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ABSTRACT: In situ conversion technology is a green and
effective way to realize the development of organic-rich shale.
Supercritical CO2 can be used as a good heating medium for shale
in situ conversion. Numerical simulation is an important means to
explore the shale in situ conversion process, but it requires a lot of
time and computational cost for in situ conversion simulation
under different working conditions. Therefore, a computational
framework for rapid prediction of shale in situ conversion
development performance and heating parameter optimization is
proposed by coupling artificial neural network (ANN) and particle
swarm optimization (PSO). The results indicated that kerogen pyrolysis and hydrocarbon product release mainly occurred within 2
years of shale in situ conversion. The production curves of pyrolysis hydrocarbon obviously slowed after in situ conversion for 2
years. The database was constructed by a large number of in situ conversion simulations, and Pearson correlation analysis and the
random forest method were adopted to obtain seven main controlling factors affecting reservoir temperature and hydrocarbon
production. The determination coefficient of the obtained ANN-based prediction models is higher than 97%, and the mean square
error (MSE) is lower than 0.3%. The basic reservoir case can choose to inject 350−450 °C supercritical CO2 (Sc-CO2) fluid with a
rate of 600 m3/day to obtain a more promising development effect. The heating parameter optimization for three typical reservoir
cases using PSO was performed, and reasonable injection temperature and injection rate were obtained. It realized accurate
development prediction and rapid heating parameter optimization, which helps the effective application of shale in situ conversion
development design.

1. INTRODUCTION
With the success of the shale oil and gas revolution in the
United States, the exploration and development of shale
resources in China have increased significantly.1 The
continental shale resource is huge in China, so it is an
important energy replacement field, in which medium-low-
maturity shale oil occupies the main position with (700−900)
× 108 of technically recoverable resources.1 The medium- to
low-maturity shale contains unconverted kerogen and undis-
charged liquid hydrocarbons. The hydrocarbon generation
potential is huge, but the effective development and utilization
of medium-low-maturity shale oil is a major challenge.3 At
present, the development technology of medium-low-maturity
shale oil includes ground retorting and in situ conversion
technology.4−6 The retorting technology is suitable for shallow
organic-rich shale, and it will produce a large amount of
polluting gases, which is contrary to the concept of
environmentally friendly development proposed by China.7,8

In contrast, in situ conversion technology is considered to be
an efficient, green, and feasible way. With the application and
promotion of Shell’s ICP technology, research on electric

heating in situ conversion has increased in China.9,10 However,
due to low permeability and poor thermal conductivity of
shale, the heating efficiency of electric heating is low and the
heating speed is slow.6 On this basis, convective heating
attracts more attention, which is attributed to the pressuriza-
tion effect, the increasing formation heating rate, the gas
driving mechanism, and the enhanced hydrocarbon produc-
tion.11−15 Supercritical CO2 has a high diffusion coefficient,
low viscosity and surface tension, and the ability of strong
permeability and solubility.16,17 At the same time, it can also
achieve a certain degree of carbon sequestration effect, which is
consistent with the strategic goals of the carbon peak and
carbon neutralization. Therefore, supercritical CO2 can be used
as a heating medium for shale in situ conversion. Mozaffari et
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al. evaluated that, compared with the nitrogen environment,
CO2 was conducive to the generation of more liquid products,
which was promising in increasing the yield of pyrolysis oil.18

Allawzi et al. confirmed a rapid extraction ability of
supercritical CO2 for oil shale, which presented a reference
method for extracting shale oil from oil shale.14 Zhao et al.
researched Huadian oil shale pyrolysis behavior under
supercritical CO2, which concluded that supercritical CO2
could effectively extract organic matter from shale.19 Heating
temperature, residence time, and environmental pressure
affected the composition and recovery of the hydrocarbon
products.

Numerical simulation is an important means to investigate
the in situ conversion performance of organic-rich shale. It can
realize fluid convection heating, in situ conversion of organic
matter, and hydrocarbon production at the field scale, which
can provide valuable references for in situ conversion under
actual working conditions.20−22 This is difficult to achieve on
an experimental scale. Zhu et al. used CMG commercial
software to simulate the dynamic evolution during nitrogen-
assisted shale in situ conversion and analyzed the response of
oil recovery to injection temperature, total organic carbon
content, and closed area.23 Youtsos et al. quantitatively
compared the migration law of the thermal front and reaction
front of shale in situ conversion by conduction heating and
convection heating using numerical calculation.24 Pei et al.
used the CMG-STARS module to compare the production and
energy efficiency of in situ conversion by conduction and
nitrogen-assisted heating, which found that convective heating
could greatly improve heat transfer efficiency and oil
recovery.13 Zhao et al. conducted a numerical simulation of
in situ conversion for low mature shale and realized evolution
of temperature field, seepage field, and stress field in this
process based on theoretical analysis.25 Wang et al. studied the
effects of heating temperature, heating mode, and initial
kerogen concentration on production results by numerical
simulation for medium to low maturity shale reservoirs in situ
conversion.26 However, on the one hand, there are few
numerical simulation studies on supercritical CO2-assisted in
situ conversion. On the other hand, the production effect and
the optimal heating parameters of in situ conversion depend
upon its physical characteristics. For organic-rich shale with
different geological conditions and reservoir characteristics,
different development schemes may be adopted to achieve
effective in situ conversion, which requires corresponding
numerical simulation models to run in turn. This process
requires a large amount of time and computational costs.

On the contrary, the artificial intelligence method helps to
greatly reduce the simulation time and this method is widely
used in hydrocarbon production prediction and development
parameter optimization in the petroleum industry.27−32 Chen
et al. applied the ANN to predict the diffusion coefficients of
CO2 in porous media.33 Al-Khafaji et al. used machine learning
methods to achieve rapid prediction for the minimum miscible
pressure of CO2, showing superior accuracy and adaptability
than traditional methods.34 Kalam et al. found that the ANN is
superior to the adaptive neural fuzzy inference system and
support vector regression in the prediction accuracy and
calculation efficiency of water flooding recovery.35 You et al.
combined machine learning and PSO optimization algorithms
to comprehensively optimize the oil recovery-CO2 storage
effect.36 However, artificial intelligence methods are rarely used
to predict and optimize shale in situ conversion performance.

