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Bacteria communicate using secreted chemical signaling molecules called autoinducers in a process
known as quorum sensing. The quorum-sensing network of the marine bacterium Vibrio harveyi
uses three autoinducers, each known to encode distinct ecological information. Yet how cells
integrate and interpret the information contained within these three autoinducer signals remains a
mystery. Here, we develop a new framework for analyzing signal integration on the basis of
information theory and use it to analyze quorum sensing in V. harveyi. We quantify how much the
cells can learn about individual autoinducers and explain the experimentally observed input–
output relation of the V. harveyi quorum-sensing circuit. Our results suggest that the need to limit
interference between input signals places strong constraints on the architecture of bacterial signal-
integration networks, and that bacteria probably have evolved active strategies for minimizing this
interference. Here, we analyze two such strategies: manipulation of autoinducer production and
feedback on receptor number ratios.
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Introduction

Unicellular organisms live in complex and dynamic environ-
ments. They sense and respond to both external environ-
mental cues and to each other through quorum sensing, that is,
cell-to-cell communication. Adapting to changing environ-
ments often requires cells to simultaneously integrate in-
formation from multiple environmental inputs, and cells have
developed elaborate signaling networks to accomplish this
feat. However, the design principles underlying the architec-
tures of these networks remain largely mysterious. For
example, in the model quorum-sensing bacterium Vibrio
harveyi, three chemical communication signals are integrated
to regulate gene expression, but the logic and mechanism
underlying this integration are poorly understood. Such open
questions highlight the need for new conceptual and theore-
tical tools to supplement ongoing experimental work. Here, we
present a new theoretical framework for understanding signal
integration based on information theory (Shannon, 1948) and
we use it to study information processing in the V. harveyi
quorum-sensing circuit.

Quorum sensing is widespread in the bacterial world and
can occur both within and between bacterial species, and even
between bacteria and their eukaryotic hosts (Waters and
Bassler, 2005). Quorum sensing enables bacteria to alter their
behavior depending on the number and/or species of bacteria
present and is important for a variety of collective behaviors,
such as biofilm formation, bioluminescence, virulence, as well
as stress response (Waters and Bassler, 2005, 2006; Bassler and
Losick, 2006). The V. harveyi quorum-sensing circuit is among
the best characterized of all quorum-sensing networks
(Figure 1A). V. harveyi produces and detects three chemical
signaling molecules called autoinducers (AIs), AI-1, CAI-1,
and AI-2. Although AI-1 is produced only by V. harveyi, CAI-1
is produced by other Vibrio species, and AI-2 is produced by a
large variety of both Gram-negative and Gram-positive
bacteria and probably functions as a universal signaling
molecule. Thus, the use of multiple AIs potentially provides
bacteria with information about the local density of V. harveyi,
all Vibrio species, and total bacteria (Waters and Bassler,
2005). Sensory information from the three AIs is channeled
through a common phosphorelay (see Figure 1). The three
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autoinducers, AI-1, AI-2, and CAI-1, are detected by cognate
transmembrane receptors, LuxN, LuxPQ, and CqsS, respec-
tively (Henke and Bassler, 2004), and they collectively control
production of the master quorum-sensing transcriptional
regulator LuxR (see Figure 1A; Tu and Bassler, 2007).

As all information about the AIs is channeled through a
common phosphorelay, it is unclear how much bacteria can

learn about each individual input. Even less clear is how the
architecture and kinetic parameters (e.g. kinase and phospha-
tase rates) of the quorum-sensing network affect its signal-
transduction properties. To address these questions, we have
developed a new mathematical framework for analyzing
signal integration in cells on the basis of information theory
(Shannon, 1948; MacKay, 2003). Information theory provides
a natural language for formulating questions about informa-
tion processing and signal integration. It is used extensively in
engineering to model signaling in man-made communication
devices and has also proven to be a powerful tool in
neuroscience (Rieke et al, 1997; Borst and Theunissen,
1999). Very recently, information theory has been applied to
genetic networks to study development in fruit fly embryos
and to investigate properties of small stochastic biochemical
networks (Ziv et al, 2007; Tkacik et al, 2008a, b; Tostevin and
ten Wolde, 2009; Walczak et al, 2009). Here, we adapt
information theory to study a biological circuit with multiple
inputs and a single output.

