Mtb can shift from the growth-promoting TCA

cycle to carbon storage in fatty acids via triacylglycerol (TAG)

synthesis via the upregulation of the triglyceride synthase tgs1

(Sirakova et al., 2006). In the absence of tgs1, drug tolerance

induced during hypoxia is reversed and Mtb remains sensitive to

INH, streptomycin (STR), fluoroquinolones (FQ) and EMB

(Baek et al., 2011). The slowing of the TCA cycle alters the

turnover of alpha-ketoglutarate, oxaloacetate and reducing

agents such as NADH are diminished, resulting in reduced

amino acid synthesis and protein translation. Additionally,

enzymes such as isocitrate lysases, which are involved in the

the glyoxylate bypass, are induced upon exposure to INH, RIF

and STR conferring cross-tolerance (Nandakumar et al., 2014).

Deficiency in the gluconeogenic enzyme phosphoenolpyruvate

carboxykinase encoded by pckA, has been implicated in

enhanced drug tolerance to INH and BDQ, with this tolerance

associated with the overaccumulation of methylcitrate cycle

(MCC) intermediates (Quinonez et al., 2022). Similarly,

depletion of phosphoenolpyruvate during hypoxia confers

tolerance to INH (Lim et al., 2021). In prpR mutants, defective

regulation of MCC leads to an accumulation of propionyl-CoA

conferring tolerance to INH, RIF and ofloxacin (OFX) (Hicks

et al., 2018).
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In another example, trehalose in Mtb serves as both a

carbohydrate store as well as a component of the cell surface

glycolipids trehalose monomycolate (TMM) and trehalose

dimycolate (TDM). During hypoxia, Mtb has been shown to

down-regulate TMM and TDM and channel trehalose into the

biosynthesis of central carbon metabolism (CCM)

intermediates. In a biofilm model, drug-tolerant persisters

were shown to shift trehalose metabolism towards CCM

intermediates (Lee et al., 2019). treS deletion mutants were

unable to shift trehalose metabolism to CMM and showed a

rapid depletion of ATP and were also significantly more

susceptible to BDQ (Lee et al., 2019).
Efflux

The Mtb genome encodes a significant number of efflux

pumps with a known role in intrinsic and acquired drug

resistance, and many of these pumps are also induced during

infection (Schnappinger et al., 2003; Rengarajan et al., 2005; Gupta

et al., 2010; Szumowski et al., 2013; Pule et al., 2016). Since efflux

pumps can have broad substrate specificities, their induction

under varying environmental conditions or drug exposure may

confer tolerance or resistance tomultiple drugs, as is seen with RIF

exposure resulting in tolerance to OXF (Louw et al., 2011).

Exposure to INH has been shown to induce efflux pumps

mediating its tolerance, which then promote the emergence of

genetically resistant INH strains (Machado et al., 2012).

Additionally, upon infection of macrophages, Mtb has been

shown to induce tolerance to numerous antitubercular drugs

including INH, RIF, MOX and BDQ that is not tied to reduced

growth rate and is sensitive to efflux pump inhibitors such as

verapamil (Adams et al., 2011; Adams et al., 2014). Macrophage-

induced tolerance to RIF was shown to be mediated by Rv1258c/

Tap, an efflux pump also important for intracellular growth

(Adams et al., 2011). Further study revealed that strains from all

tested global lineages developed macrophage-induced tolerance to

RIF except lineage 2 Beijing isolates, which harbor a natural loss-

of-function mutation in Rv1258c (Villellas et al., 2013; Adams

et al., 2019). In addition, mutations in Rv1258c that were

identified in clinical isolates have been linked with resistance to

INH, PZA, and STR (Liu et al., 2019).
Within-host Mtb differences affect
drug response

One limitation with the classical model of resistance is that it

does not consider within-host variation during TB infection;

however, recent studies are beginning to bring evidence of

heterogeneity in the Mtb response during drug treatment to

light (Borrell and Gagneux, 2009; McGrath et al., 2014). Clinical

Mtb strains were collected from patients with delayed culture
frontiersin.org

https://doi.org/10.3389/fcimb.2022.1027394
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Jones et al. 10.3389/fcimb.2022.1027394
conversion and WGS was performed. Exposing these strains to

RIF in vitro revealed drug tolerant variants undetected by bulk

WGS-analysis (Genestet et al., 2021). One variant identified by

RIF treatment was also enriched during macrophage infection

and was found to have a mutation in the gene mas, altering its

cell surface lipids (Genestet et al., 2021). Characterizing these

tolerant sub-populations may help identify patients at risk for

treatment failure and the evolution of resistance.

