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Molecular docking simulations of fully flexible protein receptor (FFR) models are coming of age. In our studies, an FFR model
is represented by a series of different conformations derived from a molecular dynamic simulation trajectory of the receptor. For
each conformation in the FFR model, a docking simulation is executed and analyzed. An important challenge is to perform virtual
screening of millions of ligands using an FFR model in a sequential mode since it can become computationally very demanding.
In this paper, we propose a cloud-based web environment, called web Flexible Receptor Docking Workflow (wFReDoW), which
reduces the CPU time in themolecular docking simulations of FFRmodels to small molecules. It is based on the newworkflow data
pattern called self-adaptive multiple instances (P-SaMIs) and on a middleware built on Amazon EC2 instances. P-SaMI reduces
the number of molecular docking simulations while the middleware speeds up the docking experiments using a High Performance
Computing (HPC) environment on the cloud. The experimental results show a reduction in the total elapsed time of docking
experiments and the quality of the new reduced receptor models produced by discarding the nonpromising conformations from
an FFR model ruled by the P-SaMI data pattern.

1. Introduction

Large-scale scientific experiments have an ever-increasing
demand for high performance computing (HPC) resources.
This typical scenario is found in bioinformatics, which
needs to perform computer modeling and simulations on
data varying from DNA sequence to protein structure to
protein-ligand interactions [1]. The data flood, generated by
these bioinformatics experiments, implies that technologi-
cal breakthroughs are paramount to process an interactive
sequence of tasks, software, or services in a timely fashion.

Rational drug design (RDD) [2] constitutes one of the
earliest medical applications of bioinformatics [1]. RDD aims
to transform biologically active compounds into suitable
drugs [3]. In silico molecular docking simulation is one

of the main steps of RDD. It is used to deal with compound
discovery, typically by computationally virtual screening a
large database of organic molecules for putative ligands
that fit into a binding site [4] of the target molecule or
receptor (usually a protein). The best ligand orientation and
conformation inside the binding pocket is computed in terms
of the free energy of bind (FEB) by software, for instance the
AutoDock4.2 [5].

In order to mimic the natural, in vitro and in vivo, behav-
ior of ligands and receptors, their plasticity or flexibility
should be treated in an explicit manner [6]: our receptor
is a protein that is an inherently flexible system. However,
the majority of molecular docking methods treat the ligands
as flexible and the receptors as rigid bodies [7]. In this
study we model the explicit flexibility of a receptor by using
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an ensemble of conformations or snapshots derived from its
molecular dynamics (MD) simulations [8] (reviewed by [9]).
The resultingmodel receptor is called a fully-flexible receptor
(FFR) model.Thus, for each conformation in the FFRmodel,
a docking simulation is executed and analyzed [7].

Organizing and handling the execution and analysis of
molecular docking simulations of FFR models and flexible
ligands are not trivial tasks.The dimension of the FFR model
can become a limiting factor because instead of performing
docking simulations in a single, rigid receptor conformation,
wemust carry out this task for all conformations thatmake up
the FFR model [6]. These conformations can vary in number
from thousands to millions. Therefore, the high computing
costs involved in using FFR models to perform practical
virtual screening of thousands or millions of ligands may
make it unfeasible. For this reason, we have been developing
methods to simplify or reduce the FFRmodel dimensionality
[6, 9, 10]. We named this simpler representation of an
FFR model a reduced fully flexible receptor (RFFR) model.
An RFFR model is achieved by eliminating redundancy in
the FFR model through clustering its set of conformations,
thus generating subgroups, which should contain the most
promising conformations [6].

To address these key issues, we propose a cloud-based
web environment, called web Flexible Receptor Docking
Workflow (wFReDoW), to fast handle themolecular docking
simulations of FFR models. To the best of our knowledge,
it is the first docking web environment that reduces both
the dimensionality of FFR models and the overall docking
execution time using an HPC environment on the cloud.
The wFReDoW architecture contains twomain layers: Server
Controller and (flexible receptor middleware) FReMI. Server
Controller is a web server that prepares docking input
files and reduces the size of the FFR model by means of
the self-adaptive multiple instances (P-SaMIs) data pattern
[9]. FReMI handles molecular docking simulations of FFR
models integrated with an HPC environment on Amazon
EC2 resources [11].