One of the advantages of using information theory to
describe cellular signaling is that, in principle, no detailed
knowledge of the components and kinetic parameters that
constitute the signaling circuit is required. Rather, the
signaling circuit is modeled by its input–output relationship,
often called the transfer function, which describes how
the output varies as a function of the input signals.
The transfer function of the V. harveyi quorum-sensing circuit
was recently measured using single-cell fluorescence micro-
scopy (see Figure 1B and Long et al, 2009). In this study,
we consider a class of transfer functions for the V. harveyi
quorum-sensing circuit on the basis of a simple model of
V. harveyi signal transduction consistent with the aforemen-
tioned experiments. We show that many features of the
experimentally measured transfer function can be understood
using information theory. We argue that our analysis of the
V. harveyi quorum-sensing network provides insight into
broader design principles applicable to many signal
integration networks in cells.
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Figure 1 Information theoretic approach to signal integration in the Vibrio
harveyi quorum-sensing circuit. (A) V. harveyi produces three distinct quorum-
sensing signaling molecules, called (AIs), which are all detected by a single
phosphorelay circuit that controls the expression of downstream target genes.
Each signaling molecule, AI-1 (red hexagons), AI-2 (blue ovals), and CAI-1 (gray
squares), is detected by a cognate receptor. The receptors phosphorylate a
shared phosphorelay protein, LuxU, which in turn phosphorylates LuxO. In the
absence of AIs, LuxO is phosphorylated and activates expression of genes
encoding five small regulatory RNAs (sRNAs) that work in conjuction with Hfq to
destabilize the mRNA of LuxR, the master regulator of quorum-sensing genes. In
the presence of the AIs, LuxO is not phosphorylated, the sRNAs are not
produced, and LuxR is expressed. (Inset) The receptors can exist in two states: a
kinase ‘on’ state and kinase ‘off’ state with ligand binding favoring the ‘off’ state.
(B) Dose–response surface of V. harveyi to various combinations of AI-1 and AI-
2 reproduced from Figure 3C in Long et al (2009). Each vertex of the grid is the
averaged normalized GFP fluorescence intensity obtained from a population of
100 cells exposed to the specified AI-1 and AI-2 concentrations using a qrr4-gfp
transcriptional reporter fusion that is activated by phosphorylated LuxO. (C)
Dose–response surface re-plotted as a contour plot. The straight lines are
constant output Z contours as function of the receptor on-state probabilities
X � 1=ð1þ ½AI-1�=KAI-1

I Þ and Y � 1=ð1þ ½AI-2�=KAI-2
I Þ. Output is

normalized by the maximum of Z.
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Results and discussion

Overview of the information theory formalism

A central concept in information theory is mutual information
(see below for a mathematical definition). The mutual
information is a symmetric measure of the correlation between
inputs and outputs, and measures how much one can learn on
average about the input from the output, and vice versa. In the
context of cellular biology, mutual information provides
a measure of how much a cell can learn about external
signals. Cells constantly sense their environments and adjust
their gene expression accordingly. This requires cells to
faithfully convey information about external signals, even in
the presence of noise. The mutual information quantifies, in
bits, how much bacteria learn about an external signal (e.g.
autoinducer). A bit is the standard unit of information and is
defined as the quantity of information required to distinguish
two mutually exclusive but equally probable states from each
other. Consequently, calculating the mutual information
between each input signal and the output in a multi-input
signaling system, such as the V. harveyi quorum-sensing
circuit, allows us to quantify how much bacteria can learn on
average about each input from the shared output.

There are three basic components of our information theory
formalism: (1) a model of the signaling circuit, (2) a statistical
model (a ‘prior’) for the likelihood of encountering a particular
input signal, and (3) the various mutual information between
the inputs and the output (Figure 2A). We now discuss each of
these components in greater detail.

(1) Model for the signaling circuit: Signal integration in
bacteria commonly occurs through two-component sig-
nal-transduction systems, often including a phosphorelay.
In addition, the time-scales on which external input
signals, such as autoinducers, vary is much slower than
the typical time scales for phosphorylation/dephosphor-
ylation in the relay. This separation of time scales allows
us to model the signaling circuit by its steady-state
properties, with the inputs assumed to be constant in
time. Furthermore, for simplicity and to facilitate compar-
ison with experiment, we limit our considerations to
multi-input circuits with two input signals, denoted X and
Y, and a single output, denoted Z. The generalization to
circuits with more than two inputs is straightforward.

For an idealized multi-input channel without biochem-
ical noise, an input (X, Y) gives rise to a single output
Z¼f(X, Y). However, signaling fidelity is generally limited
by biochemical noise so that a single input can give rise to
many outputs (McAdams and Arkin, 1997; Elowitz et al,
2002; Ozbudak et al, 2002; Swain et al, 2002). Noise can
arise from both the stochastic nature of biochemical
reactions, often called intrinsic noise, and from other
cellular variability, often called extrinsic noise. Although
the former can be reduced by temporal averaging, the
latter often cannot. Consequently, we characterize a
signaling circuit by a noisy transfer function, P(Z|X, Y),
which gives the probability of an output, Z, as a function
on the inputs, X and Y (see Figure 2B).

(2) Prior distribution on input signals: To quantify information
transmission, it is necessary to define a prior distribution

of input signals, q(X,Y). This prior represents the
probability that a bacterium receives an input signal
(X, Y). For example, q(X, Y) could be the distribution of
input signals that a typical bacterium would encounter in
its natural habitat (Tkacik et al, 2008a).