In another study, Mtb isolates from treatment-naïve patients

were subjected to WGS to assess within-host diversity. The

accumulation of identified mutations varied substantially

between isolates from the same individual and were elevated in

HIV-negative patients, suggesting that the host immune

environment may influence mutation rates (Liu et al., 2020).

These results argue that the risk of developing new drug

resistance mutations in vivo may vary with the host immune

environment (Liu et al., 2020). This idea is consistent with evidence

from TB patients that host gene signatures exhibiting heightened

inflammatory and immune gene expression correlate with longer

times to cure and a reduced cure rate (DiNardo et al., 2022).
Lineage-specific Mtb differences and
drug response

It has become clear in the last several years that global

variations in Mtb strains have strong impacts on drug response

and the evolution of drug resistance. Worldwide Mtb has been

separated into seven lineages and many sub-lineages with distinct

characteristics that co-evolved with the human populations in

which they are present (Brites and Gagneux, 2015). Global

lineages differ in their ability to respond to drugs and develop

resistance. Members of the modern lineages (2, 3 and 4) are

associated with greater disease burden and drug resistance than

the ancient lineages, possibly due to an increased spontaneous

mutation rate (Borrell and Gagneux, 2009; McGrath et al., 2014).

Further, differences in vitro and in vivo, the genetic background of

the strain and the nature of the specific resistance mutation both

influence outcomes. For example, there is an association between

strain lineage and the type of resistance mutation identified,

suggesting that certain Mtb lineages may have characteristics

that encourage different routes to resistance (Gagneux et al.,

2006a). One study using TnSeq showed that clinically distinct

strains have different requirements for in vitro growth, including

katG and glcB (Carey et al., 2018). The differences in TnSeq

phenotypes of these strains were found to predict their drug

resistance rates (Carey et al., 2018).
Compensatory mutations

Antibiotics, by their nature, target important functions of the

bacterial cell. Thus, any mutation that renders a strain resistant
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has good potential to also reduce the strain’s fitness. This

observation once led to the hope that simply reducing the use

of antibiotics would lead to fitter, susceptible strains

outcompeting resistant ones. However, reduced fitness can also

be addressed by compensatory evolution and genetic co-

selection (Andersson and Levin, 1999; Andersson, 2006;

Andersson and Hughes, 2010).

The fitness cost of a resistance mutation can be measured in

vitro with isogenic strains serially passaged or grown

continuously in chemostats. Such results do not always

translate into a host setting, so it is important to also consider

how virulence and pathogen transmission are affected. For

example, in the 1950s Middlebrook and colleagues found that

many INH-resistant Mtb strains were less virulent in Guinea

pigs (Middlebrook, 1954; Widelock et al., 1955; Wolinsky et al.,

1956). Later, it was revealed that INH-resistant Mtb lacking

KatG catalase-peroxidase activity could compensate by

overexpressing an alkyl hydroperoxidase (Sherman et al.,

1996). Similarly, with regard to RIF resistance, it has been

shown that prolonged treatment can result in multidrug

resistant strains that have no measurable fitness defect

(Gagneux et al., 2006b). These examples illustrate the complex

relationship of drug resistance and fitness, where initial costs can

be corrected by compensatory mutations that retain the

resistance phenotype. It is an important consideration, as such

low and no cost mutations have been seen in clinical isolates

(Sander et al., 2002). Specific compensatory mutations are

shown in Table 1 and have been reviewed elsewhere (Alame

Emane et al., 2021).