There are a number of approaches that predict ligand-
receptor interactions on HPC environments using Auto-
Dock4.2 [5]. Most of them use the number of ligands to
distribute the tasks among the processors. For instance,
DOVIS 2.0 [12] uses a dedicatedHPCLinux cluster to execute
virtual screening where ligands are uniformly distributed
on each CPU. VSDocker 2.0 [13] and Mola [14] are other
examples of such systems. Whilst VSDocker 2.0 works
on multiprocessor computing clusters and multiprocessor
workstations operated by a Windows HPC Server, Mola
uses AutoDock4.2 and AutoDock Vina to execute the virtual
screening of small molecules on nondedicated compute clus-
ters. Autodock4.lga.MPI [15] and mpAD4 [16] use another
approach to enhance the performance. As well as the docking
parallel execution, Autodock4.lga.MPI and mpAD4 reduce
the quantity of network I/O traffic during the loading of
grid maps at the beginning of each docking simulation.
Another approach is the AutoDockCloud [17]. This is a
high-throughput screening of parallel docking tasks that
uses the open source Hadoop framework implementing the
MapReduce paradigm for distributed computing on a cloud

platform using AutoDock4.2 [5]. Although every one of
these environments reduces the overall elapsed time of the
molecular docking simulations, they only perform docking
experiments with rigid receptors. Conversely, wFReDoW
applies new computational techniques [6, 10, 11, 18] to reduce
the CPU time in the molecular docking simulations of FFR
models using public databases of small molecules, such as
ZINC [19].

In this work we present the wFReDoW architecture and
its execution. From the wFReDoW executions we expect
to find better ways to reduce the total elapsed time in the
molecular docking simulations of FFR models. We assess the
gains in performance and the quality of the results produced
by wFReDoW using a small FFR model clustered by data
mining techniques, a ligand from ZINC database [19], differ-
ent P-SaMI parameters [10], and an HPC environment built
on Amazon EC2 [18]. Thus, from the best results obtained,
we expect that future molecular docking experiments, with
different ligands and new FFR models, will use only the
conformations that are significantly more promising [6] in a
minimum length of time.

2. Methods

2.1.TheDocking Experiments with an FFRModel. To perform
molecular docking simulations we need a receptor model, a
ligand, and docking software.Weused as receptor the enzyme
2-trans-enoyl-ACP (CoA) reductase (EC 1.3.1.9) known as
InhA fromMycobacterium tuberculosis [20]. The FFR model
of InhA was obtained from a 3,100 ps (1 picosecond =
10−12 second) MD simulation described in [21], thus making
an FFR model with 3,100 conformations or snapshots. In
this study, for each snapshot in the FFR model, a docking
simulation is executed and analyzed. Figure 1 illustrates the
receptor flexibility.

The ligand triclosan (TCL400 from PDB ID: 1P45A) [20]
was docked to the FFR model. We chose TCL from the
referred crystal structure because it is one of the simplest
inhibitors cocrystallized with the InhA enzyme. Figure 2
illustrates the reference position of the TCL400 ligand into
its binding site (PDB ID: 1P45A) and the position of the TCL
ligand after an FFR InhA-TCLmolecular docking simulation.

For docking simulations, we used the AutoDock Tools
(ADT) and AutoDock4.2 software packages [5]. Input coor-
dinate files for ligand and the FFR model of InhA were
prepared with ADT as follows. (1) Receptor preparation.
A PDBQT file for each snapshot from the FFR model was
generated employing Kollman partial atomic charges for
each atom type. (2) Flexible ligand preparation. The TCL
ligand was initially positioned in the region close to its
protein binding pocket and allowed two rotatable bonds.
(3) Reference ligand preparation. This is the ideal position
and orientation of the ligand that is expected from docking
simulations. A TCL reference ligand was also prepared using
the coordinates of the experimental structure (PDB ID:
1P45A). It is called the reference ligand position. (4) Grid
preparation. For each snapshot a grid parameter file (GPF)
was produced with box dimensions of 100 Å × 60 Å × 60 Å.
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Figure 1: Flexibility of the InhA enzyme receptor from Mycobac-
terium tuberculosis [PDB ID: 1P45A]. Superposition of different
InhA conformations, represented as ribbons, along an MD simula-
tion. The initial conformation of the simulation is the experimental
crystal structure and is colored in green. Two other conformations
or snapshots were taken from the MD simulation at 1,000 ps (blue)
and 3,000 ps (magenta). The outlined rectangle highlights the most
flexible regions of this receptor.

Figure 2: Molecular docking simulation. Molecular surface repre-
sentation of the binding pocket of the InhA enzyme receptor in the
crystal structure [PDB ID: 1P45A] colored by atom type (carbon and
hydrogen: light grey; nitrogen: blue; oxygen: red; sulphur: yellow).
The TCL ligand (TCL400 from PDB ID: 1P45A) is represented by
stick models. The crystallographic reference for the TCL ligand is
colored orange. The TCL ligand generated by molecular docking
simulation is colored cyan.

The other parameters maintained the default values. (5)
Docking parameters. Twenty-five Lamarckian genetic algo-
rithm (LGA) independent runs were executed for each
docking simulation.The LGA searchmethod and parameters
were: a population size of 150 individuals, a maximum of
250,000 energy evaluations and 27,000 generations.The other
docking parameters were kept at default values.

