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Abstract

Metabolic pathway analysis, one of the most important fields in biochemistry, is pivotal to understanding the maintenance
and modulation of the functions of an organism. Good comprehension of metabolic pathways is critical to understanding
the mechanisms of some fundamental biological processes. Given a small molecule or an enzyme, how may one identify the
metabolic pathways in which it may participate? Answering such a question is a first important step in understanding
a metabolic pathway system. By utilizing the information provided by chemical-chemical interactions, chemical-protein
interactions, and protein-protein interactions, a novel method was proposed by which to allocate small molecules and
enzymes to 11 major classes of metabolic pathways. A benchmark dataset consisting of 3,348 small molecules and 654
enzymes of yeast was constructed to test the method. It was observed that the first order prediction accuracy evaluated by
the jackknife test was 79.56% in identifying the small molecules and enzymes in a benchmark dataset. Our method may
become a useful vehicle in predicting the metabolic pathways of small molecules and enzymes, providing a basis for some
further analysis of the pathway systems.
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Introduction

Metabolism defines a series of chemical reactions that occur in

a cell, maintaining the lives of living organisms by supplying the

necessary molecules and energy [1]. Metabolism is composed of

metabolic pathways in which chemical reactions are organized in

such a way that one molecule is transformed into another through

a cascade of reactions recruiting small molecules and enzymes.

Thus, small molecules and enzymes are part of the basic

components of metabolic pathways. Determining the functioning

of the small molecules and enzymes of each metabolic pathway is

key to understanding the metabolic pathway and its biological

functions.

During the past decade, large amounts of information

concerning different organisms have been gathered on both the

genetic and metabolic levels. Some databases pertaining to

chemicals and proteins, such as KEGG (Kyoto Encyclopedia of

Genes and Genomes) [2,3], ENZYME [4], STITCH (Search Tool

for Interactions of Chemicals) [5] and STRING (Search Tool for

the Retrieval of Interacting Genes/Proteins) [6], have been

established, from which descriptions of the properties of small

molecules and enzymes can be readily acquired. Such information

also provides an opportunity to study the metabolic pathways in

greater detail computationally. A computational approach is

another avenue by which to gain insight into metabolic pathways,

apart from biochemical experiments. In recent years, some efforts

[1,7,8] have been made to tackle the problem by mapping small

molecules to the corresponding metabolic pathways. However,

besides small molecules, enzymes are also important basic

components of metabolic pathways. As far as we know, this study

is the first to map small molecules and enzymes to the metabolic

pathways simultaneously, thus providing some additional in-

formation for use in studying metabolic pathways.

A large body of data concerning protein-protein interactions

and chemical-chemical interactions has been applied extensively

to predicting the attributes of proteins and compounds

[8,9,10,11,12,13,14]. This work led to the conclusion that

interactive proteins or interactive compounds were more likely

to share common biological functions than non-interactive ones.

Most of these approaches studied chemical-chemical interactions

or protein-protein interactions separately to construct classification

models. In this study, we proposed a novel method, integrating

interactions among chemicals and proteins including chemical-

chemical interactions, protein-protein interactions, and chemical-
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protein interactions, to predict metabolic pathways in which small

molecules and enzymes of yeast participate. Since some small

molecules and enzymes participate in more than one metabolic

pathway, our method sorts the probabilities of metabolic pathways

to which a small molecule or enzyme may belong rather than

predicting only the most probable metabolic pathway.

Materials and Methods

Benchmark Dataset
The dataset of small molecules to be studied was downloaded

from the FTP site of the public database KEGG [2,3] at ftp://ftp.

genome.jp/pub/kegg (June, 2011), from which we extracted

17,641 small molecules. After excluding small molecules that do

not participate in any metabolic pathway, 4,487 small molecules

were retained. The dataset of enzymes of yeast were also acquired

from the FTP site of the public database KEGG [2,3] at ftp://ftp.

genome.jp/pub/kegg (November, 2010). Likewise, those enzymes

that do not participate in any metabolic pathway were excluded.

Thus, we retained 655 enzymes of yeast, whose data on

participation in metabolic pathways is available.

