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Abstract

Background: Post-implantation therapies to optimize cardiac resynchronization therapy (CRT) focus on adjustments of the
atrio-ventricular (AV) delay and ventricular-to-ventricular (VV) interval. However, there is little consensus on how to achieve
best resynchronization with these parameters. The aim of this study was to examine a novel combination of doppler
echocardiography (DE) and three-dimensional echocardiography (3DE) for individualized optimization of device based AV
delays and VV intervals compared to empiric programming.

Methods: 25 recipients of CRT (male: 56%, mean age: 67 years) were included in this study. Ejection fraction (EF), the
primary outcome parameter, and left ventricular (LV) dimensions were evaluated by 3DE before CRT (baseline), after AV
delay optimization while pacing the ventricles simultaneously (empiric VV interval programming) and after individualized
VV interval optimization. For AV delay optimization aortic velocity time integral (AoVTI) was examined in eight different AV
delays, and the AV delay with the highest AoVTI was programmed. For individualized VV interval optimization 3DE full-
volume datasets of the left ventricle were obtained and analyzed to derive a systolic dyssynchrony index (SDI), calculated
from the dispersion of time to minimal regional volume for all 16 LV segments. Consecutively, SDI was evaluated in six
different VV intervals (including LV or right ventricular preactivation), and the VV interval with the lowest SDI was
programmed (individualized optimization).

Results: EF increased from baseline 2367% to 3068 (p,0.001) after AV delay optimization and to 3268% (p,0.05) after
individualized optimization with an associated decrease of end-systolic volume from a baseline of 138660 ml to 115642 ml
(p,0.001). Moreover, individualized optimization significantly reduced SDI from a baseline of 14.365.5% to 6.162.6%
(p,0.001).

Conclusions: Compared with empiric programming of biventricular pacemakers, individualized echocardiographic
optimization with the integration of 3-dimensional indices into the optimization protocol acutely improved LV systolic
function and decreased ESV and can be used to select the optimal AV delay and VV interval in CRT.
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Introduction

Despite progress in the treatment of heart failure the five year

mortality still remains over 50% [1]. About one third of patients

with heart failure show a widened QRS complex ($120 ms) as a

sign of conduction system disease [2],[3]. Cardiac resynchroniza-

tion therapy (CRT) has evolved as the treatment of choice for

patients with symptomatic heart failure, left bundle branch block/

QRS widening ($120 ms) and severely reduced systolic left

ventricular (LV) function despite optimal medical therapy. Large

studies showed that CRT not only improves quality of life and LV

systolic function [4,5,6] but also leads to a reduction in mortality

[7]. Nevertheless up to one third of patients, so called non-

responders, do not symptomatically respond to this therapy

[8,9,10,11]. The exact reasons for lack of response are still

unclear, but inadequate lead placement, scar burden, and also

device settings may contribute.

Several studies showed that increased scar burden, especially in

the postero-lateral LV segments, the preferred region of the LV

lead positioning, may lead to suboptimal clinical outcome

[12,13,14]. This may be due to regional variations in electrical

excitability and impulse propagation in proximity of the lead.

Transvenous LV lead implantation is limited by the individual

anatomy of the tributaries of the coronary sinus and sometimes by

PLoS ONE | www.plosone.org 1 February 2012 | Volume 7 | Issue 2 | e30964



technical aspects concerning the attainability of the target vein.

Thus, if one takes into account potential suboptimal LV lead

placement, electrical latency during LV stimulation and slowed

conduction due to scars near the LV pacing site, all possibly

contributing to a reduced response to CRT, an individualized

approach to programming CRT systems, with the possibility of

pre-activation of either one of the ventricular leads, is intriguing.

In the clinical setting programming of CRT systems is

frequently done empirically [15], using an AV delay of 120 ms

and simultaneous biventricular pacing, without further optimiza-

tion.

In small studies it has been shown that optimized programming

of the AV delay leads to improved hemodynamics, as well as to

improved symptomatic response and LV systolic function in the

short and the longer term [16,17],[18,19,20]. As with AV delay,

acute hemodynamic benefits [21,22], as well as symptomatic and

echocardiographic advantages in the longer term [23,24] have

been described with interventricular VV interval optimization.

There are scarce studies that evaluated the effect of a combined

approach of AV delay and VV interval optimization [25,26].