Therefore, this paper established the numerical simulation
model of supercritical CO2-assisted shale in situ conversion
based on the reservoir characteristics of organic-rich shale in
China, and it quantitatively analyzed the development
performances. Furthermore, the ANN method was used to
quickly predict the reservoir temperature and hydrocarbon
production performance of supercritical CO2-assisted shale in
situ conversion. The heating parameter design optimization is
carried out using the established ANN prediction model as a
proxy and PSO algorithm. The prediction and optimization
framework proposed in this paper can provide some theoretical
and technical reference for the development design of organic-
rich shale in situ conversion.

2. NUMERICAL SIMULATION
2.1. Reservoir Simulation Model Description. The in

situ conversion process is a complex multifield coupling
process. The temperature and pressure of the shale reservoirs
increased because of convection heating. The concentrations
of the pseudo-components were dynamically changed by
kinetic reactions, phase transport, and fluid seepage in porous
media. The shale porosity and permeability evolved along with
kerogen pyrolysis, phase transitions, thermal expansion of the
rock and fluid, and fluid transport. At the same time, cracks or
fractures may be generated due to thermal effects. Therefore, a
dual-permeability model was established to characterize fluid
seepage in the reservoir matrix and fracture by using the CMG-
STARS module. The model was discretized into Cartesian grid
blocks with a uniform grid size of 0.7 × 0.4 m. The level of
meshing here was determined to be appropriate by multiple
simulation tests. The reservoir depth was 1500 m. The initial
formation temperature and pressure were 70 °C and 18.1 MPa,
respectively. The porosities of the matrix and fracture were 4
and 15%, respectively. The permeabilities of the matrix and
fracture were 0.1 × 10−3 μm2 and 100 × 10−3 μm2,
respectively. The fracture spacing was set to 3 m. Solid
kerogen with a concentration of 15,500 mol/m3 was evenly
distributed in the pores of the shale reservoir. Fan et al. proved
that the hexagonal well pattern could obtain faster hydro-
carbon productions and higher recovery.37 It is more practical
to study the in situ conversion of hexagonal well patterns.
Therefore, a numerical simulation model of supercritical CO2-
assisted shale in situ conversion was established, referring to
the hexagonal well pattern in the Mahogany project.38 Due to
the pattern symmetry and the time cost of running a large
number of numerical simulation models, only one-sixth of the
hexagonal well pattern was studied and other grids were set to
invalid grids.13 Finally, the total hydrocarbon production for
the hexagonal well pattern could be obtained by multiplying
the oil and gas production data of the simulation model by 6.37

In this paper, two heaters and one producer were set up in the
simulation model. All layers of the well were penetrated. The
temperature of supercritical CO2 injection was 400 °C, and the
injection rate was 800 m3/day. The simulation model of Sc-
CO2-assisted shale in situ conversion is shown in Figure 1.

Most of the existing simulation studies do not consider the
heat loss caused by the overburden and underburden bedrock,
which is important for the large-scale application of shale in
situ conversion.37 Based on the basic physical properties of
shale and bedrock in the published data, the volumetric heat
capacity and thermal conductivity of the shale were set to be
5.0 × 106 J/(m3·°C) and 216,000 J/(m·day·°C), respectively.
The volumetric heat capacity and thermal conductivity of the
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overburden and underburden bedrock were 3.24 × 106 J/
(m3·°C) and 86400 J/(m·day·°C), respectively.25,39 Then, heat
loss during the in situ conversion was considered. The organic-
rich shale reservoir included rocks and pores, and the pores
were filled with organic kerogen and fluid. As supercritical CO2
was injected, it accompanied organic matter pyrolysis,
inorganic mineral transformation, and rock thermal expansion.
These three effects mainly influence the porosity and
permeability. The thermal expansion coefficient of rock was
set to 5 × 10−6 °C−1. The influence of inorganic mineral
transformation on shale porosity and permeability is less than
that of organic matter pyrolysis.40 Moreover, from the
thermogravimetric curve, the reservoir temperature involved
in the actual in situ conversion is mainly within the range of
organic matter pyrolysis, which is not enough to activate the
reaction of inorganic minerals.24 Therefore, the changes in the
shale porosity and permeability caused by the organic matter
pyrolysis reaction were considered. The Kozeny-Carman
model is used to characterize the permeability as a function
of porosity, which is calculated by eq 1.

= ×K
C K2 1

1
on o

o

o

(1)

where K and ϕ are the permeability and porosity after
deformation, respectively. K0 and ϕo are the initial permeability
and porosity, respectively. Con is a constant set to 2 here.

The oil−water and gas−liquid relative permeability curves of
the matrix in this article are shown in Figure 2, and the relative
permeability curve of the fracture is X-shaped.
2.2. Fluids and Flow Models. At present, many kinetic

models of organic matter pyrolysis have been proposed,41−44

among which the most widely used are the Braun and
Burnham model (BB model) and the Wellington model (W

model).43,44 Lee et al. compared the application effects of these
two kinetic models and found that the BB model could
produce more oil and gas and the pyrolysis reaction was more
intense.45 In this paper, the W model adjusted in our previous
research work was adopted, which mainly included three
alternating reactions of kerogen pyrolysis, heavy oil cracking,
and light oil cracking, as shown in Table 1.46 Referring to the
pyrolysis experimental data given by Braun and Burnham,43,47

it involves a variety of oil and gas components. According to
the principle of similar component properties, oil-1 to oil-6
were lumped and defined as IC13, oil-7 to oil-11 were lumped
into IC37, and CH4 and CHx were lumped into IC2. Kerogen,
prechar, IC37, IC13, and IC2 were used to represent kerogen,
solid residue, heavy oil, light oil, and hydrocarbon gas,
respectively. This practice has been verified for its ration-
ality.37,45,46 The detailed properties of each pseudocomponent
are presented, as shown in Table 2. The initial oil content is set
at 5% in the simulation, and the initial oil is set as the IC37
material.25

The oleic phase viscosity at different temperatures is
calculated using eq 2, and the mixture viscosity is determined
by the molar fractions of the pseudo-components according to
the linear mixing rule.48 K values for gas−liquid equilibrium are
calculated by using eq 3. The density of the oil and gas phases
changes with reservoir temperature and pressure. The pyrolysis
reaction equation, reaction frequency factor, activation energy,
and reaction enthalpy are used as the input parameters of the
kinetic simulation.