As described above, 4,487 small molecules and 655 enzymes of

yeast have recoverable information concerning their participation

in metabolic pathways. These samples were used to comprise

a dataset Sce. However, not all samples can be used in our method

due to the lack of interaction information. Those not having any

interactions with other compounds or proteins in Sce were

excluded. Finally, we obtained 4,002 samples including 3,348

small molecules and 654 enzymes, formulated by S=Sc<Se, where
S denotes the benchmark dataset consisting of 4,002 samples, Sc
the dataset consisting of 3,348 small molecules, and Se the dataset
set consisting of 654 enzymes.

According to KEGG (http://www.genome.jp/kegg/pathway.

html), there exist more than 150 metabolic pathways, classified

into 11 major metabolic pathway classes (see column 2 of

Table 1). Subsequently, 3,348 small molecules and 654 enzymes

were mapped into the 11 major metabolic pathway classes. The

distribution of these small molecules and enzymes is shown in

Table 1. The coding of small molecules and enzymes in each of

the 11 major metabolic pathway classes can be found in Online

Supporting Information S1. From column 3 of Table 1, the sum
of small molecules in all pathways is greater than the total number

of small molecules in the dataset, indicating that some small

molecules belong to more than one pathway class. In detail, 3,020

small molecules belong to only one pathway class, while others

belong to more than one pathway class - see Figure 1 for the

Figure 1. The number of small molecules against the number of pathway classes.
doi:10.1371/journal.pone.0045944.g001

Table 1. Distribution of 3,348 small molecules and 654 enzymes of yeast in the 11 metabolic pathway classes.

Tag Metabolic pathway class Number of small molecules Number of enzymes Total

M1 Carbohydrate Metabolism 394 198 592

M2 Energy Metabolism 151 146 297

M3 Lipid Metabolism 399 84 483

M4 Nucleotide Metabolism 133 107 240

M5 Amino Acid Metabolism 489 158 647

M6 Metabolism of Other Amino Acids 156 44 200

M7 Glycan Biosynthesis and Metabolism 47 18 65

M8 Metabolism of Cofactors and Vitamins 350 87 437

M9 Metabolism of Terpenoids and Polyketides 507 18 525

M10 Biosynthesis of Other Secondary Metabolites 509 17 526

M11 Xenobiotics Biodegradation and Metabolism 709 21 730

Total – 3,844 898 4,742

doi:10.1371/journal.pone.0045944.t001
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number of small molecules versus the number of pathway classes.

Likewise, as given in column 4 of Table 1, some enzymes also

appear in more than one pathway class. In detail, 477 enzymes

appear in only one pathway class, while others appear in at least

two pathway classes (see Figure 2 for detail). In view of this, it

appears to be a multi-label problem to predict the pathway classes

of small molecules and enzymes. Similar to the cases in predicting

some other attributes of proteins and compounds

[11,12,15,16,17], the proposed method needs to provide a series

of candidate pathway classes for a query small molecule or

enzyme.

Construction of Hybrid Network
It is known that interactive proteins and compounds are more

likely to share common biological functions [8,9,12,13,14,18] than

would non-interactive ones; given a compound, its biological

functions may share the same functions with its interactive

proteins. Conversely, the biological functions of a protein may

also be similar to the functions of its interactive compounds. In this

case, if a compound and a protein are interactive with one

another, it would be more likely that they appear in the same

metabolic pathway. In view of this, a hybrid interaction network

was constructed as follows.

The constructed network takes small molecules and enzymes as

its nodes, and an edge is drawn between two nodes if and only if

the corresponding small molecule and enzyme can interact with

one another. Different combinations of the participants lead to

three kinds of interactions: chemical-chemical interactions,

chemical-protein interactions, and protein-protein interactions.

The data concerning chemical-chemical interactions and chemi-

cal-protein interactions was acquired from STITCH (http://

stitch.embl.de/) [5], a well-known database containing known and

Figure 2. The number of enzymes against the number of pathway classes.
doi:10.1371/journal.pone.0045944.g002

Table 2. The interactive compounds and proteins of C07277 and YLL058W.