(3) Mutual information: Information transmission in a signal-
ing circuit can be quantified by the mutual information
between the input and output signals. For a circuit
with two inputs, X and Y, and a single output, Z, there
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Figure 2 (A) The mutual informations I(Z, X), I(Z, Y), and I(Z,(X, Y)) measure
how much one can learn about the inputs, for example, autoinducer levels, X, Y,
and (X, Y), respectively, from the output Z, for example, LuxR level. Mutual
information is a function of the prior, q(X, Y), that is, the a priori probability of a
given input (X, Y), and of the probabilistic transfer function P(Z|X, Y) of the
signaling circuit. (B) (Top) For an idealized multi-input channel without noise, an
input (X, Y) gives rise to a single output Z. (Middle) In the presence of noise, a
single input can give rise to many outputs with a distribution described by the
noisy-transfer function, P(Z|X, Y). (Bottom) When viewed as single-input channel
with input X and output Z, the second signal, Y, effectively acts as an additional
source of noise.
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are three distinct mutual information, I(Z, X), I(Z, Y), and
I(Z,(X, Y)). They measure, respectively, how much can be
learned on average about the inputs X, Y, and (X, Y), from
the output Z. I(Z,(X, Y)) measures the total information
transmitted about both signals X and Y, but is a poor
measure of how much can be learned about individual
inputs. By contrast, I(Z, X) and I(Z, Y) measure how much
can be learned about the individual inputs, but these are
often not reflective of total information transmission.

Mutual information is a statistical quantity that measures the
average amount that can be learned about an input, with the
average taken over the input prior, q(X, Y). Consequently, all
three mutual informations depend on both the transfer
function of the signaling circuit, P(Z|X, Y) and on the
prior, q(X, Y). The relevant expressions are (Shannon, 1948;
MacKay, 2003).

IðZ; ðX; YÞÞ ¼
Z

dZdXdYpðZ; X; YÞ log2

pðZ; X; YÞ
pðZÞqðX; YÞ

� �
;

ð1Þ

with the joint probability p(Z, X, Y)¼P(Z|X, Y)q(X, Y) and
pðZÞ ¼

R
dXdYPðZjX; YÞqðX; YÞ, and

IðZ; XÞ ¼
Z

dZdXpðZ; XÞ log2

pðZ; XÞ
pðZÞqðXÞ

� �
; ð2Þ

with pðZ; XÞ ¼
R

dYPðZjX; YÞqðX; YÞ and p(Z) as above, and
the expression for I(Z, Y) is the same as I(Z, X) except with X
and Y interchanged I.

Information transmission in the V. harveyi
quorum-sensing circuit

Applying information theory to the V. harveyi quorum-sensing
circuit requires explicit models for the transfer function and
the prior. The input–output relationship for the V. harveyi
quorum-sensing circuit was experimentally quantified in
genetically engineered strains lacking the CAI-1-CqsS pathway
to study the integration of signals from autoinducers AI-1 and
AI-2 (Long et al, 2009). In these experiments, strains were
engineered with gfp fused to the promoter of qrr4, which is one
of the genes encoding the quorum-sensing small RNAs
activated by phospho-LuxO. As shown in Figure 1, signals
from AI-1 and AI-2 are already integrated at this stage of the
quorum-sensing circuit. Recent experimental and theoretical
study suggest that the detection of AIs by their cognate
receptors (e.g. LuxN, LuxPQ) can be understood using a
simple two-state model in which receptors exists in two states:
a low kinase activity state (‘off’) and a high kinase activity
state (‘on’) (Keymer et al, 2006; Swem et al, 2008; Supple-
mentary information). In addition to their kinase activities, the
quorum-sensing receptors have a strong state-independent
phosphatase activity (Long et al, 2009). AIs act by binding to a
receptor and decreasing the probability that the receptor is
in the high kinase activity, ‘on’ state. Thus, specifying the
external concentration of an AI in the environment is
equivalent to specifying the probability that the corresponding
receptor is in its high activity state. Hence, we take the input
signals, X and Y, to be the probabilities that LuxN and LuxPQ,
respectively, are in their kinase-active states. An advantage of

this formulation is that input signals are bounded between
0 and 1. These probabilities are related to the autoinducer
concentrations through the formulas

X � 1

1þ ½AI-1�
KAI-1

I

Y � 1

1þ ½AI-2�
KAI-2

I

:

ð3Þ

(see Supplementary information).
Motivated by experiment (Long et al, 2009), we model the

mean response of the V. harveyi quorum-sensing circuit using
the expression

Z ¼ fðX; YÞ ¼ kXX þ kYY

kXX þ kYY þ p
� kX

p
X þ kY

p
Y; ð4Þ

with Z the output signal, that is, the fraction of phospho-LuxO,
kX the total kinase rate of active LuxN, kY the total kinase
rate of active LuxPQ, and p the total phosphatase rate from
both receptors. The second, approximate expression, applies
because, for the quorum-sensing circuit, the total phosphatase
rate is much larger than the maximal total kinase rate,
pbkXþ kY. The mean transfer function f(X, Y) is plotted in
Figure 3 for the cases kXbkY, kX¼kY, and kX5kY. Experiments
indicate that the actual kinase activities of the AI-1 and AI-2
pathways are nearly equal (Figure 1B, Long et al, 2009).