= × +VISC AVISC e TBVISC/ 273.15 (2)

where VISC is the liquid equivalent viscosity, in mPa·s. AVISC
and BVISC are the corresponding coefficients.

= ×K
KV

P
eKV T KV

value
1 /4 5

(3)

where Kvalue is the K value at a certain temperature and
pressure. KV1, KV4, and KV5 are corresponding coefficients. P
is the pressure, in kPa. T is the temperature, in °C.

3. METHODOLOGY
Combined with numerical simulation technology and machine
learning, the performance prediction and parameter optimiza-
tion models of shale in situ conversion via Sc-CO2 injection are
established. The specific workflow includes the following steps:
(a) Detailed data on shale reservoir characteristics and
development operating are collected, and a numerical
simulation model of in situ conversion is established via Sc-
CO2 injection. (b) The general parameters that affect the shale
in situ conversion performance are selected, and the sample
database is generated and optimized. (c) The prediction model
of Sc-CO2-assisted shale in situ conversion is constructed and
evaluated based on ANN methodology. (d) The heating
parameters are optimized using the PSO algorithm with the
ANN prediction model as a proxy.
3.1. Database Establishment. The factors affecting

organic-rich shale in situ conversion via fluid heating usually
include reservoir conditions and production operating
conditions. There are 12 influencing factors considered,
including reservoir depth, thickness, initial reservoir temper-
ature and pressure, matrix permeability, natural fracture
permeability, porosity, natural fracture spacing, initial kerogen
concentration, Sc-CO2 injection rate, injection temperature,
and production pressure.21,23,24,37 Zhao et al. evaluated that

Figure 1. Numerical simulation model of Sc-CO2-assisted shale in situ
conversion.

Figure 2. Curves of (a) oil−water relative permeability and (b) gas−
liquid relative permeability.
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shale with a depth of 300−3000 m is suitable for in situ
conversion technology.1 Besides, the survey found that the
continental shale reservoir in China is mostly at depths of
1000−3000 m.1,2,49,50 Therefore, the in situ conversion of
shale in this depth range was predicted. The formation
pressure gradient is selected as 1.2 MPa/hm, and the
geothermal gradient is 3.0 °C/hm.1,49 According to the shale
depth, the initial temperature and pressure can be determined
by the geothermal and pressure gradient, respectively. It is
worth mentioning that the shale reservoir temperature and
pressure calculated meet the supercritical state of CO2 (7.38
MPa, 31.26 °C). The temperature and pressure in the reservoir
increase linearly with the depth. The range of the influence
factors is determined by referring to the existing public data, as
shown in Table 3.

Two evaluation responses of average reservoir temperature
and cumulative hydrocarbon production are selected to
achieve the performance prediction of shale in situ conversion
via fluid heating. The hydrocarbon gas of 975 sm3 is defined as
the unit oil equivalent.13 The cumulative hydrocarbon
production is determined by the cumulative oil equivalents
from oil and hydrocarbon gas generated. The Latin hypercube
sampling method, which has a distribution function more
accurately estimated than Monte Carlo, was used,51 and then
430 simulation cases were generated with normal distribution
probability in the input space of the selected parameters. Based
on the established simulation model of shale in situ conversion
by Sc-CO2 injection, all simulation schemes were run. The
simulation output of shale in situ conversion for 1500 days was
counted to construct the basic sample database composed of
the influencing factors and the corresponding evaluation
responses.
3.2. Database Optimization. Many factors considered in

this paper have a great or small influence on the average
temperature and hydrocarbon production. It is necessary to
capture which variables have a significant effect on target
responses. This makes the neural network model respect the
physics and chemistry of in situ conversion and have a good
prediction performance.29 Therefore, Pearson correlation
analysis and random forest analysis are used to screen the
main controlling factors to obtain an optimized database.

Pearson correlation analysis is widely adopted to measure the
linear correlation relation between features through correlation
coefficients so that redundant features can be eliminated.33,52

There may be a nonlinear correlation between the factors and
responses. Therefore, Pearson correlation analysis is used only
to calculate the correlation degree between the influencing
factors. When the correlation coefficient between two variables
is higher than 0.8, there is a strong linear correlation between
the two, and one of the variables should be eliminated.53,54

The Pearson correlation coefficient can be calculated using eq
4.

Table 1. Characterization Model of Organic Matter Pyrolysis Reaction

reactions stoichiometry
frequency
factor (s−1)

reaction
enthalpy

(kJ·mol−1)

activation
energy

(kJ·mol−1)

kerogen
decomposition

kerogen →0.02691H2O + 0.005888IC37 + 0.0178IC13 + 0.04175IC2 + 0.00541CO2 + 0.5827prechar 3.74 × 1012 335.00 161.600

cracking of
heavy oil

IC37 → 0.6463IC13 + 4.465IC2 + 17.497prechar 2.65 × 1020 46.50 206.034

cracking of light
oil

IC13 → 1.023IC2 + 10.904prechar 3.82 × 1020 46.50 219.328

Table 2. Detailed Properties of Pseudo-components

properties IC37 IC13 IC2 CO2 water kerogen prechar

molecular weight (kg·mol−1) 0.46583 0.16952 0.03007 0.04401 0.01802 0.1515 0.1272
critical temperature (°C) 689.133 442.211 15.5944 31.05 374
critical pressure (kPa) 1470.03 2405.03 4609.01 7376 22106
KV1 (kPa) 1.8929 × 106 1.3271 × 106 8.4644 × 105 8.6212 × 108 1.1860 × 107