Row index Compound/Enzyme Compound/Enzyme Interaction confidence score Tag of metabolic pathway class a

1 C07277 C00103 409 M1, M9, M10

2 C07277 C00363 441 M4

3 C07277 C00507 416 M1

4 C07277 C03319 446 M9, M10

5 C07277 C11912 63 M9

6 C07277 YDL055C 298 M1

7 YLL058W C00087 317 M2

8 YLL058W C00109 900 M1, M5

9 YLL058W C00155 900 M2, M5

10 YLL058W C00283 317 M2, M5

11 YLL058W C00542 904 M2

12 YLL058W C01077 900 M2, M5

13 YLL058W C02291 900 M5

14 YLL058W C05688 900 M6

15 YLL058W C05699 900 M6

16 YLL058W YAL012W 463 M2, M5

17 YLL058W YGL184C 241 M2, M5

aThe information in this column represents the metabolic pathway classes of the compound or enzyme in column 3.
doi:10.1371/journal.pone.0045944.t002
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predicted interactions of chemicals and proteins derived from

experiments, literature and other databases. To more accurately

represent the interaction network, each edge in the network was

labeled with a score given as the edge weight to quantify the

interaction confidence, i.e., the likelihood that an interaction may

occur. For any two small molecules c1 and c2, their interaction

confidence score, i.e., the weight of the edge with c1 and c2 as

endpoints, was denoted by Qcc(c1, c2). Specifically, if the interaction

between c1 and c2 does not exist in STITCH, their interaction

confidence score was set to 0, i.e., Qcc(c1, c2) = 0. Likewise, the

weight of the edge with one small molecule c and one enzyme e as

endpoints was denoted by Qcp(c, e). In particular, the confidence

score was set to be 0 if the interaction between c and p does not

exist in STITCH. The data concerning protein-protein interac-

tions was retrieved from STRING (http://string.embl.de/) [6],

a large database containing known and predicted protein

interactions including direct (physical) and indirect (functional)

interactions that were derived from several sources such as

experimental repositories and computational prediction methods.

Like the previous case of chemical-chemical interactions and

chemical-protein interactions, each edge with two proteins p1 and

p2 as endpoints was labeled with a score, denoted by Qpp(p1, p2), to

quantify the interaction confidence, i.e., the likelihood that an

interaction may occur. In particular, if p1 and p2 are non-

interactive proteins according to the data in STRING, their

interaction confidence score was set to 0, i.e., Qpp(p1, p2) = 0.

Prediction Method
To describe the method more clearly, it is necessary to

introduce some notations - let M1, M2, …, M11 denote 11

metabolic pathway classes, where M1 denotes ‘‘Carbohydrate

Metabolism’’, M2 the ‘‘Energy Metabolism’’, and so forth (see

column 1 and 2 of Table 1). In addition, if one supposes that

there are n samples in the training set, say s1, s2, …, sn. The

pathway class of a sample si can be formulated as.

M sið Þ~ mi ,1,mi ,2, . . . ,mi ,11

� �
ð1Þ

where

mi,j~
1

0

�
If si appears in Mj

Otherwise
ð2Þ

Toward a query sample (small molecule or enzyme) s, its pathway

class was predicted by not only its neighbors in the network but

also the weights of edges between the query one and its neighbors.

Let N(s) denote a node set consisting of the neighbors of s. The

likelihood that s belongs to Mj was calculated by.

P(s[Mj)~
P

si[N(s)

w(s,si):mi,j j~1,2, . . . ,11 ð3Þ

where

Table 3. The likelihood of C07277 and YLL058W belonging to each pathway class.