In a standard manner, we approximate the probabilistic
transfer function, P(Z|X, Y) as a Gaussian channel, in which
the probability of observing an output for a given input is
modeled by a Gaussian distribution around the mean output
level for that input (Detwiler et al, 2000; MacKay, 2003; Ziv
et al, 2007; Tkacik et al, 2008a, b). Explicitly, we model the
noisy transfer function as

PðZjX; YÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2ðX; YÞ

p exp � ½Z � fðX; YÞ�2

2s2ðX; YÞ

 !
; ð5Þ

where f(X, Y), given by equation (4), is the deterministic
transfer function describing the average output Z as a
function of the inputs X and Y, and s(X, Y) is the input-
dependent standard deviation of the output signal for a given
input (cf. Figure 2B). Experimentally, the standard deviation
s(X, Y) is measured by looking at cell-to-cell variations
in a clonal population using single-cell fluorescence micro-
scopy (Long et al, 2009). We expect that (5) is a good
approximation for the true transfer function because, experi-
mentally, the noise is well approximated by a Gaussian
and is much smaller than the mean signal, s(X, Y)/f(X, Y)51
(Long et al, 2009).

Unfortunately, little is known at a quantitative level about
the natural environment of V. harveyi, making it difficult to
accurately model the prior q(X, Y). Therefore, we take the
approach of performing all our calculations for a variety of
reasonable priors. In this report, we present results for three
choices of prior: a flat prior in which all inputs are equally
likely, a bimodal prior which is symmetric in the two inputs,
and a non-symmetric bimodal prior (see Supplementary
information). We have verified that our main conclusions are
insensitive to the choice of prior.

Finally, we note that there is a one-to-one correspondence
between priors on receptor kinase-active probabilities, (X, Y),
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and priors on autoinducer concentrations as long as fluctua-
tions in receptor probabilities are negligible. In this case,
receptor probabilities and autoinducer concentrations are
related by the deterministic equation (3) and any prior on
autoinducer concentrations can be transformed into a prior on
receptor probabilities. Although the specific form of the
transformation of the prior depends on the binding affinities
of the autoinducers for the receptors, by definition, the mutual
information between the input and output is independent of

whether one treats the autoinducer concentrations or the
receptor probabilities as the inputs.

Information about each input is limited by ‘noise’
from the other input(s)

In a circuit that integrates multiple signals, information
transmission about each individual signal is limited by two
distinct phenomena: biochemical noise and interference from
other signals (see Figure 2). Noise arises from both the
stochastic nature of biochemical reactions underlying the
signaling circuit and as well as other sources of cellular
variability (Elowitz et al, 2002). In the presence of noise, a
single input gives rise to a distribution of outputs. This type of
noise limits information transmission because it introduces
uncertainty about the input given the output. A second,
independent phenomenon that limits information transmis-
sion about individual inputs in multi-input circuits is inter-
ference from other signals. Generally, different combinations
of the input signals can give rise to the same output signal.
Consequently, when a multi-input circuit is viewed as a single-
input channel for a particular input, other signals introduce
additional uncertainty about that input even in the absence
of noise, that is, other signals act as additional noise sources
(see. Figure 2C).

In the V. harveyi quorum-sensing circuit, experiments
indicate that the noise is generally significantly smaller than
the mean input signal, with the signal-to-noise ratio always
greater than 2.5 (s(X, Y)/f(X, Y)X2.5). Thus, the circuit is
always in a ‘low-noise’ regime. To assess whether noise or
interference from other signals is the primary limitation on
information transmission about individual signals, we have
obtained formulas for the mutual information, I(Z, X) and
I(Z, Y), in the low-noise regime using a saddle-point
approximation (see Supplementary information). The sad-
dle-point approximation, also known as the method of steepest
descent, gives an asymptotic expansion for the mutual
information valid in the limit of large signal-to-noise ratio.
The mutual information formulas are most easily expressed in
terms of transformed coordinates (f, y) related to (X, Y) by the
coordinate transformation (X, Y)-(f¼f(X, Y), y¼X). Expli-
citly one has,

IðZ; XÞ ¼
Z

dZdy qðZ; yÞ log2

qðZ; yÞR
dy0qðZ; y0Þ

� �
�
R

dZ0qðZ0; yÞ
� � ;

ð6Þ

with

qðZ; yÞ ¼ j qf

qY
j�1qðX; YÞ: ð7Þ

A similar formula can be derived for I(Z, X) (see Supplemen-
tary information).

Recall that I(Z, X) and I(Z, Y) measure the average amount
of information that can be learned about the individual inputs
X and Y from the output Z, and therefore I(Z, X) and I(Z, Y)
allow us to quantify information transmission about indivi-
dual inputs. We find that our approximate expressions for
these quantities do not depend on the noise, indicating that
information transmission about each input is primarily limited
by interference from other signals.
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Total information transmission is limited by
biochemical noise

We can also discover how much bacteria can learn on average
about all the inputs from the mutual information I(Z,(X, Y))
between the output Z and the ordered pair of inputs (Z, X).
In contrast to the case of individual inputs considered above,
we find that even in the low-noise regime, total information
transmission is limited by noise when both signals are
considered. Explicitly, one has

IðZ; ðX; YÞÞ ¼ log2
1ffiffiffiffiffiffi

2p
p

esðr; yÞ

* +
qðf ; yÞ

þHðZÞ; ð8Þ

where /Sq(f, y) indicates the expectation value with respect to
the prior distribution

qðf ; yÞ ¼ j qf

qY
j�1qðX; YÞ; ð9Þ

and H(Z) is the entropy of the output Z (see Supplementary
information). Notice that I(Z,(X, Y) is primarily limited by
the noise, s(f, y), in the transfer function. Our approximate
expressions are analogous to those obtained for a single-input,
single-output biochemical network (Tkacik et al, 2008b;
Supplementary information). This follows intuitively because
I(Z,(X, Y)) is insensitive to the identity of the individual signals
X and Yand thus the circuit effectively has a single input (X, Y)
and a single output Z.