KV4 (°C) −4680.46 −3774.56 −1511.42 −3103.39 −3816.44
KV5 (°C) −132.05 −181.84 −255.99 −272.99 −227.02
AVISC (mPa·s) 0.0345 0.0656 0.0818 0.1156 0.0047
BVISC (°C) 1082.29 534.71 156.6 182.63 1515.7

Table 3. Influencing Factors and Ranges of Shale In-Situ
Conversion via Sc-CO2 Injection

input parameters units
lower
limit

upper
limit comments

depth (D) m 1000 3000 normal
distribution

thickness (h) m 3 180 normal
distribution

original reservoir
pressure (Po)

MPa 12.1 36.1 P = 0.1+ 0.012D

original reservoir
temperature (To)

°C 55 115 T = 25 + 0.03D

original permeability
for matrix (kom)

10−3 μm2 0.005 0.15 normal
distribution

original porosity for
matrix (ϕom)

% 2.0 10.0 normal
distribution

original permeability
for natural fracture
(kof)

10−3 μm2 10 100 normal
distribution

natural fracture
spacing (S)

m 0.1 3 normal
distribution

concentration of
kerogen in the pore
(C)

mol/m3 2000 20000 normal
distribution

Sc-CO2 injection
rate (Rinj)

m3/day 100 1000 normal
distribution

injection temperature
of Sc-CO2 (Tinj)

°C 300 600 normal
distribution

production pressure
difference (ΔP)

kPa 2000 6000 normal
distribution
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where r is the correlation coefficient of data pairs (at,bt)(t =
1,2,···,q). The correlation coefficient r ranges from −1 to 1.

Moreover, random forest is used to evaluate the contribution
of features to the target response to further screen the key
factors of shale in situ conversion. Random forest is an
ensemble learning algorithm. By combining multiple decision
trees together, the prediction results of a random forest are
generated according to the voting results of all trees.55 The
algorithm realizes the randomness of ensemble learning
through the two characteristics of random sampling to
construct the training set and the sampling method with
replacement. It ensures the high accuracy and generalization
performance of the random forest method. Therefore, the
random forest algorithm was used to obtain variation
importance measures (VIM) to rank the contribution of
each variable by the Gini index.56,57

3.3. ANN-Based Prediction Model. An artificial neural
network is composed of huge amounts of neurons, which can
realize nonlinear mapping of the whole network from input to
output space.58−60 It is a data-driven adaptive technology with
the ability to organize and learn.33 It is one of the most widely
used prediction techniques. The neural network consists of an
input layer, a hidden layer, and an output layer. The number of
neurons in the input layer and the output layer is determined
by the influencing factors and target parameters. There can be
multiple hidden layers, and each layer can have different
numbers of neurons. The input signal is transmitted through a
weighted connection; the total input signal received by the
neuron is compared with the threshold; and the output is
generated by the activation function. The number of hidden
layers and hidden layer neurons, the activation function, the
training function, and the learning rate are the variables of
neural network architecture optimization. The optimal neural
network hyperparameters can be obtained through multiple
neural network trainings and predictions under different ANN
architectures. In this paper, a back-propagation (BP) neural
network, which is a multilayer feedforward neural network
trained by error back-propagation, is used to update weights
and thresholds to minimize the difference between network
output and expected output.33,60,61 The input data here are the
main controlling factors after screening, and the model outputs
are the average reservoir temperature and cumulative hydro-
carbon production. The application of the BP neural network
includes the following steps: The model training set and testing
set are divided and data normalized using eq 5.29,33 The neural
network structure and hyperparameters are given. (c) The
connection weights and thresholds between the input layer,
hidden layer, and output layer neurons are initialized. (d) The
output of the hidden layer and output layer is calculated to
determine the network prediction error using eq 6. (e) Based
on the model calculation error, the connection weight and
threshold are updated using eq 7. (f) Whether the iteration
ends is determined. If not, step (d) is repeated.33

=X
x x

x x
min

max min (5)

where x is the original data. X is the corresponding value after
normalization. xmax and xmin are the maximum and minimum
values of the original data set.
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where H is the hidden layer output, O is the output layer
output, and e is the network calculation error. n, l, and m are
the number of nodes in the input layer, hidden layer, and
output layer, respectively. υij is the connection weight between
the ith neuron in the input layer and the jth neuron in the
hidden layer, and ωjk is the connection weight between the jth
neuron in the hidden layer and the kth neuron in the output
layer. θ and γ are the thresholds of the hidden layer and the
output layer, respectively. f1 and f 2 are the excitation functions
of the hidden layer and output layer, respectively. Y is the
expected output. η is the network learning rate.
3.4. Heating Parameter Design Optimization. The

design of heating parameters is optimized by adopting the PSO
algorithm based on the established ANN prediction model as a
proxy. PSO is a random cooperative optimization algorithm,
which is proposed based on simulating the population behavior
of birds.62,63 Particles are equivalent to individuals, and a
particle swarm is a population. During finding the optimal
solution in the domain space, the behavior of the particle is
controlled by the two parameters of the position and
velocity.64 The generation is continuously updated by tracking
individual and global solutions. The velocity and position of
the particles are updated using eqs 8 and 9, respectively.63,64

= * + ++v v c p c grand ( ) rand ( )i i i i i i1 1 1 2 2 (8)