Test sample
Likelihood for each
pathway class Remark a

C07277 M1: 1,123 Sum of confidence scores in row 1,3,6 of Table 2

M2: 0 –

M3: 0 –

M4: 441 Sum of confidence scores in row 2 of Table 2

M5: 0 –

M6: 0 –

M7: 0 –

M8: 0 –

M9: 918 Sum of confidence scores in row 1,4,5 of Table 2

M10: 855 Sum of confidence scores in row 1,4 of Table 2

M11: 0 –

YLL058W M1: 900 Sum of confidence scores in row 8 of Table 2

M2: 4,042 Sum of confidence scores in row 7,9,10,11,12,16,17 of Table 2

M3: 0 –

M4: 0 –

M5: 4,621 Sum of confidence scores in row 8,9,10,12,13,16,17 of Table 2

M6: 1,800 Sum of confidence scores in row 14,15 of Table 2

M7: 0 –

M8: 0 –

M9: 0 –

M10: 0 –

M11: 0 –

aThe information in this column shows the means by which the likelihood in column 2 was calculated by using the data in Table 2.
doi:10.1371/journal.pone.0045944.t003
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w(s,si)~

Qcc(s,si) If s and si are small molecules

Qpp(s,si) If s and si are enzymes

Qcp(s,si) Otherwise

8><
>: ð4Þ

Obviously, the larger the value of P(s[Mj) is, the more likely s

belongs to Mj. If P(s[Mj)~0 for some j, it implies that there are

no interactive compounds or proteins of the query sample s in the

training set that belong to pathway class Mj. In this case, it is

thought that the probability of s belonging to Mj is zero. For

a query sample s, if the results obtained from Eq. 3 are

P(s[M3)§P(s[M6)§ � � �§P(s[M11)w0 ð5Þ

which suggests that it is most likely that s belongs to isM3, followed

by M6, and so forth. Also, M3 is called the 1-st order predicted

pathway class of s, and M6 the 2-nd order predicted pathway class

of s, and so forth.

Jackknife Test
In statistical prediction, the jackknife test [19], one of the cross-

validation methods, is often used to evaluate various predictors for

their effectiveness. Compared with other cross-validation methods

(independent dataset test and subsampling test), the jackknife test is

deemed to be more objective [20,21,22]. For a given benchmark

dataset, each sample can always be assigned to a unique predicted

result through the jackknife test. Therefore, many investigators

adopt this method to evaluate the accuracies of their predictors

[19,22,23,24,25,26,27,28,29,30,31]. It was also adopted here to

evaluate the generalization of predicting the metabolic pathways.

Accuracy Measurement
For any query sample (small molecule or enzyme), the

prediction method described in Section ‘‘Prediction method’’ will

provide a series of candidate pathway classes. For the j-th order

predicted pathway class, its prediction accuracy Yjcan be

calculated by

Yj~
CMj

N
j~1,2, . . . ,11 ð6Þ

where CMj denotes the number of samples that are predicted

correctly according its j-th order predicted pathway class, and N

denotes the total number of samples in the dataset. For these 11

prediction accuracies, high Yj with small j and low Yjwith large j

indicate that the method arranges the candidate pathway classes

well. The first order prediction accuracy is more important than

others, because it has the smallest index of j.

Since the 11 prediction accuracies calculated by Eq. 6 cannot

evaluate the prediction method on the whole, another measure-

ment is needed to calculate the probability of all pathway classes

that are correctly predicted according to the first m predicted

candidate pathways classes as follows [11,15].

Table 4. The prediction accuracies obtained by our method for small molecules, enzymes, and all samples.

Prediction order
Prediction accuracy for
small molecules (Sc)

Prediction accuracy for
enzymes (Se)

Prediction accuracy for
total samples S=Sc<Se

1 77.12% 92.05% 79.56%

2 19.12% 22.48% 19.67%

3 7.38% 10.55% 7.90%

4 3.61% 4.13% 3.70%

5 2.75% 4.13% 2.97%

6 1.40% 1.83% 1.47%

7 0.96% 0.76% 0.92%

8 0.51% 0.76% 0.55%

9 0.45% 0.61% 0.47%

10 0.30% 0.00% 0.25%

11 0.15% 0.00% 0.12%

doi:10.1371/journal.pone.0045944.t004

Figure 3. Three curves showing the changes of proportions of
interactions contributing to the prediction when increasing the
confidence score, where the chemical-chemical curve ad-
dresses chemical-chemical interactions, chemical-protein curve
chemical-protein interactions, protein-protein curve protein-
protein interactions. The X-axis is the confidence score. The Y-axis is
the proportion of interactions contributing to the prediction. Generally,
chemical-protein curve and protein-protein curve are ascending with
the increase of confidence score, while chemical-chemical curve
remains at a low level for low confidence scores and starts to increase
quickly for high confidence scores.
doi:10.1371/journal.pone.0045944.g003
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Lm~