The AV delay may be optimized with Doppler echocardiogra-

phy by evaluating the aortic velocity time integral (AoVTI), which

serves as a surrogate for LV stroke volume [18,27,28]. Three

dimensional echocardiography (3DE) is an accurate and repro-

ducible method to quantify LV dyssynchrony [29]. It is unclear if

an elaborate echocardiographic approach to AV delay and VV

interval optimization of CRT systems, including doppler echocar-

diography (AV delay optimization) and three-dimensional echo-

cardiography (VV interval optimization), leads to an improved

acute outcome after CRT initiation.

In the present study we therefore evaluated the feasibility of

three-dimensional echocardiography (3DE) to optimize the inter-

ventricular interval of biventricular pacemakers.

Methods

Ethics statement
All patients included in this study gave written informed consent

prior to entry into the study. The study complies with the

principles of the Declaration of Helsinki and was approved by the

institutional ethics committee of Deutsches Herzzentrum

München, Technical University of Munich, the only institution,

where participants were recruited and this study was conducted

(Az 2608/09; 10.12.2009).

Study design
In this study we prospectively included patients who underwent

CRT implantation according to 2006 guidelines [30] (ejection

fraction ,35%, New York Heart Association (NYHA) functional

class III or IV despite optimal pharmacological therapy, and QRS

duration .120 ms). At the time of inclusion baseline parameters

were assessed (medication status, ECG, and echocardiography).

All patients underwent a comprehensive evaluation with 3D

echocardiography before implantation (baseline). The day after

implantation the device was optimized as described below. Finally,

LV function was again assessed echocardiographically.

Echocardiography
Routine baseline 2D and 3D echocardiography (Philips iE33)

were performed in all patients according to institutional guidelines.

3D echocardiography was performed using the X3-1 matrix

transducer. Apical views were optimized to allow complete

visualization of the left ventricle in the 4- and 2-chamber views.

During breath-hold a complete 3D volume was acquired during 7

to 8 cardiac cycles. Angle and depth were minimized to ensure

optimal temporal resolution while still acquiring the entire LV

volume. The volume data were sent to a workstation for off-line

processing and analysis (QLab v. 6.0, Philips), using the 3DQ-

Advanced plugin. The software allows semi-automated delineation

of end-systolic and end-diastolic endocardial borders (Figure 1).

Through automated sequential tracking throughout the cardiac

cycle the software creates a dynamic 3D model of the left

ventricular cavity. The software calculates ejection fraction, end-

diastolic and end-systolic volumes, as well as the systolic

dyssynchrony index (SDI). The latter is calculated as the standard

deviation of the time to minimal systolic volume (TmSv) in 16

segments, excluding the apical cap in a standard 17-segment

model. The SDI is corrected for the RR interval and is expressed

as a percentage (Figure 1).

Echocardiographic guided optimization of the CRT device was

performed the day after implantation. First, AV delays were

analyzed from 80 to 200 ms, with steps of 20 ms. Aortic flow was

recorded as a velocity-time integral (AoVTI) using continuous-

wave Doppler at the level of the aortic valve, according to the

consensus statement of the American Society of Echocardiography

[31]. Subsequently, the AV delay with the highest velocity-time

integral was programmed. Interventricular intervals between the

right and left ventricles (VV intervals) were analyzed at 5 different

intervals: simultaneous stimulation (LV = RV), left-ventricular pre-

activation (LV +20, LV +40 ms), and right-ventricular pre-

activation (RV +20, RV +40 ms). For each of the tested intervals

a complete 3D full volume was acquired. Analysis of the 3D

volume data was done off-line in a blinded fashion by 2

independent investigators. The device was programmed for the

VV interval with the lowest SDI (Figure 1).

Statistical analysis
All continuous variables are expressed as mean 6 standard

deviation. Presence of a normal distribution was evaluated by

Kolmogorov-Smirnov test, means were compared by paired t-test.

Where a non-parametric distribution was assumed, Wilcoxon test

was performed. Categorical variables were tested by the chi-square

test. To assess intra- and inter-observer variabilities, intra-class

correlations (ICC) were calculated, and the variability is expressed

as the absolute difference between 2 measurements divided by the

average of the 2 measurements. Resulting p-values,0.05 were

considered statistically significant.

Results

Baseline characteristics
A total of 25 patients were included in the study. The mean age

was 67 years with 56% males (Table 1). 56% had ischemic

cardiomyopathy as the underlying cause of heart failure. Further

baseline characteristics are given in Table 1.