2.2. Reducing the Fully Flexible Receptor Model. The snap-
shots of the FFR model used in this study are derived from
anMD simulation trajectory of the receptor. Even though this
approach is considered the best tomimic the natural behavior
of ligands and receptors [9], its dimension or sizemay become
a limiting factor. Moreover, the high computing cost involved
could also make the practical virtual screening of such recep-
tor models unfeasible. For these reasons, new methods have
been developed to assist in the simplification or reduction of
an FFR model to an RFFR model. The primary rationale of
this approach is to eliminate redundancy in the FFR model
through clustering of its constituent conformations [6]. This
is followed by the generation of subgroups with the most
promising conformations via the P-SaMI data pattern [10].

2.2.1. Clusters of Snapshots fromanFFRModel. Theclusters of
snapshots used in this study were generated using clustering
algorithms with different similarity functions developed by
[6, 7]. Basically, in this approach, our FFR model was used
to find patterns that define clusters of snapshots with similar
features. In this sense, if a snapshot is associated with a
docking with significantly negative FEB, for a unique ligand,
it is possible that this snapshot will interact favorably with
structurally similar ligands [6]. As a consequence, the clusters
of snapshots, which were related to different classes of FEB
values, are postprocessed using the P-SaMI data pattern to
select the receptor conformations and, thus, to reduce the
complexity of the FFR model.

2.2.2. P-SaMI Data Pattern for ScientificWorkflow. P-SaMI is
the acronym for pattern-self-adaptive multiple instances—a
data pattern for scientific workflows developed by [10]. The
purpose of this approach is to define a data pattern which
is able to dynamically perform the selection of the most
promising conformations from clusters of similar snapshots.
As shown in Figure 3, the P-SaMI first step is to capture
a clustering of snapshots from [6]. Next, P-SaMI divides
each cluster into subgroups of snapshots to progressively
execute autogrid4 and autodock4 for each conformation that
makes up the FFR model using an HPC environment. The
results (docking results) are the best FEB value for each
docked snapshot. From these results, P-SaMI uses previous
FEB results (evaluation criteria) to determine the status
and priority of the subgroups of snapshots. Status denotes
whether a subgroup of snapshots is active (A), finalized (F),
discarded (D), or with changed priority (P). Priority indicates
how promising the snapshots are belonging to that subgroup,
on a scale of 1 to 3 (1 being the most promising). Thus, if
the docking results of a subgroup present an acceptable value
of FEB then that subgroup is credited with a high priority.
Conversely, the subgroup has its priority reduced or its status
changed to “D” and is discarded, unless all the snapshots of
that subgroup have already been processed (status “F”).

The reason for using P-SaMI in this work is to make full
use of its data pattern to eliminate the exhaustive execution
of docking simulations of an FFR model without affecting its
quality [6, 10] from clusters of snapshots produced by [6, 7]
as input files. In this sense, we make use of a web server
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Figure 3: Model of P-SaMI data pattern execution. Clustered
snapshots are divided into subgroups using the P-SaMI data pattern.
Molecular docking simulations are executed on these subgroups.
P-SaMI analyses the docking results, based on some evaluation
criteria, to select promising conformations from subgroups of
snapshots.

environment, herein called server controller, to perform the
P-SaMI data pattern and a middleware (FReMI) to handle
promising snapshots and send them to an HPC environment
on the cloud to execute the molecular docking simulations.

2.3. HPC on Amazon EC2 Instances. Cloud computing is
a new promising trend for delivering information technol-
ogy services as computing utilities [22]. Commercial cloud
services can play an attractive role in scientific discovery
because they provide computer power on demand over the
internet, instead of several commodity computers connected
by a fast network. Our virtual HPC environment on Amazon
EC2 was built using the GCC 4.6.2 and MPICH2 based
on a master-slave paradigm [23]. It contains 5 High-CPU
extra large (c1.xlarge) EC2 Amazon instances, each equipped
with 8 cores with 2.5 EC2 computer units, 7 GB of RAM,
and 1,690GB of local instance storage. A rating of one EC2
computer units is a unit of CPU capacity which corresponds
to 1.0–1.2 GHZ 2007 Opteron or 2007 Xeon processor.

Figure 4 shows the cluster pool created on Amazon EC2’s
instances where the same files directory is shared by network
file system (NFS) among the instances to store all input and
output files used during run time of FReMI. In this pool, all
data are stored on the Elastic Block Store (EBS) of the master
machine and all the instances have permission to read and
write in this shared directory, even if a slave instance termi-
nates. However, if the master instance terminates, all data are
lost because themaster instance EBS volume terminates at the
same time. Thus, the S3cmd source code (S3cmd is an open
source project available under GNU Public License v2 and
free for commercial and private use. It is a command line tool
for uploading, retrieving, andmanaging data in Amazon’s S3.
S3cmd is available at http://s3tools.org/s3cmd) and package
is used to replicate the most important information from
Amazon EC2 to Amazon S3 bucket (bucket is the space to
store data on Amazon S3. Each bucket is identified with a
unique bucket name).