PN
i~1

Si,m

PN
i~1

Ni

ð7Þ

where Si,m denotes the number of the correctly predicted pathway

classes of the i-th sample among its first m predicted candidate

pathway classes, and Ni denotes the number of pathway classes

that the i-th sample belongs to. Usually, we calculate Eq. 7 by

taking m as the smallest integer equal to or greater than the

average number of samples’ pathway classes in the dataset, which

is calculated by

M~

PN
i~1

Ni

N
ð8Þ

Obviously, a large Lm always implies a good performance for

mapping small molecules or enzymes into correct metabolic

pathway class.

Results and Discussion

Performance of the Prediction Method for Small
Molecules
In the training dataset, 3,348 small molecules comprised the

dataset Sc. The pathway classes of these molecules were predicted

by the prediction method described in Section ‘‘Prediction

method’’ by the jackknife test based on all samples in benchmark

dataset. Here, an example is given to demonstrate how we made

the prediction. ‘‘C07277’’, belonging to M9, is a sample in Sc. Its
interactive compounds and proteins were shown from row 1 to 6

in Table 2. Using Eq. 3, the likelihood that ‘‘C07277’’ belongs to

each of 11 pathway classes was calculated and shown in Table 3.
As a result, ‘‘C07277’’ belongs to M1 with the highest likelihood,

followed by M9, M10 and M4. The 1-st order predicted pathway

class was not its true pathway class, while its 2-nd order predicted

pathway class was its true pathway class. After the pathway classes

of each sample in Sc were predicted, 11 ordered prediction

accuracies were obtained by Eq. 6 and listed in column 2 of

Table 4, from which we can see that the first order prediction

accuracy was 77.12%. It is also observed form column 2 of

Table 4 that the prediction accuracy generally followed

a descending trend when increasing the order number, which

indicates that our method sorted the predicted pathway classes

well. The average number of pathway classes for small molecules

was 1.15 (3,844/3,348) according to Eq. 8, i.e.,M=1.15. Thus we

consider the first 2 predicted pathway classes for each small

molecule. After collecting these pathway classes calculated

according to Eq. 7, it was observed that the probability that all

true pathway classes were covered by them was 83.81%. Our

results are comparable to that in [8], where the results were

obtained by only chemical-chemical interactions.

Performance of the Prediction Method for Enzymes
In addition to the small molecules, there were 654 enzymes in

the training dataset, which comprised dataset Se. Our prediction

method was also applied to predict their metabolic pathway

classes, evaluated by the jackknife test. Likewise, ‘‘YLL058W’’,

a sample in Se, was selected to demonstrate how its predicted

pathway classes were obtained. ‘‘YLL058W’’ belongs to two

pathway classes: M2 and M5. Its interactive compounds and

proteins were shown from row 7 to 17 in Table 2 and the

likelihood of ‘‘YLL058W’’ belonging to each of 11 pathway classes

was shown in Table 3, from which we can see that ‘‘YLL058W’’

belonging to M5 is most likely, followed by M2, M6 and M1. The

first two predicted pathway classes were its true pathway classes.

After processing by Eq. 6, 11 ordered prediction accuracies were

obtained. These accuracies were listed in column 3 of Table 4,
from which we can see that the first order prediction accuracy was

92.05%. The average number of pathway classes for enzymes was

1.37 (898/654) according to Eq. 8, i.e., M=1.37, meaning that

the average success rate by a random guess would be 12.46%

(1.37/11), which is much lower than that by our method. Like the

11 ordered prediction accuracies for small molecules, those for

enzymes also generally followed a descending trend when

increasing the order number (cf. Table 4), which suggests that

the predicted pathway classes were sorted quite well. As described

above, the average number of pathway classes for enzymes was

Table 5. The distribution of samples with incorrect 1-st order predicted pathway class in 11 pathway classes.