We calculated the total information transmission in the V.
harveyi quorum-sensing circuit using data from Long et al,
2009 (see Supplementary information). We calculated the
mutual information I(GFP, (X, Y)) between the GFP output
signal and the inputs, and observed that the information is of
order 1.5 bits for a variety of priors. It should be noted that by
standard information theoretic inequalities, I(GFP, (X, Y)) is a
lower bound on I(Phospho�LuxO, (X, Y)) the information
transmitted between the inputs and LuxO, the output of the
quorum-sensing phosphorelay (MacKay, 2003). Nonetheless,
we stress that I(GFP, (X, Y)) is a reasonable proxy for the true
information transmission because information from the inputs
is eventually transmitted to the master quorum-sensing
regulator LuxR through the small RNAs (see Figure 2A).

V. harveyi must tune kinase activities to
simultaneously learn about multiple inputs

Experiments indicate that in V. harveyi, signals from two of the
autoinducers, AI-1 and AI-2, are combined strictly additively
in a shared phosphorelay pathway, with each autoinducer
contributing very nearly equally to the total response (Long
et al, 2009). In terms of the mean response (equation (4)), this
means that the maximal kinase activities of the AI-1/LuxN and
AI-2/LuxPQ pathways are almost identical, that is, kXEkY. The
observed transfer function seems puzzling at first—it is
symmetric in the two inputs (see Figure 1B), indicating that
bacteria cannot distinguish between AI-1 and AI-2 even
though the two AIs encode distinct information about local
species composition. This conundrum motivated us to
investigate how kinase rates of the two pathways, kX and kY,
and phosphatase rate, p, affect information transmission, by

calculating the mutual informations, I(Z, X) and I(Z, Y), for
different choices of circuit parameters.

Our results indicate that the signal processing properties of
the quorum-sensing circuit vary dramatically with changes in
the relative strength of the kinase activities of the two
pathways. In contrast, when phosphatase activity is large
compared with the kinase activity and the noise is small, the
net phosphatase activity, p, affects information transmission
about individual inputs only modestly. The reason for this is
that the phosphatase activity, p, simply rescales the output Z
(see equation (4)), and mutual information is insensitive to
re-scalings. Figure 4 shows plots of I(Z, X) and I(Z, Y), as
functions of the ratio of kinase activities, kY/kX, for various
priors. As discussed previously, I(Z, X) and I(Z, Y) are limited
primarily by interference between signals, not by noise.
Therefore, we used the low-noise expressions (see Supple-
mentary information). Our results indicate that if kY/kXb1,
I(Z, Y) can be very large (b1) but I(Z, X) is very small (51).
However, if kY/kX51, I(Z, Y) is very small but I(Z, X) is very
large. Thus, if the kinase activity of one pathway is much larger
than the other, the cell can only learn about the stronger
pathway. Only when the kinase activities of the two pathways
are roughly equal, kYEkX, can the cell learn, in an information
theoretic sense, about both inputs. We conclude that V. harveyi
must tune kinase activities of AI-1 and AI-2 pathways to be
roughly equal to learn about both inputs. Indeed, this is what is
observed in experiments (Long et al, 2009). Nonetheless, even
when kinase activities are equal, small numerical values of the
mutual information (see Figure 4) indicate that interference
between signals is a major impediment to learning about
individual inputs.

These results can be intuitively understood as follows. The
architecture of prokaryotic phosphorelays is such that a single
phosphate group is passed from receptors detecting the inputs
to the output response regulator. Thus, in the V. harveyi
quorum-sensing circuit, all information about the inputs is
encoded in a single number, the number of phospho-LuxO
molecules. At steady state, bacteria are limited to what is
commonly referred to in the language of information theory as
‘amplitude encoding’, (i.e. all information is stored in the
magnitude of the output variable). Amplitude encoding places
strong limitations on how signals can be integrated. If the
kinase rate of the X-signaling branch is much larger than that
of the Y-signaling branch, (kY/kX51), then the number of
phospho-LuxO almost entirely reflects the magnitude of the
input signal X and contains very little information about Y.
However, if (kY/kXb1), then the number of phospho-LuxO
almost entirely reflects the magnitude of the input signal Yand
contains very little information about X. This relation can be
observed graphically from the constant output contours of
Figure 3. The contours are almost vertical when kY/kX51,
indicating that Z is highly correlated with X but largely
uncorrelated with Y. The opposite is true when kY/kXb1.