3. Results

The results are aimed at showing the wFReDoW architecture
and validating its execution using clusters of snapshots of
a specific FFR model against a single ligand. From these
results we try to evidence that the proposed cloud-based
web environment can be more effective than other methods
used to automatemolecular docking simulationswith flexible
receptors, such as [24]. In this sense we divided our results
into three parts. Firstly, we present the wFReDoWconceptual
architecture to get a better understanding about its operation.
Next, a set of experiments is examined to discover the best
FReMI performance on Amazon EC2 Cloud. Finally, the
new RFFR models are presented by means of the wFReDoW
execution.

3.1. wFReDoW Conceptual Architecture. This section pre-
sents the wFReDoW conceptual architecture (Figure 5)
which was developed to speed up the molecular docking
simulations for clusters of the FFR model’s conformations.
wFReDoW contains two main layers: Server Controller and
FReMI. Server Controller is a webworkflow based on P-SaMI
data pattern that prepares Autodock input files and selects
promising snapshots through docked snapshots. FReMI is a
middleware based on the many-task computing (MTC) [25]
paradigm that handles high-throughput docking simulations
using an HPC environment built on Amazon EC2 instances.
In our study,MTC is used to address the problemof executing
multiple parallel tasks in multiple processors. Figure 5 details
the wFReDoW conceptual architecture with its layers and
interactions. The wFReDoW components are distributed in
three layers: Client, Server Controller and FReMI.

3.1.1. Client Layer. The Client layer is a web interface used
by the scientist to configure the environment. It initializes
the wFReDoW execution and analyzes information about
the molecular docking simulations. Client is made up of
three main components: (i) Setup component sets up the
whole environment before starting the execution; (ii) Execute
starts the wFReDoW execution and; (iii) Analyze shows the
provenance of each docking experiment.The communication
between Client and Server Controller is done by means of
Ajax (http://api.jquery.com/category/ajax/).

3.1.2. Server Controller. Server Controller is a web workflow
environment that aids in the reduction of the execution time
of molecular docking simulations of FFRmodels by means of
P-SaMI data pattern. It was built using the web framework
FLASK 0.8 (http://flask.pocoo.org/) and the Python 2.6.6
libraries. The Server Controller central role is to select
promising subgroups of snapshots from an FFR model
based on the P-SaMI data pattern [10]. It contains three
components: Configuration,Molecular Docking, and P-SaMI.
The Configuration component only stores data sent from
Setup (Client layer).

The Molecular Docking component manages the P-SaMI
input files and performs the predocking steps required for
AutoDock4.2 [5]. Firstly, the Prepare Files activity reads the

http://s3tools.org/s3cmd
http://api.jquery.com/category/ajax/
http://flask.pocoo.org/
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clustering of snapshots generated by [6] and stores them
in the Database. Next, the Prepare Receptor and Prepare
Ligand activities generate the PDBQT files used as input files
to autogrid4 and autodock4. Finally, the Prepare Grid and
Prepare Docking activities create the input files according to
the autogrid4 and autodock4 parameters, respectively.

After all files have been prepared by the Molecular
Docking component, the P-SaMI component is invoked.This
identifies the most promising conformations using the P-
SaMI data pattern [10] from different clusters of snapshots
of an FFR model identified by [6]. The P-SaMI component
contains three activities:Uploader,Data Analyzer, and Prove-
nance.

Uploader starts the FReMI execution and generates
subgroups from snapshot clustering [6]. These subgroups
are stored in an XML file structure, called wFReDoW
control file (Figure 6). The wFReDoW control file is sent
to the Parser/Transfer component (within FReMI) before
starting the wFReDoW execution. It contains three root
tags described as: experiment, subgroup, and snapshot. The
experiment identification (id) is a unique number created
for each new docking experiment with an FFR model and
one ligand. The subgroup tag specifies the information of the
subgroups. The stat and priority tags indicate how promising
the snapshots belonging to that subgroup are, according
to the rules of the P-SaMI data pattern. The snapshot tag
contains information about the snapshots and is used by
FReMI to control the docked snapshots.

The Data Analyzer activity examines the docking results,
which are sent from FReMI by HTTP Post, based on P-
SaMI data pattern.The result of these analyses is a parameter
set that is stored in the wFReDoW update files (Figure 7).
Thus, to keep FReMI updated with the P-SaMI results, Data
Analyzer sends wFReDoW update files to FReMI by SFTP
protocol every time P-SaMI modifies the priority and/or
status of a subgroup of snapshots.