Metabolic pathway class Number of misclassified samples

Carbohydrate Metabolism 105

Energy Metabolism 32

Lipid Metabolism 79

Nucleotide Metabolism 26

Amino Acid Metabolism 146

Metabolism of Other Amino Acids 79

Glycan Biosynthesis and Metabolism 21

Metabolism of Cofactors and Vitamins 107

Metabolism of Terpenoids and Polyketides 107

Biosynthesis of Other Secondary Metabolites 95

Xenobiotics Biodegradation and Metabolism 113

Total 910 a

aThe value in this cell is larger than the total number of samples with incorrect 1-st order prediction because some samples belong to more than one pathway class.
doi:10.1371/journal.pone.0045944.t005
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1.37. Eq. 7 was calculated by taking m=2, yielding a probability

of 83.41% that all true pathway classes were covered by the first 2

predicted classes.

Performance of the Prediction Method for All Samples
The predicted results for all samples in the benchmark dataset S

combined the results of small molecules in dataset Sc and enzymes

in dataset Se. Listed in column 4 of Table 4 were 11 ordered

prediction accuracies, from which the first ordered prediction

accuracy was 79.56%. The average number of pathway classes for

the samples in S was 1.18 (4,742/4,002) according to Eq. 8, i.e.,
M=1.18, meaning that the average success rate by a random

guess would be 10.73% (1.18/11), much lower than that obtained

by our method. Meanwhile, it is observed from column 4 of

Table 4 that the 11 prediction accuracies followed a descending

trend when increasing the order number, suggesting that the

predicted pathway classes, for both small molecules and enzymes,

were sorted quite well by our method. Since the average number

of pathway classes for all samples in S was 1.18, the first two

predicted pathway classes for each sample were considered. After

collecting these pathway classes calculated by Eq. 7 by taking

m=2, 83.74% true pathway classes were covered by the first 2

predicted pathway classes.

Confidence Scores of Small Molecules or Enzymes
As illustrated by the above sections, our method is very effective

in predicting the metabolic pathway classes of small molecules and

enzymes, indicating that interactive small molecules or enzymes

are very likely to appear in a common metabolic pathway. In this

section, we analyze the confidence score and illustrate the value in

utilizing such scores.

The network constructed contains 4,002 samples and 100,754

interactions, including 66,942 chemical-chemical interactions,

19,695 chemical-protein interactions, and 14,117 protein-protein

interactions. As described in Section ‘‘Construction of hybrid

network’’, each interaction was labeled with a confidence score

ranging from 1 to 999, quantifying the likelihood that an

interaction occurs. For each integer k in the interval [1, 999],

the following rate was calculated for each kind of interaction.

r
(�)
k ~

IMk

Ik
ð9Þ

where Ik is the number of interactions with confidence score to be

at least k, and IMk is the number of interactions with their

confidence score to be at least k and their corresponding small

molecules or enzymes belonging to at least one common pathway

class. The superscript of Eq. 9 was to differentiate three different

kinds of interactions – r
(cc)
k is for chemical-chemical interaction,

r
(cp)
k for chemical-protein interaction, and r

(pp)
k for protein-protein

interaction. It is clear that the value of Eq. 9 quantifies the

contribution of the interactions with confidence score at least k for

predicting the pathway classes of small molecules and enzymes in

our method. For each kind of interaction, we can plot a curve with

r
(�)
k as its Y-axis and the subscript k as its X-axis. For clarity, the

curve for chemical-chemical interactions is named the chemical-

chemical curve, the curve for chemical-protein interactions is the

chemical-protein curve, and that for protein-protein interactions is

the protein-protein curve. Shown in Figure 3 are three curves,

from which we can see that the chemical-protein curve and

protein-protein curve generally follow an increasing trend when

increasing the confidence score; while the chemical-chemical

curve does not look good in terms of its overall trend – the rate

remains at a low level (between 40%260%) when k , ,900, and

when k . ,900, the rate starts to increase quickly. These data

indicate that the proportions of the interactions contributing to the

prediction in the method become higher and higher with the

increasing of confidence score, meaning that the confidence scores

of interactions are related to the prediction of enzymes and

compounds in a metabolic pathway. It is, therefore, foreseeable

that as the interactions become more evidenced in STRING and

STITCH, predictions requiring confidence scores will also be

improved accordingly. Finally, it is important to note that when

Table 6. Interactive compounds and enzymes of C00439 in pathway classes M5 and M8.