We conclude that for the number of phospho-LuxO
molecules to contain information about both signaling
branches, it is necessary that, on average, both signaling
branches phosphorylate about equal numbers of LuxO. In
terms of kinase activities, this translates into the requirement
that the maximal kinase activities of the two signaling
pathways be approximately equal, kXEkY. In light of these
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results, we speculate that the reason that the kinase activities
of the AI-1/LuxN and AI-2/LuxPQ pathways are nearly
identical is to allow bacteria to learn about the concentration
of both autoinducers individually.

Theoretical analysis of possible strategies for
increasing information transmission

Setting kXEkY has the consequence of introducing symmetry
in the input–output relation such that bacteria cannot
distinguish the input (X, Y) from the input (Y, X). For example,
bacteria cannot distinguish saturating AI-1 and no AI-2
condition from saturating AI-2 and no AI-1 condition (Long
et al, 2009). This constraint limits how much cells can learn
about either input. Quantitatively, from our calculations, for
kXEkY, cells can learn only about 0.6–0.8 bits about each input
signal, with the exact number depending on the choice of prior.
This is significantly less information than that contained in
the input distribution. For comparison, bacteria would have
to learn 1 bit to distinguish between two states of the
autoinducers (e.g. high and low concentration) and the
Bicoid–Hunchback system in early Drosophila development
was recently measured to transmit 1.5 bits (Tkacik et al,
2008a). The low mutual information between inputs and
outputs indicates that interference between signals greatly
limits information transmission in these systems and serves as
a major impediment to learning about multiple signals. This

observation led us to consider possible mechanisms that
would allow bacteria to increase how much they learned about
individual inputs. Below, we consider two such strategies:
manipulation of individual input signals and feedbacks on
receptors.

Bacteria can increase information transmission
by manipulating the inputs
In quorum sensing, bacteria both produce and detect
autoinducers. This led us to consider whether bacteria could
increase the information they obtain about their environments
by manipulating relative autoinducer production rates. As
discussed, the primary limit on information transmission
when the kinase rates of AI-1 and AI-2 signaling pathways are
equal is the symmetry in the input–output relation. We
hypothesized that bacteria may distinctly manipulate the
different autoinducer production rates to remove the ambi-
guity between the two input signals, and thereby increase the
information the AIs provide. For example, bacteria could
temporally segregate signals by first producing one autoindu-
cer and then the other. Alternatively, V. harveyi could produce
AI-1 and AI-2 at the same rate. This solution would ensure that
there was always more AI-2 than AI-1 in the environment
because AI-1 is produced only by V. harveyi, whereas AI-2 is
produced by almost all bacteria. Within our model, this
arrangement corresponds to limiting the input signaling space
to XXY. We calculated I(Z, X) and I(Z, Y) for the latter scenario
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and the results are shown in Figure 4. We found that when
kXEkY and XXY bacteria could learn E1.5 bits about each
signal, double of what they can learn when the input space is
unrestricted. The additional information gained by the cell
stems from the elimination of the degeneracy between AI-1
and AI-2. Namely, for intermediate levels of output, bacteria
now know that there is high amount of AI-1 and low amounts
of AI-2 in the environment and not high AI-2 and low AI-1.
This result confirms that in principle, bacteria can increase
information transmission by manipulating autoinducer pro-
duction rates.

Feedback on receptor number allows bacteria to focus
attention on individual inputs
The information theory analysis presented above shows that
the signaling properties of the V. harveyi quorum-sensing
circuit are sensitive to changes in the kinase rates of the inputs.
This raises the intriguing possibility that bacteria might
implement more sophisticated signal detection strategies by
varying kinase activities as a function of inputs. A simple
architecture for achieving this goal would be a feedback on
receptor number. Indeed, preliminary experiments indicate
such a feedback may exist in the quorum-sensing circuit of V.
harveyi, with sRNAs negatively regulating production of LuxN
(L Schaffer and B Bassler, unpublished data). We show below
that such feedbacks on receptor number potentially allow
bacteria to ‘focus attention’ on different inputs depending on
their external environments.

The maximal kinase activity of each autoinducer pathway in
V. harveyi depends on two separate quantities: (1) the total
number of receptors, and (2) the maximal kinase activity of
each individual receptor. Explicitly, maximal kinase rates
of the X (AI-1) and Y (AI-2) pathways obey kX¼kX

0NX and
kY¼kY

0NY, with NX and NY the number of receptors in the X and
Y pathways, respectively, and kX

0 and kY
0 the maximal kinase

activities of the individual receptors. Thus, in principle,
bacteria can modulate the ratio of maximal kinase rates
between the two pathways, kY/kX, as a function of the output,
Z, through feedback on receptor number (see Figure 5 and
Supplementary information).

