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Abstract: Mitochondria are ancient organelles that have co-evolved with their cellular hosts,
developing a mutually beneficial arrangement. In addition to making energy, mitochondria
are multifaceted, being involved in heat production, calcium storage, apoptosis, cell signaling,
biosynthesis, and aging. Many of these mitochondrial functions decline with age, and are the basis for
many diseases of aging. Despite the vast amount of research dedicated to this subject, the relationship
between aging mitochondria and immune function is largely absent from the literature. In this review,
three main issues facing the aging immune system are discussed: (1) inflamm-aging; (2) susceptibility
to infection and (3) declining T-cell function. These issues are re-evaluated using the lens of
mitochondrial dysfunction with aging. With the recent expansion of numerous profiling technologies,
there has been a resurgence of interest in the role of metabolism in immunity, with mitochondria
taking center stage. Building upon this recent accumulation of knowledge in immunometabolism,
this review will advance the hypothesis that the decline in immunity and associated pathologies are
partially related to the natural progression of mitochondrial dysfunction with aging.

Keywords: aging; mitochondria; inflammation; innate immunity; adaptive immunity;
immunosenescence

1. Introduction

The ancestry of the mitochondrion originated ~2.5 billion years ago within the bacterial phylum
α-Proteobacteria, during the rise of eukaryotes [1]. The endosymbiotic theory, advanced with microbial
evidence by Dr. Lynn Margulis in the 1960s, proposed that one prokaryote engulfed another resulting
in a quid pro quo arrangement and survival advantage [2]. The ability of mitochondria to convert
organic molecules from the environment to energy led to the persistence of this pact.

Since most cells contain mitochondria, the clinical effects of mitochondrial dysfunction are
potentially multisystemic, and involve organs with large energy requirements [3]. In addition to
making energy, the basis of life, mitochondria are also involved in heat production, calcium storage,
apoptosis, cell signaling, biosynthesis, and aging—all important for cell survival and function [4–7]. A
decline in mitochondrial function and oxidant production has been connected to normal aging and
with the development of a variety of diseases of aging. These topics are explored more thoroughly in
other articles in this special edition. While the human immune system undergoes dramatic changes
during aging, eventually progressing to immunosenescence [8], the role of mitochondrial dysfunction
in this process remains largely absent in the literature. Consequently, the purpose of this review is
to highlight three important issues in the aging immune system: (1) inflammation with aging; (2)
susceptibility to viral infections; (3) impaired T-cell immunity. These clinical phenotypes will be related
to our current knowledge on the role of the mitochondria in immune function. As the associations
discussed are largely speculative, it is hoped that this review will serve as a stimulus for further
investigation into these issues.
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2. Is There a Mitochondrial Etiology for “Inflamm-Aging”?

The term “inflamm-aging” (IA) refers to a low-grade, chronic inflammatory state that can be
found in the elderly [9]. IA increases morbidity and mortality in older adults, and nearly all diseases
of aging share an inflammatory pathogenesis including Alzheimer’s disease, atherosclerosis, heart
disease, type II diabetes, and cancer [9]. Nevertheless, the precise etiology of IA and its causal role in
contributing to adverse health outcomes remain largely unknown.

The ability of the innate system to respond to a wide variety of pathogens lies in germline-encoded
receptors, whose recognition is based on repetitive molecular signatures. These pattern recognition
receptors (PRRs) are present on the cell surface and intracellular compartments. Toll-like receptors
(TLRs), retinoic acid-inducible gene I-like receptors (RLRs), nucleotide oligomerization domain-like
receptors (NLRs) and cytosolic DNA sensors (cGAS and STING) are prime examples [10]. Ligands
for these receptor systems comprise pathogen associated molecular patterns (PAMPs) and damage
associated molecular patterns (DAMPs) [11]. PAMPs are derived from components of microorganisms
and are recognized by innate immune cells bearing PRRs. In contrast to PAMPs, DAMPs are endogenous
“danger signals” that are released by cells during stress, apoptosis or necrosis. DAMPs can arise
from a variety of components normally sequestered to the mitochondria, when upon release, induce
inflammation via recognition by the same PRRs that recognize PAMPs [12,13]. Events downstream
of PRR engagement include caspase-1 activation with the release of pro-inflammatory cytokines [14].
Examples of mitochondrial DAMPs (mtDAMPs) include cardiolipin, n-formyl peptides (e.g., fMet),
mitochondrial transcription factor A (TFAM), adenosine triphosphate (ATP), reactive oxygen species
(mtROS), and mitochondrial DNA (mtDNA) (Figure 1). From an evolutionary standpoint, select
mitochondrial products produce inflammation due to their prokaryotic origins: e.g., cardiolipin (TLR),
fMet (formyl peptide receptor 1, FPR1), and mtDNA (TLR, NLR, cGAS) [15–22]. However, mtDAMPs
are not just limited to bacterial mimics. TFAM, a nuclear gene and key regulator of mtDNA transcription
and replication, activates immune cells via receptors for advanced glycation end products (RAGE) and
TLR9 [23,24]. Products of oxidative phosphorylation (OXPHOS) can also stimulate innate immune cells.
Released from apoptotic or necrotic cells, ATP binds to purigenic receptors initiating inflammation [25],
while mtROS modifies core immune signaling pathways involving hypoxia inducible factor 1 alpha
(HIF1α) and nuclear factor kappa light chain enhancer of activated B-cells (NFkB) [26,27].