Index Interactive compounds and enzymes in M5 Interactive compounds and enzymes in M8

Compound/Enzyme Confidence score Compound/Enzyme Confidence score

1 C01045 940 C00101 934

2 C00785 938 C00445 927

3 C00101 934 C00025 923

4 C00025 923 C00001 899

5 C00014 901 C00018 899

6 C03680 899 C00664 899

7 C01817 511 C03479 899

8 C05568 388 C14818 899

9 C00135 302 C14819 899

10 C00073 283 C00504 739

11 C02170 191 C00234 438

12 – – C00992 378

13 – – C00440 205

14 – – YGL125W 177

Likelihood – 7,210 – 10,115

doi:10.1371/journal.pone.0045944.t006
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taking all interactive enzymes or compounds into consideration,

more than half of the interactions would provide contributions to

the prediction, indicating that using interaction information of

proteins and chemicals to predict their metabolic pathways is

reasonable. It is also the basis upon which our method performs

well.

Analysis of Samples with Incorrect 1-st Order Predictions
Although our method performs well, where the 1-st order

prediction accuracy for all samples achieved 79.56%, 818 samples

(818/4002, 20.44%) achieved incorrect 1-st order predictions. The

distribution of these misclassified samples in the 11 pathway classes

is shown in Table 5. We investigate these samples in depth and

explain why these samples were misclassified as follows. Based on

the principle of the method, the likelihood that a misclassified

sample belongs to its 1-st order predicted pathway class was

greater than those of true pathway classes, while the likelihood of

a sample belonging to one class is calculated by summing the

confidence scores between the sample and its neighbors belonging

to that class. Thus, it would be interesting to investigate sum terms

of the likelihood that a misclassified sample belongs to a 1-st order

predicted pathway class and true pathway classes. The misclassi-

fied sample ‘‘C00439’’ belongs to pathway class M5, while its 1-st

order predicted pathway class was M8. Shown in Table 6 are the

interactive compounds and enzymes of ‘‘C00439’’ in M5 and M8,

and the last row of Table 6 shows the likelihood of ‘‘C00439’’

belonging to M5 and M8. Two difficult situations were observed

from Table 6 as follows: (1) sum terms for 1-st order predicted

pathway class were greater than those of true pathway classes; (2)

sum terms with values greater than 700, which is deemed the

threshold of interactions with high confidence [32,33], for 1-st

order predicted pathway class were greater than those of true

pathway classes. Due to the method of calculating the likelihood

(cf. Eq. 3), it is highly possible that a query sample satisfying one of

the above situations would be predicted incorrectly. Among 818

misclassified samples, 556 (556/818, 67.97%) samples fit the first

situation; while 604 (604/818, 73.84%) samples fit the second

situation. Furthermore, 762 (762/818, 93.15%) samples fit at least

one of the two situations. As a result, these samples were all

misclassified. On the other hand, the incompleteness of the

interaction information may be another important reason. When

interactions, especially those with high confidence scores, for the

true class are missing in the calculation, the prediction is likely to

be incorrect.

Conclusions
By integrating the data for chemical-chemical interactions,

chemical-protein interactions, and protein-protein interactions,

a multi-label prediction model was developed to identify the

metabolic pathway classes of small molecules and enzymes. Since

interactive chemicals and proteins are more likely to involve

a common pathway, the first order prediction accuracy achieved

by our method was 79.56%, much higher than the average success

rate by a random guess. Our analysis shows that interactive

chemicals or proteins with higher confidence scores would be

more likely to participate in the same metabolic pathway. We hope

that this method may facilitate the understanding of metabolic

pathway systems. It is also anticipated that prediction accuracy will

increase as more and more interaction information concerning

chemicals and proteins becomes available.
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