AV delay optimization
For AV delay optimization aortic velocity time integral (AoVTI)

was examined in eight different AV delays, and the AV delay with

the highest AoVTI was programmed. Aortic flow increased from

baseline 2467 cm to 2769 cm after AV delay optimization

(p,0.05). The optimal mean sensed AV delay programmed was

108 ms [80–140 ms] and the optimal paced AV delay pro-

grammed was 133 ms [120–140 ms]. The SDI improved

significantly from 14.365.5% to 9.064.6%, as well as the EF,

which rose from a baseline value of 2367% to 3068% after AV

delay optimization (Table 2, Figure 2).

3D-Echocardiography Guided CRT-Optimization
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VV interval optimization
After AV delay optimization, the VV intervals were analyzed by

evaluating the 3D full volume datasets. For each VV interval a

separate 3D dataset was analyzed. The VV interval with the lowest

corresponding SDI was used for programming the device.

We observed a further decrease in SDI values from 9.064.6%

to 6.162.6% (Table 2). In most patients either simultaneous

activation of left and right ventricle or mild pre-activation of the

left ventricle resulted in the smallest SDI value (simultaneous

activation in 28%, LV pre-activation by 20 ms in 48% of all

patients). In 3 patients LV pre-activation by 40 ms, and in 3

patients right ventricular pre-activation by 20 ms led to the best

SDI, and were programmed accordingly. Interestingly, the

ejection fraction increased from 2367% before pacemaker

implantation to 3068% after AV delay optimization and we

could observe a further significant improvement after VV interval

optimization (after complete optimization: 3268%). The aortic

VTI, which rose from baseline 2467 to 2769 cm after AV

optimization, remained unchanged after VV interval optimiza-

tion (266 cm). The end-diastolic volume fell from baseline

176662 ml to 166648 ml after complete optimization. The end-

systolic volume also showed a significant reduction (baseline

138660 ml, after complete optimization 115642 ml; Table 2,

Figure 2).

Figure 1. 3D-echocardiography guided optimization of cardiac resynchronization therapy. Patient with ischemic cardiomyopathy,
severly reduced systolic left ventricular (LV)-function (EF 16.8%), left bundle branch block and dyspnea on exertion (NYHA class III) selected for cardiac
resynchronisation therapy (CRT) before biventricular pacemaker implantation: A) tracing of the LV endocardial boundary in the multiple apical and
short axis views. From these datasets a volumetric model of the left ventricle is drawn (B), and time-volume curves are automatically integrated for
each segment: C) time-volume curves of the patient before pacemaker implantation (upper panel); immediately after implantation (middle panel);
after complete echocardiographic optimization (lower panel). Shown are the respective SDI values after each optimization step.
doi:10.1371/journal.pone.0030964.g001

3D-Echocardiography Guided CRT-Optimization
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Only 28% of patients achieved the lowest possible SDI with the

standard setting of simultaneous activation of left and right

ventricle. 86% of patients with ischemic cardiomyopathy needed

pre-activation versus only 55% of patients with dilated cardiomy-

opathy (p,0.05, Figure 3).

Intra- and inter-observer agreement
The intra- and inter-observer agreement was generally very

good.

Intra-observer variability in measured SDI was 1468%. Intra-

observer variability in ejection fraction, end-diastolic volume, and

end-systolic volume was 362%, 262%, and 363%, respectively.

Intra-class correlation coefficients were 0.974 for SDI, 0.997 for

EF, 0.998 for EDV and 0.998 for ESV.

Inter-observer variability in measured SDI was 17614%. Inter-

observer variability in ejection fraction, end-diastolic volume, and

end-systolic volume was 866%, 364%, and 463%, respectively.

Intra-class correlation coefficients were 0.948 for SDI, 0.981 for

EF, 0.997 for EDV and 0.996 for ESV.

Discussion

In the present study we tested a new protocol of combined AV

delay and VV interval optimization of CRT-systems including

standard Doppler-echocardiography for AV delay, and 3D

echocardiography for VV interval optimization. This elaborate

protocol led to a significant improvement of LV function

immediately after implantation of a CRT device compared to

empiric device programming. The examined cohort existed of

typical candidates for cardiac resynchronization therapy. All were

highly symptomatic and on recommended optimal pharmacolog-

ical therapy. Moreover, all patients showed QRS prolongation of

more than 120 ms, and had a mean ejection fraction of 23%.