mtDAMPs contribute to a host of inflammatory diseases, including sepsis, systemic inflammatory
response syndrome (SIRS), ischemic reperfusion injury, and aging [28]. One of the consequences of
failing mitochondria due to aging, beyond mtROS, is the release of mtDNA. Plasma levels of mtDNA
increase gradually after the fifth decade of life, correlating with elevated levels of pro-inflammatory
cytokines (i.e., TNF-α, IL-6, RANTES, and IL-1ra) [29]. These data indicate that mtDNA may promote
the production of pro-inflammatory cytokines in aging. Because cell stress, senescence and death are a
part of the pathophysiology of aging [30], designing new therapeutic strategies against circulating
mtDNA, or other mtDAMPs, or their cognate receptors (e.g., TLRs or FPR1) may be a viable strategy to
approaching IA and its associated conditions.
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Figure 1. Mitochondrial damage associated molecular patterns (DAMPs). DAMPs derived from
mitochondrial components may be released during cellular injury, apoptosis or necrosis. Once these
mitochondrial components are released into the extracellular space, they can lead to the activation of
innate and adaptive immune cells. The recognition of mitochondrial DAMPs involves toll-like receptors
(TLR), formyl peptide receptors (FPR) and purigenic receptors (P2RX7). By binding their cognate
ligands or by direct interaction (i.e., reactive oxygen species, ROS), intracellular signaling pathways
such as NFkB and the NLRP3 inflammasome become activated resulting in a proinflammatory response.
TLR4 = toll-like receptor 4, TLR9 = toll-like receptor 9, P2RX7 = purigenic receptor, FPR1 = formyl
peptide receptor 1, NLRP3 = NLR Family Pyrin Domain Containing 3, fMet = N-formylmethionine,
mtROS = mitochondrial reactive oxygen species, mtDNA = mitochondrial DNA, Tfam = transcription
factor A, mitochondrial, RAGE = receptors for advanced glycation end-products, NFkB = nuclear factor
kappa-light-chain-enhancer of activated B cells.

3. Is Increased Susceptibility to Viral Infections Related to Depressed Mitochondrial Anti-Viral
Signaling Pathways?

In general, older adults are more susceptible to a variety of viral infections, especially respiratory
viral infections, resulting in high morbidity and mortality. For example, adults over the age of 65 exhibit
a vulnerability to influenza A virus (IAV), and account for ≥90% of IAV-related deaths annually [31,32].
Type I interferons (e.g., IFN-α and IFN-β) are essential cytokines involved in the host antiviral response.
Secreted by numerous cell types such as lymphocytes, monocytes, macrophages, dendritic cells,
fibroblasts, endothelial cells, osteoblasts and others, type I interferons: (1) limit viral spread by inducing
antiviral states in infected and neighboring cells; (2) stimulate antigen presentation and natural killer
cell function; and (3) promote antigen-specific T and B cell responses and immunological memory.
Interestingly, mitochondria play a major part in innate immune signaling against viruses and the
production of type I interferons and will be discussed further.