= ++ +vi i i1 1 (9)

where κ is the inertial factor, c1 is the learning rate representing
a cognitive term, and c2 is the learning rate representing a
social component. rand1 and rand2 are random factors between
0 and 1. pi is the individual optimal position searched by a
single particle up to the ith update, and gi is the global optimal
position. vi and χi are the particle velocity and position at the
ith update, respectively. vi+1 and χi+1 are the particle velocity
and position at the (i+1)th update, respectively. The trajectory
of particles in the domain space is defined by inertia factor,
cognitive term, and social component.62,65
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4. RESULTS AND DISCUSSION
4.1. Performance of Shale In Situ Conversion. With

the continuous injection of supercritical CO2, the reservoir
temperature rose. In order to quantitatively analyze the heating
process, the temperature field diagram and kerogen concen-
tration field diagram from the output simulated by CMG-
STARS were further drawn by Sufer software. The temperature
field and kerogen concentration field of the middle layer after
heating for 1, 2, and 3 years are shown in Figure 3. The area
near the heater was first heated by the thermal fluid, and its
temperature was higher than that of the reservoir deep. The
cracking of organic matter is dependent on the reservoir
temperature. Therefore, the kerogen near the heater was first
pyrolyzed, causing a lower concentration. The high diffusivity
and thermal conductivity of Sc-CO2 make the convective
heating in shale reservoirs very fast. Wang et al. pointed out
that about 300 °C is the starting temperature of kerogen
cracking.26 When shale in situ conversion was conducted for 1
year, the temperature of 29.6% of the shale grid cells reached
300 °C. After heating for 2 years, the temperature of all grids
was higher than 300 °C and an average of 82.5% of reservoir

kerogen was cracked. After Sc-CO2 injection for 3 years, the
kerogen in the middle layer of the simulation model was
basically completely pyrolyzed. It can be concluded from
Figure 3 that the front of the kerogen pyrolysis completion
zone is synchronized with a temperature front of about 340 °C.

In order to quantitatively analyze the hydrocarbon product
distribution characteristics during in situ conversion, the
connection plane between heater 1 and the producer was
defined as profile I and the plane between the producer and the
middle grid of two heaters was profile II, as shown in Figure 4.
The content changes of light oil, heavy oil, and hydrocarbon
gas in the middle layer grid of the two profiles were mainly
analyzed. For profile I, the heater position was defined as the
origin, and the producer position was the dimensionless
distance of 1. For profile II, the middle position of the two
heaters was the origin while the producer was the
dimensionless distance of 1.

After Sc-CO2 was injected into the shale reservoir, the shale
reservoir was heated rapidly due to heat transfer and the
organic matter was cracked. The generated pyrolysis oil and
gas migrated to the producer under the concentration gradient

Figure 3. Field diagram of shale in situ conversion by Sc-CO2 injection for (a) temperature field and (b) kerogen concentration field.

Figure 4. Diagram of quantitative evaluation for organic-rich shale in situ conversion performance.
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and pressure gradient. The content changes of light oil, heavy
oil, and hydrocarbon gas in profiles I and II under different
heating times were plotted, as shown in Figure 5. The pyrolysis
oil and gas were more pronounced with the increase in in situ
conversion time. For the content change of oil and gas
products in profile I, due to the cracking of kerogen near the
heater, the porosity and permeability of the reservoir increased,
which was conducive to the seepage of oil and gas products.
The oil and gas were continuously displaced by Sc-CO2.
Finally, there is almost no pyrolysis oil and gas in the area
within the dimensionless distance of 0.2 when the shale in situ
conversion was carried out for 1 year while the content of
hydrocarbon gas, light oil, and heavy oil in profile II was higher
than that in profile I, as shown in the blue line in Figure 5a,b.
The content of hydrocarbon gas, light oil, and heavy oil in the
grid cells within the dimensionless distance of 0.44 for profile I
was almost 0 after shale in situ conversion for 2 years.

At in situ conversion for 1 year, the kerogen near the two
heaters was mainly cracked. As Sc-CO2 was injected, the
pyrolysis completion zone of kerogen was continuously
expanded and extended forward, as shown in Figure 3. From
the second year, a large quantity of kerogen near profile II
began to pyrolyze and more pyrolysis hydrocarbon products
were generated. Therefore, the green and red lines in Figure 5b
showed higher IC2, IC13, and IC37 contents and the closer to
the production well, the lower the IC2 and IC13 contents. Due
to the further cracking of heavy oil at high temperature, the
IC37 content change curves of the second and third years of in
situ conversion show different laws, and there is a content peak
between the heater and the producer. In addition, the
hydrocarbon products produced by the cracking of organic
matter near profile II will diffuse in the direction of low
concentration and low pressure. This explains the fact that
profile I shows that hydrocarbon products still exist in the
range of a dimensionless distance of 0.44 rather than a farther
distance at in situ conversion for 3 years.

The average reservoir temperature and pyrolysis hydro-
carbon production of organic-rich shale in situ conversion via

Sc-CO2 for the simulation model are shown in Figure 6. With
supercritical CO2 injection, the reservoir temperature rises

rapidly, and IC2, IC13, and IC37 generated are developed at a
high rate. After shale in situ conversion for about 2 years, the
average reservoir temperature reaches 300 °C and the
cumulative pyrolysis oil and gas production curve is obviously
slowed down. It is consistent with the previous findings, i.e.,
the organic matter pyrolysis and hydrocarbon production
mainly occur in the first 2 years of in situ conversion.
4.2. Development of the ANN-Based Prediction

Model. Based on the simulation model of Sc-CO2-assisted
shale in situ conversion, the reservoir temperature and
cumulative equivalent oil production data obtained under
different influencing factors constitute the basic database.
Based on eq 4, the Pearson correlation coefficient matrix map
between input factors was drawn using MATLAB, as shown in
Figure 7. Because the initial temperature and pressure are
functions of the formation depth, there is a complete linear
correlation between the reservoir depth, temperature, and
pressure. The correlation coefficients of the three are all 1,
while the correlation coefficients between other factors do not

Figure 5. Distribution characteristics of pyrolysis hydrocarbon products for (a) profile I and (b) profile II.

Figure 6. Changes of the reservoir temperature and hydrocarbon
production.
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show a strong correlation. Therefore, the reservoir temperature
and pressure factors were removed while the remaining
features were retained.