The Database component is based on FReDD database
[26], built with PostgreSQL 4.2 (http://www.postgresql.org/
docs/9.0/interactive/), and is used to provide provenance
about data generated by Server Controller. The Provenance
activity stores the Server Controller data in the Database
component. Hence, the scientist is able to follow wFReDoW
execution whenever he/she needs.

3.1.3. FReMI: Flexible Receptor Middleware. FReMI is a mid-
dleware on the Amazon Cloud [18] that handles many tasks
to execute, in parallel, the molecular docking simulations of
subgroups of conformations of FFR models. It also provides
the interoperability between the Server Controller layer and
the virtual HPC environment built using the Amazon EC2
instances. FReMI contains five different components: Start,
wFReDoW Repository, FReMI workspace, FReMI execution,
and HPC environment. Start begins the execution of FReMI
and HPC Environment denotes the virtual cluster on EC2
instances. The remaining components are described below.

ThewFReDoWRepository contains the Input/Update Files
repository. This repository stores all files sent by Server
Controller layer using the SFTP network protocol. It consists

Figure 6: Fragment of the wFReDoW control file.The file places the
subgroups of snapshots generated by data mining techniques and its
parameters according to P-SaMI.

(a)

(b)

Figure 7: Examples of wFReDoW update files. (a) An XML file
where the priority from G1L1 subgroup changed to 1. (b) An XML
file where the status from G2L2 subgroup changed to D.

of predocking files, a wFReDoW control file (Figure 6), and
different wFReDoW update files (Figure 7).

The FReMI Workspace component represents the direc-
tory structure used to store the huge volume of data manip-
ulated to execute the molecular docking simulations. The
input files placed in thewFReDoWRepository are transferred,
during FReMI’s execution time, to its workspace by the
Parser/Transfer activity within the FReMI Execution set of
activities.

The FReMI Execution component—the engine of
FReMI—contains every procedure invoked to run
the middleware. Its source code was written in the C
programming language and its libraries. Figure 8 shows
the data flow control followed by the FReMI Execution
component. Basically, the FReMI Execution identifies the
active snapshots (status A), inserts them in queues of
balanced tasks that are created based on subgroup priorities
emerging from the P-SaMI data pattern, and submits
these queues into the HPC environment. These actions are
performed through three activities: Create Queue, Parser/
Transfer, and Dispatcher/Monitor.

http://www.postgresql.org/docs/9.0/interactive/
http://www.postgresql.org/docs/9.0/interactive/
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The Create Queue activity produces a number of queues
of balanced tasks during FReMI run time based on the infor-
mation from wFReDoW control file (Figure 6). According
to the priorities, this activity uses a heuristic function to
determine howmany processors fromHPC environment will
be allocated for each subgroup of snapshots. Furthermore,
it uses the status to identify whether a snapshot should
be processed or not. For this purpose, the Create Queue
activity starts calculating the maximum number of snapshots
that each queue can support. Thus, the amount of nodes or
machines allocated (𝑁) and the amount of parallel tasks (𝑇)
executed per node are used to obtain the queue length (𝑄),
with the following equation:

𝑄 = 𝑁 × 𝑇. (1)

Afterward, the amount of snapshots per subgroup is
calculated in order to achieve the balanced distribution of
tasks in every queue created. A balanced queue contains one
or more snapshots of an active group. From the subgroup
priorities, it is possible to determine the percentage of
snapshots to be included in the queues.Thus, subgroups with
higher priority are queued before those with lower priority.
Equation (2) is used to calculate the amount of snapshots for
a balanced queue:

𝑆
𝑔

= 𝑄 × (
𝑃
𝑔

∑(𝑃
𝑔

)
) . (2)

𝑆
𝑔

is the amount of snapshots of the subgroup 𝑔 that are
placed in the queue. 𝑄 is the queue length from (1). 𝑃

𝑔

is

the priority of the subgroup 𝑔, and ∑(𝑃
𝑔

) is the sum of the
priorities of all subgroups. From (2) one queue of balanced
tasks (𝐵

𝑞

) is created with the following equation:

𝐵
𝑞

= ∑(𝑆
𝑔

) . (3)

The Parser/Transfer activity handles and organizes the
files sent by the Server Controller layer to its workspace on
FReMI. It has three functions: to transfer all files received
from Server Controller to the FReMI workspace by means
of the transfer file function (see Figure 8); to perform a parse
on predocking files in order to recognize the FReMI’s files
directory structure; and to update the parameters of the
subgroups of snapshots, when necessary, using the get files
function. The purpose of this last activity is to maintain
FReMI updated with the Server Controller layer.

The functions from the Dispatcher/Monitor activity, as
shown in Figure 8, are invoked to distribute tasks among
the processors/cores from the virtual computer cluster on
EC2 Amazon [18] based on the master-slave paradigm [23].
Slave Function only runs the tasks while Master Function,
aside from running tasks, also performs two other functions:
distribute tasks, which is activated when a node/machine asks
formorework; and request queue, which is activatedwhen the
queue of tasks is empty. Furthermore, to take advantage of the
multiprocessing of each virtual machine, we use the hybrid
parallel programming model [27]. This model sends bags of
tasks among the nodes by means of MPI and it shares out the
tasks inside every node by OpenMP parallelization.