One non-canonical form of compensatory mutation that was

recently described in Mtb involves restoring fitness of a

capreomycin (CAP)-resistant mutant. CAP binds to 16S rRNA

and inhibits translation. CAP resistance is conferred by 16S

rRNA mutation that also reduces translation efficiency.

However, translation can be largely restored by increased

expression of an enzyme that methylates a nearby site on the

16S rRNA, significantly reducing the fitness cost of CAP

resistance (Freihofer et al., 2016). This is a striking example of

a compensatory mutation that relies on changes in expression

but acts through post-transcriptional modification. Evidence of

these ‘multi-level’ mechanisms of fitness alterations are rare, but

it seems likely that more will be discovered and shown to be

relevant in other contexts.
Epistasis

Epistasis refers to a phenomenon where the phenotypic

effect of a particular gene allele depends on its genomic

background (Hughes and Andersson, 2017). In the context of

antibiotic resistance, epistatic interactions between resistance-

conferring mutations have a major influence on the fitness of the

multidrug-resistant (MDR) isolates and hence their evolution.
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Epistasis can have either positive or negative outcomes

depending on the net effect on bacterial fitness in the absence

of antibiotic pressure. Positive epistasis occurs when the fitness

cost associated with multiple resistance-conferring mutations is

lower than the anticipated additive cost of these mutations if

calculated independently. Positive epistasis is a common

phenomenon in mycobacteria and in other bacteria as

illustrated in numerous studies. For example, a study by Borrel

et al. showed that MDR isolates harboring double mutations in

rpoB H526Y and gyrA D94G, conferring resistance to RIF and

ofloxacin respectively, were associated with enhanced fitness as

opposed to their respective single mutants (Borrell et al., 2013).

Similarly, Sun et al. reported a positive epistatic interaction in

MDR isolates with double mutations in rpsL K43M and gyrA

D94Y, which confer resistance to STR and fluoroquinolones

respectively (Sun et al., 2018). Another example of positive

epistasis was also reported by Li et al. where MDR isolates

with dual mutations in rpoB C531T and katG 315C were

associated with enhanced fitness (Li et al., 2017). Importantly,

those MDR isolates where positive epistasis conferred fitness

benefits were associated with better transmissibility and thus

were frequently encountered in clinical settings, which supports

the idea that positive epistasis plays an important role in the

evolution of MDR isolates (Trindade et al., 2009; Borrell

et al., 2013).

In addition, positive lineage-specific epistatic interactions

were found to be associated with particular Mtb clades. One

study identified two epistatic interactions that were exclusively

observed in lineage 4 (Coll et al., 2018). Compensatory

mutations in pnaB2 and thyX–hsdS.1 promoter were found to

be associated with resistances to PZA and para-aminosalicylic

acid (PAS), due to mutations in pncA and thyA, respectively.

On the other hand, negative epistasis occurs when the

interaction between two or more resistance-conferring

mutations aggravates the fitness cost associated with these

mutations. For example, FQ resistant isolates with double

mutations in gyrA and gyrB were associated with diminished

fitness (Luo et al., 2017). Similarly, in the Borrel et al. study,

negative epistasis was observed in MDR isolates with double

mutations in rpoB H526P and gyrA G88C (Borrell et al., 2013).

In contrast to positive epistasis, MDR isolates where epistatic

interactions resulted in diminished fitness were associated with

low transmission rates and were rarely encountered in clinics.
Epistasis and the evolution of resistance

Several studies have revealed a strong correlation between

Mtb lineages and particular drug resistance-conferring

mutations, highlighting the major influence of the genetic

background on the evolution of drug resistance. For example,

one study reported lineage-specific differences in the level of

INH resistance due to mutations in katG and inhA (Fenner et al.,
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2012). The katG mutations were more prevalent in lineage 2