After the first step of optimization (AV delay optimization) the

ejection fraction rose from 23% to 30% and could be increased

even further by VV interval optimization (32%). End-systolic

volume was reduced significantly already after AV delay

optimization, with a moderate further reduction after VV interval

optimization. The SDI, as a marker of interventricular dyssyn-

chrony, fell sharply after each optimization step, whereas the

aortic VTI, a surrogate marker of stroke volume, was only affected

by AV delay optimization. In most patients the VV interval had to

be programmed differently from the standard setting (i.e.

simultaneous activation of left and right ventricle), only 28% of

patients achieved the lowest possible SDI with the standard setting

of simultaneous activation of left and right ventricle.

These results strongly support an individualized optimization of

CRT-systems, specifically tailored to the patients. CRT is used in

patients with several etiologies of severely symptomatic heart

failure [9] [32], and one can imagine that a one fits all approach

may not necessarily generate the best outcome. This has also been

shown in a small cohort with Doppler optimization of AV delay

and VV interval. Favorable hemodynamic response was more

pronounced in the group of patients randomized to the

optimization protocol [33].

This is the first study to use 3DE for VV interval optimization.

The only modest further improvement of LV-EF after VV interval

optimization in addition to AV optimization was lower than

Table 1. Baseline characteristics.

N = 25

Demographic data

Age, years 67611

Male sex 14 (56%)

Clinical data

NYHA class 3 22 (88%)

NYHA class 4 3 (12%)

Ischemic CMP 14 (56%)

Medication

Betablockers 23 (92%)

ACE-inhibitors/ARBs 23 (92%)

Diuretics 24 (96%)

Aldosterone antagonists 18 (72%)

Digitalis 3 (12%)

Statins 25 (100%)

Electrocardiographic data

QRS width, ms (median; IQR) 160 (122–198)

Echocardiographic data

LV end-diastolic volume, ml 176662

LV end-systolic volume, ml 138660

LVEF, % 2367

SDI, % 14.365.5

Values are shown as means 6 standard deviation or count (percentage).
NYHA, New York Heart Association; CMP, cardiomyopathy; ACE, Angiotensin-
converting enzyme; ARB, Angiotensin receptor blocker; LV, left ventricle; SDI,
systolic dyssynchrony index.
doi:10.1371/journal.pone.0030964.t001

Table 2. Echocardiographic parameters at baseline and after AV delay and VV interval optimization.

Baseline After AV delay optimization After complete optimization

LV end-diastolic volume, ml 176662 168650 166648

LV end-systolic volume, ml 138660 121648{ 115642"*

Ejection fraction, % 2367 3068{ 3268"*

SDI, % 14.365.5 9.064.{ 6.162.6"*

Aortic VTI, cm 2467 2769{ 2668*

SDI, systolic dyssynchrony index; AV, atrio-ventricular; VV, ventriculo-ventricular; LV, left ventricular; VTI, velocity-time integral.
Shown are means 6 standard deviation.
{p,0.001: for comparison of AV optimization vs baseline.
"p,0.05: for comparison of complete optimization vs AV optimization only.
*p,0.05: for comparison of complete optimization vs baseline.
doi:10.1371/journal.pone.0030964.t002

3D-Echocardiography Guided CRT-Optimization
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anticipated. Nevertheless, the pronounced decrease of the systolic

dyssynchrony index (SDI) with each optimization step was striking

and may lead to further improvement of LV-EF in the long-term.

It is also known from a small study by Valzania et al. [34], that

hemodynamic parameters tend to change over the course of

several months after CRT. So, it would be very interesting, if these

modest changes in EF immediately after implantation translate

into robust changes later on in the course. Further follow-up has to

clarify this issue.

The positive acute results are especially encouraging as LV

resynchronization acutely after the implantation of biventricular

pacemakers predicts response to CRT in the long-term [35].

Moreover a recent study by Kapetanakis et al. emphasized the

relevance of the left ventricular systolic dyssynchrony index (SDI)

with respect to patient selection for CRT [36]. They found SDI to

be highly predictive of response to CRT, in terms of functional

(NYHA functional class) and echocardiographic (LV-EF and LV

end-systolic volume) improvement. Similarily, we found a trend

towards more pronounced acute echocardiographic response with

the suggested cutoff value for the baseline SDI of 10.4% (change in

EF: 7 +/2 5% in the low SDI vs 10 +/2 4% in the high SDI

subgroup, p = 0.1; change in ESV: 213 +/2 13 ml in the low vs.