We consider here two simple feedback architectures: (1)
positive feedback on NY and (2) negative feedback on NX (see
Figure 5). In the main text, we restrict our discussion to the
case of positive feedback, assumed to act on the receptors in
the Y pathway. We consider a positive feedback on the
receptors in the Y pathway. In this case, the transfer function,
Z¼ffb(X, Y), describing the output signal (the fraction of
phosphorylated output regulators), as a function of the inputs
X and Y (the probability that the corresponding receptors are in
their on states) is obtained by solving for the steady state of the
differential equations

dZ

dt
¼ ðkXX þ kYYÞð1� ZÞ � pZ

¼ ðkXX þ k0
YNYYÞð1� ZÞ � pZ;

t
dNY

dt
¼ NY0 þ

dNYZ

K þ Z
� NY ;

ð10Þ

where NY0 is the number of receptors in the absence of
feedback, dNY measures the strength of the feedback, K is

value of Z, which is half-maximal for the feedback. When
dNybNY0, this implies that at high Z, dNYbNY0. For simplicity,
we have assumed a Hill coefficient of 1 for the feedback and
that the phosphatase rate is independent of the receptor
number. We also assume, as above, that the phosphatase rate
is much larger than the maximal kinase rate pbkX, kY for all
choices of inputs. We obtain the steady-state solution by
setting the left hand sides of the above equations to zero,
which yields

Z � kX

p
X þ k0

Y

p
Y

�
NY0 þ

dNYZ

K þ Z

�
; ð11Þ

where, for simplicity, we denote the steady-state output by Z.
This equation can be solved for Z to obtain the transfer
function, ffb(X, Y), in the presence of feedback.

A particularly interesting parameter range is the regime
when kY

0(NY0þ dNY)bkXbkY
0NY0. In this case, the maximal

kinase activity of the X-pathway is much greater than the
maximal kinase activity of the Y-pathway at low Z, and the
opposite is true at large Z. Thus, the positive feedback on
receptor number, NY, allows the bacteria to access information
preferentially about input X at low Z (i.e. at high cell density)
and learn preferentially about Y at high Z (i.e. at low cell
density). In the low-noise limit, the mutual informations,
I(Z, X) and I(Z, Y), only depend on three combinations of
parameters, ratios of the maximal kinase activities in the
presence and absence of feedback, and the half-maximal value
of the feedback K (data not shown). Thus, by rescaling X and Y,
we can consider the equivalent transfer function

Z � X þ Y

�
C þ dCZ

K þ Z

�
ð12Þ

with C¼kY
0NY0/kX, dC¼kY

0dNY/kX.
Both of these feedback architectures allow bacteria to tune

kinase rates of the two pathways so that kY/kXb1 at large
(X, Y) and kY/kX51 at small (X, Y). This can be understood
graphically in Figure 5A that shows contour lines of constant
output, Z, for different values of the inputs X and Y in the
presence of a positive feedback from Z on NY. It is noteworthy
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Figure 5 Graphical representation of input–output relations in the presence of
a positive feedback on receptor number restricted to the domain X4Y. Equally
spaced, constant output Z contours for a signaling circuit with positive feedback
on receptor number (see inset). The output is normalized by the maximum of
Z. Parameters are K¼6, C¼1/8, dC¼8.
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that for X and Y near 1 (i.e. at low cell density), the constant-Z
contours are more horizontal indicating that kY/kXb1,
whereas for X and Y close to zero (i.e. high cell density), the
contour lines are much more vertical indicating that kY/kX51.
Therefore, for the positive feedback shown in Figure 5,
bacteria preferentially learn about Y (AI-2) at low cell densities
and about X (AI-1) at high cell densities. Though less
pronounced, analogous results can be achieved using a
negative feedback on NX (see Supplementary information).

To quantify information transmission for such feedback
architectures, we calculated the mutual informations, I(Z, X)
and I(Z, Y), in the presence of feedbacks for various choices of
kinetic parameters and a flat prior (see Supplementary
information). In all our calculations, we assumed the signal-
to-noise ratio to be large,s(X, Y)/f(X, Y)51, and used the low-
noise expressions derived in the Supplementary information.
In this limit, I(Z, X) and I(Z, Y) are limited primarily by
interference between signals and are independent of any
specific choice of noise, s(X, Y). We found that mutual
informations in the presence of either a positive feedback on
the receptors for input Y or a negative feedback on the
receptors for input X are comparable to those in the absence of
feedback. This finding indicates that bacteria can preferen-
tially detect AI-2 (X) at low cell densities and AI-1 (X) at high
cell densities without sacrificing how much they learn on
average about both inputs. For example, for both the feedback
transfer functions shown in Figure 5, I(Z, X) and I(Z, Y) are
both E1.5 bits for the case when XXY, comparable with their
values in the absence of feedback (see Figure 4).

Discussion

Cells constantly sense their environments and adjust their
behavior accordingly. Specifically, cells often integrate tempo-
rally coincident information from multiple environmental
inputs to modulate their gene expression states. However,
mechanisms and logic by which cells integrate multiple signals
remain by and large poorly understood. We developed a new,
mathematical framework for analyzing information proces-
sing in cells based on information theory, and used it to study
the integration of multiple autoinducer signals using the model
quorum-sensing bacterium Vibrio harveyi. Our studies re-
vealed that there are two distinct mechanisms that limit
information transmission when bacteria integrate multiple
signals, biochemical noise and interference between different
signals. Although the former limits the total information that
bacteria can learn about all the inputs, signal interference is
the primary impediment to learning about individual input
signals. Furthermore, we showed that because of signal
interference, V. harveyi cells must precisely tune the kinase
activity of each input branch of the quorum-sensing pathway
to simultaneously learn about individual autoinducer inputs.
These theoretically motivated conclusions are consistent with
recent quantitative experiments on V. harveyi showing that the
maximal kinase activities of AI-1 (LuxN) and AI-2 (LuxPQ)
pathways are nearly equal (Long et al, 2009). Our information
theory analysis also indicates that bacteria can increase how
much they learn about individual inputs by manipulating
the different autoinducer production rates. Finally, we have

shown that bacteria can learn preferentially about a particular
signal in a particular environment, even with a single-output
pathway, by using simple feedback loops to control receptor
numbers.