3.2. FReMI-Only Execution onAmazon EC2MPICluster. The
purpose of executing this set of experiments is to obtain the
bestMPI/OpenMP performance in theHPC environment on
Cloud, which reduces the total elapsed time in the molecular
dockings experiments, in order to become the reference
to the wFReDoW experiments. For this reason, we have
processed the TCL ligand (TCL400 from PDB ID: 1P45A)
with two rotatable bonds against all 3,100 snapshots thatmake
up the FFR model using FReMI-only execution. The HPC
environment was executed on a scale of 1 to 8 EC2 instances.
The number of tasks executed per instance was 32 (from (1):
𝑇 = 32), and the size of the queues of balanced tasks ranged
according to the number of instances used. The performance
of each FReMI-only experiment versus the number of cores
used is shown in Figure 9.

The performance gain obtained using the virtual MPI/
OpenMP cluster on Amazon EC2 is substantial when com-
pared to the serial version. We observed that the serial ver-
sion, which was performed using only one core from an EC2
instance, took around 4 days to execute all 3,100 snapshots
from the FFR model, and its parallel execution decreased
this time by over 92% for the scales of cores examined. Even
though the overall time of the parallel executionswas reduced
considerably, we also evaluated the speedup and efficiency in
the virtual HPC environment to take further advantage of
every core scaled during the wFReDoW execution.

The FReMI-only execution is unable to take advantage
of more than 48 cores because its efficiency ranges only
from 22% to 29% (see Figure 9). Conversely, the cores were
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Figure 9: FReMI-only execution performance on Amazon EC2
determined for 3,100 docking tasks running on a scale of 1 to 8 EC2
instances.

well used during the execution when we used less than 40.
As can be seen, the best FReMI-only execution efficiency
(i.e., 42%) was achieved using 32 and 40 cores from virtual
HPC environment.However, the overall execution time spent
between themwas 7 hours and 28minutes for 32 cores against
5 hours and 47 minutes for 40 cores. As a consequence of
these assessments, the best FReMI-only configuration found
in this set of experiments was 5 c1.xlarge EC2 Amazon
instances with 8 cores each. It is worth mentioning that this
configuration is able to reduce the total docking experiment
time (i.e., 5 hours and 47 minutes) about 94% from its
reference serial execution time, which took 90 hours and 47
minutes.

3.3. wFReDoW Execution on Amazon EC2 MPI Cluster.
The main goal of this set of experiments is to show the
performance gains in the molecular docking simulations
of an FFR model and the new flexible models produced
using wFReDoW. The wFReDoW experiments were con-
ducted using 3,100 snapshots from an FFR InhA model,
which are clustered by similarity functions [6], and TCL
ligand (TCL400 from PDB ID: 1P45A) with two rotatable
bonds. We used only an FFR model and a single ligand
to evaluate wFReDoW because our goal was to analyze
the performance gain in the docking experiments of FFR
models by investigating the best way to coordinate, in one
unique environment, all the computational techniques, such
as data mining [6], data patterns for scientific workflow
[10], cloud computing [18], parallel program, web server
and the FReMI middleware. This variety of technological
approaches contains their particular features and limits that
should be dealt with in order to obtain an efficient wFReDoW
implementation, avoiding fault communications, overhead,
and idleness issues. Thus, from the best results, we expect
that future wFReDoW executions may allow practical use
of totally fully flexible receptor models playing in virtual

screening of thousands or millions of compounds, which
are in virtual chemical structures libraries [3], such as ZINC
database [19].

According to the P-SaMI data pattern, the analyses start
after a percentage of snapshots has been docked. In these
experiments we seek to know how many snapshots are
discarded and what the quality is of the RFFR models which
are produced for each clustering when the P-SaMI data
pattern starts to evaluate after 30%, 40%, 50%, 70%, and
100% of the docked snapshots. When 100% of snapshots are
dockedP-SaMI does not analyze the docking results.Thus, we
perform fifty different kinds of docking experiments—one P-
SaMI configuration for each clustering of snapshots. In this
sense, Server Controller prepared three different wFReDoW
control files—one for each clustering of snapshots generated
by [6]—and four different P-SaMI configurations followed
the above mentioned percentage.

Figure 10 summarizes the total execution time and the
number of snapshots docked and discarded for each wFRe-
DoW experiment. In this Figure, each graph represents the
wFReDoW results obtained by running a P-SaMI configura-
tion for each clustering of snapshots, which are represented
by 01, 02, and 03 clustering. Every clustering contains 3,100
snapshots from the FFR model, which are grouped from 4 to
6 clusters depending on the similarity function used by [6].
The total time execution for each experiment (one clustering
for one P-SaMI configuration) is calculated from themoment
the preparation of the wFReDoW control file (in the Server
Controller) begins, until the last docking result comes in the
Server Controller.