RLRs (e.g., RIG-I and MDA5) are cytosolic receptors that recognize viral RNA. Consequent
to binding viral RNA, RIG-I and MDA5 mobilize the mitochondrial antiviral signaling protein
(MAVS) [33,34]. MAVS is a 56 kDa protein which contains an N-terminal caspase recruitment
domain (CARD), a proline-rich region and a C-terminal transmembrane domain. Anchored on
the outer membrane of the mitochondria, peroxisomes and mitochondrial associated membranes
(e.g., endoplasmic reticulum), MAVS assembles into prion-like aggregates following RIG-I or MDA5
binding (Figure 2). MAVS aggregates serve as a scaffold to recruit various TNF receptor associated
factors (TRAFs), resulting in phosphorylation and nuclear translocation of interferon regulatory factors
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(IRFs) [35]. Downstream of MAVS, IRF3, IRF5 and IRF7 bind to their cognate promoters, leading to the
production of type I interferons [36]. The localization of MAVS to the outer mitochondrial membrane is
not coincidental. MAVS activity has been found to be dependent upon intact mitochondrial membrane
potential, and by extension OXPHOS function [37].Biology 2019, 8, x  4 of 10 
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Figure 2. Mitochondrial antiviral response. The recognition of viral nucleic acids involves mitochondria
and intact membrane potential (ψm). RIG-I and MDA5 recognize cytoplasmic viral nucleic acids,
leading to the oligomerization of MAVS. MAVS then sets in motion a signaling pathway that eventually
leads to the phosphorylation (*P) of IRF3/7 with subsequent induction of IFNα to offer antiviral cellular
protection. RIG-I = retinoic acid inducible gene I, MDA5 = melanoma differentiation-associated
protein 5, MAVS = mitochondrial antiviral-signaling protein, TRAFs = TNF receptor associated factors,
TBK1 = TANK binding kinase 1, IKKε = inhibitor of nuclear factor kappa-B kinase subunit epsilon, IRF
3 = interferon response factor 3, IRF 7 = interferon response factor 7, INFα = interferon alpha.

To date, studies addressing MAVS function during aging and its relationship to waning antiviral
immunity are lacking. Decreased mitochondrial membrane potential, mitochondrial dysfunction and
declining mitophagy occur in a variety of aging cell types [38,39], raising the question of whether
MAVS dysfunction can occur due to mitochondrial failure with aging. Mitochondrial respiratory
capacity is impaired in aging monocytes [40] as is phosphorylation of IRF3 and IRF7, suggesting a link
with MAVS [41]. As a result, type I IFN synthesis is significantly lower in dendritic cells and monocytes
from aging individuals [42,43]. In addition to a decline in mitochondrial respiration, oxidative stress,
another consequence of aging, may also be involved in this process [43].

4. Is Impaired T-Cell Immunity in Aging Related to a Decline in Mitochondrial Function?

Aging-related decline in immune function (i.e., immunosenescence) renders older individuals
more vulnerable to infectious diseases and cancer, resulting in increased morbidity and mortality.
Besides increased susceptibility to infection, vaccine efficacy is significantly reduced in the elderly,
limiting the utility of prophylaxis [44,45]. Undeniably, profound changes in T-cell function are evident
in older individuals, and these changes may be related to a decline in mitochondrial function.

T-cells play a central role in the coordination of adaptive immune responses and cell-mediated
immunity. The ability of T-cells to fulfill this role is dependent upon rapid cellular proliferation
and differentiation. In response to infection, T-cells proliferate every 4–6 h, generating >1012 cells
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in one week [46,47]. This is accompanied by an increase in size, DNA remodeling, up-regulation of
transcription factors and effector molecules, and increased expression of surface proteins [48,49], thus
necessitating a large metabolic demand. To accomplish this task, metabolic fuels including fats, sugars
and amino acids are actively transported across the cell membrane to feed the increase in energetic
demands [50,51]. Along with this increased transport, T-cells undergo metabolic reprogramming
during their transition from a naïve state to activated and differentiated cell types (e.g., effector,
regulatory and memory cells).

The diverse roles played by mitochondria in T-cell activation emphasizes the potential mechanisms
by which aging-related mitochondrial decline may contribute to immune dysfunction. Following
stimulation of the T-cell receptor, T-cells undergo substantial changes in intermediary metabolism
including an increase in glycolysis and OXPHOS [52–57]. In the presence of oxygen, pyruvate produced
via glycolysis is fully oxidized in the mitochondria for energy in many cell types [58,59]. In T-cells, a
significant proportion of glucose is not oxidized, but rather fermented to lactate from pyruvate via
lactate dehydrogenase. This is done despite the presence of oxygen, and is termed aerobic glycolysis or
Warburg metabolism [50,56,60]. Although Warburg metabolism is viewed as energetically inefficient,
the rate of glycolysis is 10–100 times faster than glucose oxidation by the mitochondria, yielding
equivalent amounts of ATP [61]. The additional payoff of Warburg metabolism lies in pathways that
are branch points off of glycolysis (e.g., pentose phosphate pathway) which yield reducing equivalents
for biosynthesis and nucleotides. Despite this adoption of the Warburg phenotype, OXPHOS is
still required for T-cell activation [57]. ATP derived from the mitochondrial respiration promotes
enhanced glycolysis as well as the initiation of proliferation in activated T-cells [62]. While pyruvate is
mostly diverted to lactate rather than acetyl-CoA via pyruvate dehydrogenase, TCA function and the
generation of reducing equivalents in highly proliferating cells is still maintained through anapleurosis:
glutamine is converted to α-ketoglutarate via glutaminolysis [63,64]. Bioenergetic studies of aging
tissues are consistent with a progressive decline in mitochondrial respiratory function due to a decrease
in respiratory complex activity, mitochondrial membrane potential, and impaired mitophagy [39,65].
As a result, impaired OXPHOS results in reduced ATP production, thus potentially limiting glycolysis,
biosynthesis and the attainment of biomass during T-cell activation and proliferation.