The random forest was used to determine the importance of
each feature to the target response. The Gini index was used as
the criterion for the training and prediction of the random
forest model, and the hyperparameters were optimized,
including the number of decision trees, the maximum tree
depth, the minimum number of leaves, and the maximum
number of features. Finally, the hyperparameters of random
forest models for reservoir temperature and cumulative
hydrocarbon production were determined using MATLAB,
as shown in Table 4. The ranking results for the importance of

the feature factors are shown in Figure 8. By setting the
threshold value to 0.075,28 the main controlling factors of
objective functions were screened out and summarized, as
shown in Table 5. The screened factors influencing the
reservoir temperature include matrix permeability, formation
depth, natural fracture permeability, Sc-CO2 injection rate,
initial kerogen concentration, Sc-CO2 injection temperature,
and thickness. The main controlling factors for hydrocarbon
production are heating fluid injection rate, thickness, Sc-CO2

injection temperature, depth, matrix and natural fracture
permeability, and initial kerogen concentration.

Based on the elimination of redundant features and the
screening of main features, the final sample database was
determined for neural network training. Before constructing
the neural network model, the data was first normalized to
eliminate the influence of data scale.29,33,54,66,67 80% of the
data was randomly selected from the optimized database to
form a training set for the development of neural networks, and
20% was used for testing purposes to evaluate the prediction
performance of the neural network.67 In the network training
process, the hidden layer used the hyperbolic tangent S-type
transfer function (tansig) and the output layer used the linear
activation function.68 The minimum error of the training target
was set to 10‑3, and the mean squared error was selected as the
network training loss function, which could be calculated using
eq 10.61,67,68 Under different hyperparameters, the prediction
accuracy of the trained neural network model is different.
Therefore, it is necessary to establish multiple neural network
structures and repeat the network training. The neural network
has a variety of training functions that can be applied, including
trainbr, trainlm, trainrp, traingdm, and traingda.69 Different
training functions were tried in turn, and the most suitable
training function was determined according to the minimum
MSE and the maximum determination coefficient (R2). R2 was
used to evaluate the matching degree between the predicted
value and the expected output value, which could be calculated
using eq 11.68 Finally, it is determined that the two prediction
models could obtain the best results using trainbr function.
The detailed structure of the BP neural network is shown in
Figure 9. The optimal hyperparameter combinations with high
training and prediction accuracy are listed in Table 6.
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Figure 7. Diagram of the Pearson correlation coefficient matrix for input features.

Table 4. Performance and Hyperparameters of the Random
Forest Models Constructed

objective function

parameters
reservoir

temperature
cumulative hydrocarbon

production

n_estimators 2000 1000
Max_depth 9 8
Max_feasures 4 6
Min_samples_leaf 1 1
Min_samples_split 2 2
R2_train 1.000 0.998
R2_test 0.937 0.953
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where Yi,sim, Yi,pred, and −Yi,sim are the data from simulation
results, the prediction value by the BP neural network, and the
average of simulation data, respectively.

The training set error of the obtained reservoir temperature
prediction model under the optimal hyperparameters is 0.12%,
and the testing set error is 0.18%. The errors of the training set
and testing set for the cumulative hydrocarbon expulsion
prediction model are 0.17 and 0.30%, respectively. Figure 10
shows the cross plot between the simulated and predicted data
for the two prediction models, in which the scatter points are
distributed near the 45° line. The overall R2 of the reservoir
temperature prediction model is 97.52%, and the overall

Figure 8. Ranking of feature importance determined by random forest for (a) reservoir temperature and (b) cumulative hydrocarbon production.

Table 5. Summary of the Main Controlling Factors of the
Prediction Models

objective function

parameters
reservoir

temperature
cumulative hydrocarbon

production

depth (D) √ √
thickness (h) √ √
original permeability for matrix
(kom)

√ √

original porosity for matrix
(ϕom)

× ×

original permeability for natural
fracture (kof)

√ √

natural fracture spacing (S) × ×
concentration of kerogen in the
pore (C)

√ √

Sc-CO2 injection rate (Rinj) √ √
injection temperature of Sc-CO2
(Tinj)

√ √

production pressure difference
(ΔP)

× ×

Figure 9. Structure of ANN-based prediction models for (a) reservoir temperature and (b) cumulative hydrocarbon production.

Table 6. Optimal Hyperparameters for the ANN-Based
Prediction Models

objective function

hyperparameter
reservoir

temperature
cumulative hydrocarbon

production

number of the hidden
layers

2 1

number of the hidden
neurons

42, 42 11

learning rate 0.03 0.03
training function trainbr trainbr
transfer function tansig tansig
training epochs 100 200
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accuracy of the cumulative hydrocarbon production prediction
model is 97.28%. It is concluded that the established
performance prediction model of Sc-CO2-assisted organic-
rich shale in situ conversion can accurately predict the
reservoir temperature and cumulative hydrocarbon production.
It helps the rapid optimization of the development design of
organic-rich shale reservoirs under different working con-
ditions.

Model verification is necessary for artificial neural network
modeling. The prediction model was run to determine the
reservoir temperature and cumulative hydrocarbon production
of shale in situ conversion under the reservoir conditions and
development parameters given in Section 2. The accuracy of
established ANN-based prediction models is verified by
comparing its outputs with the simulation outputs presented
in Section 4.1. The reservoir temperature and cumulative
hydrocarbon production obtained by the CMG-STARS
module simulation were 340.43 °C and 62.394 m3,
respectively. The reservoir temperature and cumulative
hydrocarbon production determined by the ANN-based
prediction model were 345.78 °C and 64.078 m3, respectively.
The accuracies of the prediction models for reservoir
temperature and cumulative hydrocarbon production were
98.43 and 97.30%, respectively, which fully reflected the
reliability of the ANN-based prediction models established in
this paper.
4.3. Sensitivity Analysis. Temperature determines the

organic matter pyrolysis rate. The flow rate and pressure are
key features affecting the production performance of the shale
reservoir. Therefore, the sensitivity of the shale in situ
conversion effect to three factors including injection temper-
ature, injection rate, and production pressure difference was
analyzed. On the one hand, the influence of factors on in situ

conversion production can be clarified. On the other hand, the
accuracy of prediction models in computation framework can
be further verified.
4.3.1. Effect of Injection Temperature on Shale In Situ