4. Discussion

In this paper we presented the roles of wFReDoW—a cloud-
based web environment to faster execute molecular docking
simulations of FFR models—and, through its execution, we
showed the RFFR models produced. As can be observed in
Figure 10, wFReDoW, as well as creating new RFFR models,
also speeds up the docking experiments for all cases due to
the reduction of docking experiments provided by the P-
SaMI data pattern and the simultaneous docking execution
performed by the virtual HPC environment. Although we
use a small FFR model and only a single ligand, it is clear to
see that wFReDoW is a promising tool to start performing
molecular docking simulations for new FFR models even
using large libraries of chemical structures for the practice of
virtual screening.

4.1. wFReDoW Performance. According to [10], the earlier
the analysis starts (in this case 30%), the larger the quantity of
unpromising snapshots that can be recognized and discarded
is. Figure 10 evidences this statement. The wFReDoW results
show that when P-SaMI data pattern starts the analyses of
the FFRmodel with 30% of docked snapshots, the number of
unpromising snapshots discarded is higher. Additionally, as
this percentage increases, the number of unpromising docked
snapshots increases as well. Consequently, if the number of
docked snapshots decreases, the overall execution time also
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Figure 10: Results of the wFReDoW experiments using a different P-SaMI configuration for each clustering of snapshots. Docked snapshots
(blue bar) are examples of RFFRmodels. (a) wFReDoW results for clustering 01. (b) wFReDoW results for clustering 02. (c) wFReDoW results
for clustering 03.

decreases. Thus, considering the best run time of wFReDoW,
that is, 3 hours and 54 minutes (Figure 10), the gain achieved
by the use of P-SaMI showed a fall of 30% from the FReMI-
only overall execution (5 hours and 47 minutes).

Another consideration for wFReDoW performance is
that FReMI middleware also runs in local cluster infras-
tructure. However, the efficiency is not the same. We also
executed FReMI only using a sample of snapshots from the
FFR InhAmodel on theAtlantica cluster with the intention to
compare the performance gains obtained between the virtual
and the local cluster infrastructures (Atlantica cluster consists
of 10 nodes connected by a fast network system. Each node
contains two CPUs Intel Xeon Quad-Core E5520 2.27GHZ
with Hyper-Threading, and 16GB of RAM, aggregating 16
cores per node. The cluster is connected by a two-gigabit
Ethernet network, one for communication between nodes
and another for management. Atlantica cluster supplies
high performance computational resources for the academic
community.) We made several investigations for different
nodes and core scales, even for different numbers of tasks
executed per node. At the end we found that, in most cases,
Amazon EC2 outperforms the Atlantica cluster. For instance,
using the same number of cores from Amazon EC2, that is, 5

nodes with 8 cores each, for a sample of 126 snapshots from
the FFR model and 16 tasks executed per instance (from (1):
𝑇 = 16), the total execution time was 14.94 minutes for the
Atlantica cluster and 8.78 minutes for Amazon EC2. Possibly,
this performance difference is because we used the Atlantica
cluster in a nonexclusive mode, sharing the cluster’s facilities.
From this evidence and our previous studies, we concluded
that the EC2 configuration bestows itself as a very attractive
HPC solution to execute molecular docking simulations of a
larger set of snapshots and for different ligands.

4.2. The Quality of the RFFR Models Produced. We showed
that the approach used in this study enhances the perfor-
mance of the molecular docking simulations of FFR models
in most cases. However, to make sure that the P-SaMI
data pattern selected the best snapshots from the cluster
of snapshots used, we verified the quality of the RFFR
models built by wFReDoW. Regarding this, we took only
the first run of the 25 runs performed by AutoDock 4.2,
which contains the best FEB of each docking, to evaluate the
produced models. The best docking result of each snapshot
was organized according to the percentage of snapshots with
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Table 1: Analysis of the wFReDoW results obtained by running a P-SaMI configuration for each clustering of snapshots. Column 1 identifies
the three different types of clustering. Column 2 specifies the percentage of docked snapshots after which P-SaMI analysis of the model
quality starts. Columns 3, 5, and 7 display the total number of selected snapshots that are in the best 10%, best 20%, and best 30%, respectively.
Columns 4, 6, and 8 present the accuracy percentage for the best 10%, 20%, and 30%, respectively.