226 +/2 30 ml in the high SDI subgroup, p = 0.2). Future studies

should investigate if this highly promising optimization technique

combined with improved selection criteria including an SDI cut-

off would translate into improved functional outcome.

Furthermore, AV delay optimization can maximize the benefits

of cardiac resynchronization therapy. If programmed poorly, it

may curtail beneficial effects of VV interval optimization and of

CRT in general. Optimized AV synchrony is achieved by an AV

delay that provides the best left atrial contribution to LV filling

resulting in maximum stroke volume. Several echocardiographic

methods have been used for AV delay optimization [16,17]. In our

study, we used the aortic VTI Doppler method to optimize the AV

delay. It produces reproducible results and has been shown to be

superior to the mitral inflow method [37].

VV interval optimization has been attempted with several

techniques with varying success [21,22,24,25,33,38]. The high

percentage of patients with sequential inter-ventricular pacing as

the optimal setting is in concordance with other studies that

evaluated VV interval optimization [22,23,24,25,39].

The SDI seems to be a promising parameter for VV interval

optimization, as it may help to overcome the problems arising

from LV-lead latency and from slowed conduction due to

increased scar burden in patients with ischemic cardiomyopathy

[13,14]. Simultaneous pacing of both ventricles may result in

suboptimal resynchronization due to an unbalanced activation of

right ventricular and left ventricular wavefronts. SDI helps in

finding and programming the optimal VV interval with either left

or right ventricular pre-activation to compensate for these

challenges and thus resulting in a more synchronous mechanical

activation of both ventricles. Moreover, in a patient where the only

Figure 2. Acute hemodynamic effects of 3D-echocardiography guided optimization. Hemodynamic variables for each timestep of the
optimization protocol: A) systolic dyssynchrony index, B) ejection fraction, and C) left-ventricular end-diastolic and end-systolic volumes. Shown are
means 6 standard deviation. * p,0.05 vs. baseline values.
doi:10.1371/journal.pone.0030964.g002

3D-Echocardiography Guided CRT-Optimization
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possible LV-lead placement is in a presumed suboptimal location

[40] pre-activation of either one of the ventricles may give the

additional time to achieve synchronous mechanical activity. This

applies predominantly to patients with ischemic cardiomyopathy

where optimal lead placement might not be possible due to

increased scarring in the area of the accessible veins. As has been

previously shown by van Gelder et al. [39] we found that patients

with ischemic cardiomyopathy needed more pre-activation than

patients with dilated cardiomyopathy. 86% of patients with

ischemic cardiomyopathy needed pre-activation versus only 55%

of patients with dilated cardiomyopathy (p,0.05). Interestingly,

patients with ischemic cardiomyopathy more often needed pre-

activation of the right ventricle or extreme pre-activation of the left

ventricle (.20 ms), whereas pts with dilated cardiomyopathy only

needed slight to moderate pre-activation of the left ventricle

(Figure 3) [41].

Although this optimization technique is more sophisticated and

thus slightly more time consuming as compared to traditional

echocardiographic optimization protocols due to offline analysis, it

can be easily integrated into the usual workflow of post-operative

CRT treatment in a patient with a hospital stay of 3 to 4 days.

Images can be obtained postoperatively, AV delay programmed

immediately and VV interval programmed after offline analysis

before discharge from the hospital.

Several limitations apply to our study. This was a small study to

evaluate a new concept of optimized resynchronization therapy.

There was no control group in this study. Moreover no

assumptions regarding the long-term benefit can be made. This

has to be addressed in an adequately powered, prospective trial.

The resolution of most 3D ultrasound scanners is still reduced

compared to standard 2D technology. Especially, temporal

resolution is still a major issue, leading to high variability of the

measurements. This could hamper the analysis of small-scale

variations of ventricular dyssynchrony and could thus influence the

parameter setting with respect to the VV synchronization. Future

technical improvements of 3D scanners might improve temporal

as well as spatial resolution and lead to more reliable results.

Conclusion
In the present study we could demonstrate, that an individu-

alized echocardiographic optimization with the integration of 3-

dimensional indices into the optimization protocol significantly

improves LV function in CRT compared to empiric VV interval

programming. This novel individualized echocardiographic opti-

mization protocol can be used to select the optimal AV delay and

VV interval in CRT.
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