Conversion. Based on the established simulation model and
prediction model, shale in situ conversion effects at injection
temperatures of 300, 350, 400, 450, and 500 °C were
calculated, respectively. The prediction errors for the reservoir
temperature and hydrocarbon production at different injection
temperatures are all within 5%, which further verifies the
accuracy of the constructed prediction models. The average
reservoir temperature obtained by simulation is shown in
Figure 11a, and the degree of kerogen cracking at different
injection temperatures was plotted, as shown in Figure 11b.
With the increase in injection temperature, the reservoir
temperature rises at a higher rate, the kerogen cracking process
is accelerated, and the time required for kerogen complete
cracking is shorter. When the injection temperature is higher
than 450 °C, the complete pyrolysis of kerogen can be basically
achieved at in situ conversion for 600 days.

The hydrocarbon gas, light oil, and heavy oil generated are
discharged through the seepage channel. The changes in the
content of hydrocarbon gas, light oil, and heavy oil produced at
different injection temperatures are shown in Figure 12. With
the uniform increase in injection temperature, hydrocarbon gas
and light oil contents increase at a smaller and smaller rate and
the content of the two change little above 450 °C. The content
of heavy oil increases gradually in the range of 300−450 °C
and decreases in the range of 450−500 °C, indicating that the
cracking rate of heavy oil in this temperature range is higher
than that of kerogen cracking.

In addition, the heat loss of the bedrock is considered to be a
waste of energy and uneconomically behaves. The energy

Figure 10. Cross plot of simulation data and prediction data for (a) the reservoir temperature prediction model and (b) the cumulative
hydrocarbon production prediction model.

Figure 11. Effects of the injection temperature on (a) the reservoir temperature and (b) the cracking degree of kerogen.
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conversion ratio (ECR) is an important index to evaluate the
application of shale in situ conversion technology. Therefore,
the heat loss and ECR at different injection temperatures were
compared, as shown in Figure 13. The ECR is defined as the
ratio of the produced hydrocarbon heat energy to the injected
heat energy during shale in situ conversion. The energy
contained in the produced fluid is measured by the reaction
heat of the cumulative hydrocarbon, and the unit oil equivalent
is set to contain 40 GJ energy.13,37,70 The injected energy is
determined by the difference between the heat of injected
high-temperature supercritical CO2 and the residual heat of the
produced gas.

With the continuous injection of thermal fluid, the heat loss
of the bedrock is increasing. The higher the temperature of the
injected fluid, the greater the final heat loss. At low injection
temperatures, organic matter is pyrolyzed and hydrocarbons
are continuously accumulated within 1500 days of shale in situ
conversion. The ECR gradually increases with time. At high
injection temperatures, most of the kerogen is rapidly
pyrolyzed in the early stage and only a small amount of
kerogen is pyrolyzed in the later stage, as shown in Figure 11b.
Therefore, the ECR increases first and then decreases.
Moreover, the peak of the ECR appears earlier with an
increase in injection temperature. This means that the higher
the injection temperature, the less shale in situ conversion time
is needed to maximize energy utilization. Considering that
organic matter cracking and hydrocarbon product discharge
mainly occur in the first 2 years of in situ conversion
exploitation, the optimal injection temperature for different in

situ conversion periods is given in Figure 13b. In the early
stage of shale in situ conversion development, a high injection
temperature allows more organic matter to be cracked and a
higher ECR can be obtained. In the later stage of shale in situ
conversion development, the remaining organic matter in the
reservoir at high injection temperatures is not much and the
energy generated by organic matter cracking is not enough to
make up for the energy consumption of the injected heating
fluid. Therefore, with the extension of the in situ conversion
time, the temperature required to achieve the maximum ECR
is lower. After shale in situ conversion for 1200 days, the
optimal injection temperature is maintained at 350 °C.
Therefore, considering in situ conversion hydrocarbon
expulsion production and energy utilization, the reservoir can
choose to inject 350−450 °C thermal fluid to obtain a more
promising mining effect.
4.3.2. Effect of Injection Rate on Shale In Situ Conversion.

The numerical simulation of in situ conversion with injection
rates of 200, 400, 600, 800, and 1000 m3/day was carried out.
Shale reservoir temperature and the characteristics of hydro-
carbon products at different injection rates are shown in Figure
14. With the increase in the Sc-CO2 injection rate, the
reservoir temperature rises faster, the time for kerogen to start
cracking is shorter, and more kerogen participates in the
reaction, accompanied by more pyrolysis hydrocarbon
generation. The pyrolysis hydrocarbon products gradually
migrate to production driven and carried by supercritical CO2
fluid. Therefore, with the increase in Sc-CO2 injection rate, oil
and gas production increased rapidly, as shown in Figure 14b.
However, when the injection rate is higher than 600 m3/day,
the heating effect of thermal fluid on the shale reservoir does
not produce a greater temperature enhance. At the same time,
the yield change curves of IC2, IC13, and IC37 slowed down.

Supercritical fluids are continuously injected into the
reservoir and gradually spread to production wells. It
continuously heats the rock, and solid kerogen begins to
crack to generate hydrocarbons. Under continuous drive of Sc-
CO2 fluid, formation water, and pyrolysis gas, the pyrolysis
hydrocarbon products are discharged from the generated
pores. This process has largely caused increases in reservoir
porosity and permeability. Therefore, the variation curves of
porosity and permeability of typical grid unit {13,13,2} during
shale in situ conversion are drawn, as shown in Figure 15.

As the injection rate of supercritical fluid increases, the
kerogen of the grid cell pyrolyzes earlier and the porosity and
permeability begin to increase earlier. When the injection rate
is 200 m3/day, the reservoir temperature rises to 250 °C within

Figure 12. Contents of hydrocarbon products at different injection
temperatures.