Clustering P-SaMI Best 10% Accuracy % Best 20% Accuracy % Best 30% Accuracy %
01 30% 305 98.39 598 96.45 879 94.52
01 40% 305 98.39 600 96.77 887 95.38
01 50% 306 98.71 603 97.25 894 96.13
01 70% 308 99.35 608 98.06 910 97.85
02 30% 302 97.42 593 95.65 871 93.66
02 40% 302 97.42 599 96.61 888 95.48
02 50% 303 97.74 599 96.61 891 95.81
02 70% 308 99.35 612 98.71 913 98.17
03 30% 300 96.77 596 96.13 885 95.16
03 40% 301 97.10 599 96.61 891 95.81
03 50% 303 97.74 604 97.42 898 96.56
03 70% 303 97.74 610 98.39 909 97.74
— 100% 310 100.00 620 100.00 930 100.00

the best FEB values in an ascending order (set of best FEB).
Then, we investigated if the selected snapshots belonged to
the percentage of this set. As a result we obtained the data
described in Table 1 with the number of docked snapshots for
each set of best FEB and its respective accuracy.

Based on the data illustrated in Table 1 we can observe
that wFReDoW worked well for all P-SaMI analyses. This
is evidenced from the computed accuracy in the produced
RFFR models, which contain more than 94% of its snapshots
within the set of best FEB values. In the clustering 02, for
instance, when P-SaMI started the analysis in 70%, wFRe-
DoW worked best, selecting 308 of the 310 best ones, 612 of
the 620 best ones, and 913 of the 930 best ones. Whilst, when
P-SaMI started the analysis in 30% in the same clustering,
wFReDoW selected 302 of the 10% best ones, 593 of the
20% best ones, and 871 of the 30% best ones. Even though
wFReDoW selected fewer snapshots in the latter P-SaMI
configuration, it represents 97.42%, 95.65% and 93.66% of
the 10%, 20%, and 30% best FEB, respectively. The difference
between the best and worst wFReDoW selections is slight.
However, the difference between them of 1 hour in the total
wFReDoW execution time (3 hours and 54 minutes for P-
SaMI analysis from 30% against 4 hours and 57minutes for P-
SaMI analysis from 70%) could be a good motivation to start
the P-SaMI analyses when only 30% of the snapshots have
been docked. Consequently, it also is a promising opportunity
for reducing the overall execution time and preserving the
quality of the models produced.

It is worth mentioning that wFReDoW is only capable
of building an RFFR model, without losing the quality of
its original model, if the clustering methods used as input
data contain high affinity among the produced clusters of
snapshots from [6]. This means that wFReDoW, with its
features, is always able to improve the performance. However,
for improving the quality of the RFFR models produced, the
used clustering also needs to be of a high quality.

4.3. AmazonCloud. Themost significant advantage of shared
resources is the guaranteed access time of the resources wher-
ever you are and whenever you need.There is no competition
or restrictions for access to the machines. However, it is
necessary to pay for as many computing nodes as needed,
which are charged at an hourly rate. The rate is calculated for
what resources are being used and when; for example, if you
do not need computing time, you do not need to pay.

5. Conclusions

The main contribution of our article is wFReDoW, a cloud-
based web environment to faster handle molecular docking
simulations of FFR models using more than one compu-
tational approach cooperatively. wFReDoW includes the P-
SaMI data pattern to select promising snapshots and the
FReMI middleware that uses an HPC environment on the
Amazon EC2 instances to reduce the total elapsed time
of docking experiments. The results showed that the best
FReMI-only performance decreased the overall execution
time by about 94% with its respective serial execution.
Furthermore, wFReDoW reduced the total execution time
a further 10–30% from FReMI-only best execution without
affecting the quality of the produced RFFR models.

There are several possible ways to further improve the
efficiency of wFReDoW. One of the biggest limitations for
wFReDoW’s performance is that the Server Controller layer
runs in a web server located outside of Amazon EC2. Even
though we posted all docking input files inside wFReDoW
repository (inside FReMI layer) in advance, there are still a
large number of files that are transferred during the wFRe-
DoWexecution. In this experiment, the time taken to transfer
these files was irrelevant since our FFR model holds only
3,100 snapshots. However, when using FFRmodels with hun-
dreds to thousands of snapshots, the time will be increased
significantly. A way to enhance the overall performance is
by the use of an EC2 instance to host the Server Controller
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layer. This would greatly reduce the time taken to transfer
the files from Server Controller to FReMI. Furthermore, the
Server Controller layer could also send only the docking
input files from promising snapshots during the wFReDoW
execution, contributing to the reduction in the amount of files
transferred and in the overall elapsed time.

wFReDoW was tested with a single ligand and an FFR
model containing only 3,100 conformations of InhA gener-
ated by an MD simulation. MD simulations are now running
on tens to hundreds of nanoseconds for the same model.
This could produce FFR models with more than 200,000
snapshots! wFReDoW should be tested with such models.
Additionally, it would be interesting to make use of other
ligands by means of investigation of public databases of small
molecules, such as ZINC [19].
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