Besides engaging in bioenergetics, mitochondria also function in T-cell activation by modulating
secondary messengers including calcium (Ca2+) and reactive oxygen species (ROS). In activated T-cells,
mitochondria localize to the immune synapse, and where they regulate Ca2+ flux [5,6]. In response
to this calcium flux, ROS production via complex III of the respiratory chain is amplified, leading to
nuclear factor of activated T-cells (NFAT) activation and subsequent interleukin-2 (IL-2) production [66].
Aged T-cells show reduced Ca2+ signaling, which could be partly due to deficits in Ca2+ regulation
found in mitochondria of aged cells [67,68], theoretically yielding perturbations at the immune synapse
causing diminished T-cell signaling and activation.

Depending on the cytokine milieu, helper T-cells (Th), marked by the surface expression of CD4,
differentiate into various effector subsets comprising T-helper 1 (Th1), T-helper 2 (Th2), T-helper 17
(Th17), regulatory T-cells (Treg). Each of these T-cell subsets are unique in their responsibilities and are
identified by their cytokine signatures. Accompanying these functional distinctions are differences
in metabolic reprogramming (Figure 3). For example, for T-cells subsets involved in inflammation
(e.g., Th1 and Th17), the Warburg metabolism instituted at T-cell activation persists [69]. Despite
this primary use of glycolysis, intact OXPHOS is still necessary for their function [57]. The effects
of mitochondrial dysfunction may be more readily seen in regulatory (Treg) and memory (Tmem)
T-cells. Tregs, which serve to modulate the immune system and maintain tolerance, revert back to
OXPHOS as their main pathway for generating energy upon differentiation [69]. Tmem follow a
similar metabolic path. Tmem are critical for adaptive immune responses characterized by robust
responses to secondary immune challenges. Unlike effector T-cells, Tmem do not undergo extensive
proliferation and produce little or no cytokines. As such, the metabolic profile of Tmem are essentially
catabolic, relying on OXPHOS and fatty acid oxidation [70,71]. Therefore, it is not surprising to find
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that CD8+ cytotoxic memory T-cells have high respiratory capacity and increased mitochondrial mass,
which allows them to rapidly reactivate upon re-exposure to their cognate antigens [62,72]. Given the
age-related decline in mitochondrial function as described above, T-cell subsets which are critical for
immunosurveillance and the clearance of invading pathogens could be functionally impaired and
may partially explain the vulnerability to infection and cancer with aging [57]. Emerging data also
suggest that aging significantly affects Treg frequencies, subsets and function [73], potentially leading
to the increased incidence of autoimmunity, oftentimes seen with aging [74]. As noted above, Tmem
also rely heavily on OXPHOS. Therefore, aging-related deficiencies in Tmem may also be traced to
declining OXPHOS, manifesting as impaired immune memory to novel antigens and suboptimal
boosts to existing memory [75].
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Figure 3. T-cell activation and differentiation involved metabolic reprogramming. At rest, naïve
T-cells primarily use OXPHOS to derive their energy. Following activation, T-cells switch to Warburg
metabolism and glutaminolysis to support their proliferative needs. Differentiation into T-helper
subsets can involve either the maintenance of the Warburg phenotype (i.e., Th17, Th1, Th2), or the
reversion to OXPHOS with FAO (i.e., Treg, Tm) as an important fuel. FAO = mitochondrial fatty
acid oxidation, OXPHOS = oxidative phosphorylation, Th17 = T-helper cell 17, Th1 = T-helper cell 1,
Th2 = T-helper cell 2, Treg = regulatory T-cells, Tm = memory T-cells.

5. Conclusions

Virtually every country in the world is experiencing the challenges associated with accelerated
growth in the aging population. With this graying of the population comes an increased incidence
in diseases of aging, many of which have an immune component. As a result, understanding
the pathophysiology of diseases of aging is now more important than ever. In this review, three
main immune issues prevalent in the aging population were addressed: (1) inflamm-aging; (2)
increased vulnerability to infection; and (3) declining T-cell immunity. The role of the mitochondria in
inflammation and immunity, combined with the knowledge of a decline in mitochondrial function
with aging, has been synthesized in this review in an effort to partially explain the immune phenotype
associated with aging. However, further examination of this relationship is needed. As the methods of
inquiry into mitochondrial biology continue to expand, so will investigations into the relationship
between this ancient organelle and immunity in the aging population.
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