Figure 13. Energy utilization performance at different injection temperatures: (a) reservoir heat lost and (b) energy conversion ratio.
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1500 days of the operation time, which has not yet reached the
temperature range of effective kerogen pyrolysis and the grid
has only 1.27% of kerogen pyrolysis. When the injection rate is
400 m3/day, only 31.4% of the kerogen is cracked, the porosity
is 1.43 times higher than that of the original, and the
permeability is 2.14 times higher. The low injection fluid rate
leads to a significant extension of the effective development
period of shale in situ conversion. For an injection rate higher
than 600 m3/day, the kerogen of the grid cell is basically
completely pyrolyzed, the porosity is up to 2.39 times, and the
permeability is up to 6.44 times. It can be concluded that the
injection rate of 600 m3/day has been able to meet the needs
of shale in situ conversion development.
4.3.3. Effect of Production Pressure on Shale In Situ

Conversion. The numerical simulation of in situ conversion
with production pressure differences of 2, 4, and 6 MPa was
performed, and the results are drawn in Figure 16. In the case
of sufficient supercritical fluid injection, the carrying and gas
driving mechanisms make the generated pyrolysis oil and gas
discharge, which depends on a small extent on the production
pressure difference. There is no difference in reservoir
temperature or pyrolysis hydrocarbon yield under various
production pressure differences. Therefore, for shale in situ
conversion by supercritical fluid heating, the production
pressure difference has little effect on the development
performance, which is consistent with the main controlling
factors screened based on random forest.
4.4. Operation Optimization. The maximum hydro-

carbon production obtained by shale in situ conversion is often
the most concerning to researchers. Therefore, the ANN-based
prediction model of cumulative hydrocarbon production
established in Section 4.2 is used as the proxy model. The
PSO algorithm is adopted to optimize heating parameters,

including injection rate, and injection temperature, so the
framework can avoid a lot of numerical calculations. In this
paper, according to the characteristics of continental organic-
rich shale reservoirs, three typical reservoir characteristic types
are considered, which represent the organic-rich shale layers of
Ordos Basin, Songliao Basin, and Junggar Basin, respec-
tively.1−4 The development parameter optimization under
specific reservoir properties is performed. Considering that the
optimization algorithm may obtain different optimization
performances in each calculation, multiple PSO optimization
calculations for each typical case were carried out. The
convergence curve of cumulative hydrocarbon production is
shown in Figure 17. Typical reservoir properties and
determined optimal development parameters are listed in
Table 7.

Figure 14. Effect of the injection rates on (a) reservoir temperature and (b) hydrocarbon production.

Figure 15. Effect of the injection rates on (a) permeability and (b) porosity.

Figure 16. Effect of the production pressure difference on the shale in
situ conversion performance.
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We have applied cases of typical reservoir properties to
optimize the corresponding development parameters. How-
ever, a large number of numerical simulations are carried out
with fixed heating fluids and well patterns to construct the
database, which makes the application of the current in situ
conversion performance prediction and optimization model
have certain limitations. Therefore, in future research, the shale
in situ conversion development with different heating fluids
and well patterns should be taken as the direction,
supplemented by the field data of shale in situ conversion, to
further enrich the sample database and expand the prediction
and optimization model.

5. CONCLUSIONS
The numerical simulation of shale in situ conversion via Sc-
CO2 injection was carried out, and the characteristics of
organic matter conversion, fluid distribution, and generated
product release were analyzed. A database was constructed,
and rapid prediction models for reservoir temperature and
cumulative hydrocarbon production based on ANN were
obtained. The sensitivity analysis of shale in situ conversion
development performance was conducted, which not only
clarified the development laws under different heating
parameters but also further verified the ANN prediction
models. The PSO algorithm was performed to optimize
heating parameters using the ANN prediction model as a
proxy. The following conclusions can be drawn:

1. Kerogen cracking and hydrocarbon product discharge
mainly occurred in the first 2 years of shale in situ
conversion, when the reservoir temperature reached 300
°C, with an average of 82.5% of kerogen pyrolysis. After
that, the production curves of hydrocarbon gas, light oil,
and heavy oil slowed down significantly.

2. A database with 430 numerical simulation data was
constructed. Pearson correlation analysis and random
forest method were applied to optimize the database,
and seven main controlling factors affecting reservoir
temperature and hydrocarbon production were screened
out.

3. The proposed ANN-based prediction models can
achieve high-precision predictions for reservoir temper-
ature and hydrocarbon production. Under the optimal

neural network structure, the determination coefficients
of the prediction models for reservoir temperature and
cumulative hydrocarbon production are 97.52 and
97.28%, respectively, and the MSE of both prediction
models is lower than 0.3%.

4. Considering the shale in situ conversion hydrocarbon
expulsion production and energy conversion character-
istics, the reservoir can choose to inject 350−450 °C
thermal fluid with a rate of 600 m3/day to obtain a more
promising development effect.

5. The heating parameter optimization for three typical
reservoir characteristic cases was performed, and the
reasonable injection temperature and injection rate were
obtained, which could help engineers to rapidly design
the heating schemes.
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Table 7. PSO-Based Optimization Results of Typical Cases

depth
(m)

thickness
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original permeability for
matrix (10−3 μm2)

original permeability for natural
fracture (10−3 μm2)

concentration of kerogen in
the pore (mol/m3)

optimal
injection rate

optimal injection
temperature

case 1 1000 60 0.1 50 20,000 1000 521.05
case 2 2000 90 0.15 100 5000 1000 510.55
case 3 3000 120 0.05 10 10,000 1000 507.44
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■ NOMENCLATURE
Sc-CO2 supercritical CO2
ANN artificial neural network
BP back-propagation
VIM variation importance measures
D reservoir depth
h reservoir thickness
P0 original reservoir pressure
T0 original reservoir temperature
kom original permeability for matrix
ϕom original porosity for matrix
kof original permeability for natural fracture
S natural fracture spacing
C concentration of kerogen in the pore
Rinj heating fluid injection rate
Tinj heating fluid injection temperature
ΔP Production pressure difference
MSE mean square error
R2 determination coefficient
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