isolates and conferred a high level of INH resistance, whereas

inhA mutations were more prevalent in lineage 1 and were

associated with low levels of INH resistance. Another study

found that fluoroquinolone resistance due to mutated gyrA

occurred more frequently in lineages 2 and 4 (Castro et al.,

2020). Similarly, katG and rpoB mutations occur more

frequently in modern Beijing sublineages compared to the

ancient strains (Li et al., 2017). These examples demonstrate

the major influence the genetic background could have on the

evolution of drug response and also may explain why some Mtb

lineages, particularly Beijing isolates, are often associated with

multidrug resistance (Fenner et al., 2012; Nieto Ramirez et al.,

2020; Fursov et al., 2021).
Epistasis and the level of drug resistance

The classical resistance model relies on using specific genetic

determinants to define drug resistance. However, a key

limitation of this model is that it tends to ignore the effect of

epistasis on the level of drug resistance. Several studies have

recently shown that bacterial cells can epistatically exhibit

enhanced drug susceptibility despite the presence of a

resistance-conferring mutation. For example, a study showed

that a loss of function mutation in the eis coding region was able

to restore amikacin susceptibility in resistant isolates harboring

eis C-14T mutation (Vargas et al., 2021). Moreover, the same

study questioned the validity of mmpR mutations as a

determinant of bedaquiline and clofazimine resistances if loss

of function mutations in mmpS5 and mmpL5 were present

concomitantly (Vargas et al., 2021).
Summary and conclusions

So where does drug resistance in Mtb come from, and where

is it going? Historically, the classical model (Figure 1, left side),

in which pre-existing mutations are selected by drug pressure,

has proven a very useful framework for our evolving

understanding of resistance. However, the updated model

(Figure 1, right side), with non-obligatory steps through

tolerance on the path to resistance, does a better job of

describing the rates, types, and patterns of drug resistance

within communities and around the world. It is clear that pre-

existing mutations conferring resistance do exist in any

population of sufficient size, and that resistance does not

require a tolerant pre-step. In practice however, with so many

different routes to a tolerant state, it is entirely possible that the

majority of resistant isolates worldwide today emerged from

drug-tolerant precursors.

As described above, tolerance can be stochastic or genetically

programmed, and it is frequently linked with the formation and
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maintenance of heterogeneous sub-populations. Heterogeneity

can be recognized at all levels of TB disease, including bacterial

subpopulations within individual lesions and across lesions in a

single patient, within a single patient over time, within

communities, and in different lineages across the globe. In all

these cases, we should expect that heterogeneity contributes both

to treatment failure and evolution of resistance. Further, since

the drug tolerance spawned by heterogeneity is adaptive, we

might anticipate that future work will demonstrate that the

production of heterogeneous sub-populations is itself under

genetic selection and control. In fact, multiple recent reports

already point in that direction (Bellerose et al., 2019; Safi et al.,

2019; Safi et al., 2020; Ma et al., 2021; Carey et al., 2022; Martini

et al., 2022).

The updated model has implications for how we track drug

susceptibility and resistance. Increasingly around the world, slow

and labor-intensive microbiological drug susceptibility testing is

being replaced by faster DNA-based methods, either PCR or next-

generation sequencing (NGS) (Dookie et al., 2022; Rowlinson and

Musser, 2022). For example, a recent study reported the whole

genome sequences of more than 12,000Mtb clinical isolates, along

with sensitivity data for 13 different drugs (The CRyPTIC

Consortium, 2022). DNA-based methods offer important

advantages in speed, throughput, and safety, as well as

altogether novel insights into drug resistance mechanisms

(Hicks et al., 2019; The CRyPTIC Consortium, 2022).

Catalogues of sequencing results should be widely available and

analyzed regularly for potential associations and emerging

mutations of interest. However, it is important that these

methods are implemented with stringent controls for DNA

extraction, sequencing and data handling. NGS sequencing and

analysis are not always straightforward (Villellas et al., 2017;

Kaniga et al., 2022), and global standards for the application of

NGS data to drug susceptibility testing and data reporting are still

emerging. Further, there are cases of discordance between whole

genome sequencing and drug sensitivity data (Dookie et al., 2022),
Frontiers in Cellular and Infection Microbiology 10
though these are rare and the extent to which they are due to

experimental errors is not yet clear. Finally, NGS generally

provides only a snapshot of a bulk sample, without conveying

the subtleties of the heterogeneous subpopulations described

above. Technologies are in development (Box 2) for the

identification and characterization of subpopulations, but these

are not yet commonplace, and are certainly not yet employed for

drug susceptibility testing. Altogether, DNA-based approaches are

revolutionizing how we monitor drug susceptibility and resistance

and showmuch promise for further advances but making good on

that promise will require both the development of new tools and

the rigorous application of those tools in the lab and the clinic.

The updated model also suggests new approaches to combat

the emergence of drug resistance. If resistance frequently

emerges from tolerant cells, then strategies to kill drug tolerant

persisters or restrict their formation should slow the emergence

of resistance. While not the topic of this review, eliminating

persisters may also shorten the course of current therapy (Chung

et al., 2022), so efforts to develop anti-persister therapy should

receive high priority. Assays that identify small molecules

targeting specific persister subpopulations have been reported

(Sukheja et al., 2017; Gold et al., 2021). Hits from these screens

could be combined with recent work to identify synergistic drug

combinations (Cokol et al., 2017; Katzir et al., 2019; Ma et al.,

2019) that can target multiple subpopulations at once. It may

also be possible to directly target the machinery that promotes

tolerance and resistance. For example, small molecules that

inhibit the action of mfd (Ragheb et al., 2019) or DNA repair

enzymes (Reiche et al., 2017) should reduce the rate at which

resistance to other drugs emerge. Also, since small expression

changes can have substantial effects on drug tolerance (Ma et al.,

2021) and treatment outcome (Colangeli et al., 2018), it should

be possible to identify small molecules that specifically alter Mtb

gene expression away from tolerance-promoting states. When

combined with NGS to characterize individual strains and efforts

to uncover host-directed therapies, it is possible to imagine these
Box 2. Technology and our understanding of antibiotic resistance
As is common in biology, technological advances have been critical in updating our concepts of antibiotic action and the evolution of resistance. Important advances
have occurred in:

Visualization – Advanced visualization tools such as multiparameter confocal microscopy (Gern et al., 2021; Plumlee et al., 2021) and mass cytometry (Xu et al.,
2021) are helping to uncover the complexity of the host response to TB infection. Positron emission tomography (PET) imaging has brought to light the heterogeneity
of TB lesions in live animals and humans (Lenaerts et al., 2015). Microfluidics (Molloy et al., 2021) and time-lapse microscopy (Herricks et al., 2020) are revealing the
complexity of Mtb populations in vitro, and reporter gene technology (Huang et al., 2019) is providing similar insights in vivo.

Next-generation sequencing – High throughput sequencing has revolutionized to study of drug resistance. With thousands of Mtb genomes sequenced, the
diversity of the Mtb pan genome is now evident. Many novel mutations have been linked with resistance to particular drugs, either alone or in association with known
resistance loci (Zhang et al., 2013; Zeng et al., 2018; The CRyPTIC Consortium, 2022). Each new mutation must then be studied to see if it truly confers resistance or
compensates for fitness defects imposed by mutations at other sites. Single-cell RNA-seq (Pisu et al., 2021) and dual-seq that simultaneously captures transcriptomes
of Mtb and host (Pisu et al., 2020) have become important tools to study rare cell types and sub-populations in vivo. In addition, next-gen sequencing is central to the
updated genetic screens described below.

Molecular genetics – Updated approaches in molecular genetics are also shedding new light on antibiotic action and resistance. Tn-seq is not really new
technology, but it is being used to gain new insights into resistance mechanisms (Carey et al., 2018). Similarly, CRISPRi screens are identifying new loci associated
with resistance to different agents (Li et al., 2022). Also, network-based TRIP screens have been employed to identify novel regulons and effector genes linked to drug
sensitivity, tolerance and resistance (Ma et al., 2021).
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approaches promoting an era of personalized TB therapy to

achieve both improved outcomes and diminished resistance.

In conclusion, the history of drug development argues that

resistance will emerge following the introduction of virtually any

new agent. However, as the field has evolved and a new model of

resistance has emerged, new strategies to protect and preserve

agents can be envisioned. With careful monitoring and

thoughtful development, we need not tolerate the loss of new

agents to TB drug resistance any longer.
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