Our theory not only explains the puzzling experimental
observation of nearly equal kinase activities of the LuxN and
LuxPQ pathways (Long et al, 2009), but also makes several
testable predictions about the V. harveyi quorum-sensing
circuit. First, we predict that the maximal kinase activity of the
CAI-1/CqsS branch, when measured, will prove to be similar
to that of the AI-1/LuxN and AI-2/LuxPQ pathways (see
Figure 2). This prediction follows directly from our informa-
tion theory analysis, which indicates that the three signaling
branches must phosphorylate about equal numbers of LuxO
for cells to simultaneously learn about all three input signals.
Second, the theoretical work presented here suggests that
V. harveyi may manipulate both autoinducer production and
receptor numbers to reduce interference between signals,
and thereby increase information transmission. Preliminary
evidence suggests that this is the case.

An as yet unanswered question is why V. harveyi and related
species use multiple autoinducers (AIs) and then funnel all the
information from these autoinducers into a single-output
pathway. We speculate that different concentrations of multi-
ple autoinducers may represent different stages of community
development such as the stages of growth in a biofilm. Unlike
eukaryotic development, for example, embryogenesis, in
which the rate of development is fixed and driven by a clock
(Nieuwkoop and Faber, 1994) and the input signal is often
stereotyped (Gregor et al, 2007a, b), the rate of development of
a bacterial community depends on unpredictable environ-
mental conditions, such as nutrient availability and population
composition and density. To compensate for such variability,
quorum sensing could allow bacteria to monitor stages of
community development and act accordingly. The architecture
of the V. harveyi quorum-sensing circuit, with multiple inputs
and a single output, is consistent with the idea that V. harveyi
uses quorum sensing to implement a single, multi-stage
developmental program, with different genes activated at
different levels of LuxR expression. Indeed, Long et al (2009)
showed that V. harveyi can ‘count’ the number of autoinducer
signals present. Thus, if AIs accumulate in a defined sequential
order, the number of autoinducers present at saturating
concentration could signal different stages of development.
For example, models of biofilm growth suggest that the
universal autoinducer AI-2 may be more informative at early
stages of biofilm growth in which communities are expected to
be mixed, whereas the species specific autoinducer AI-1 may
be more informative at later stages when mostly progeny are
nearby (Nadell et al, 2008).

Our detailed analysis of the V. harveyi quorum-sensing
network has implications for other prokaryotic signal-integra-
tion networks. Signal integration is a common feature of many
organisms, and bacteria have developed sophisticated mole-
cular mechanisms for integrating signals from a broad range of
inputs using two-component systems and phosphorelays
(Perego, 1998; Bassler and Losick, 2006; Kato et al, 2007;
Mitrophanov and Groisman, 2008). For example, the sporula-
tion and competence circuits of the soil-dwelling bacterium
Bacillus subtilis integrate signals from the environment, cell
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cycle, and metabolism using a network design based on
competition between various protein kinases and phospha-
tases (Perego, 1998; Veening et al, 2008). Our information
theory analysis suggests that the need to minimize interference
between signals probably places strong constraints on the
design of such signal-integration networks. In particular, our
work indicates that the information transmission properties
are likely to be extremely sensitive to changes in kinase and
phosphatase rates, and that bacteria may have evolved
strategies for minimizing interference. One possible strategy
for learning about individual input signals is to temporally
coordinate signals (Mitrophanov and Groisman, 2008). For
example, recent experiments on the B. subtilis sporulation and
competence networks indicate that bacteria probably tempo-
rally separate input signals (Smits et al, 2007; Veening et al,
2008).

Bacteria may use a range of mechanisms to minimize signal
interference by actively controlling both signal production and
detection. A simple way to achieve such control is through
feedbacks on synthases/receptors. For example, feedbacks on
AI production are a common feature of many quorum-sensing
systems (Waters and Bassler, 2005), suggesting bacteria
actively manipulate the temporal profile of AI production. In
V. harveyi, recent experimental evidence suggests such a
feedback may act on the AI-1 synthase LuxM (L Schaffer and
B Bassler, unpublished data). Moreover, the gene encoding
LuxM is located in an operon with the gene encoding the AI-1
receptor LuxN, indicating the feedback also acts on receptor
numbers, potentially allowing V. harveyi to focus on different
autoinducers at different stages of development. Recent
experiments also indicate that Escherichia coli cells manipulate
chemoreceptor numbers using feedbacks. When starving,
E. coli cells change the ratio of Tar to Tsr receptors, resulting in
a change of behavior from heat seeking to cold seeking
(Salman and Libchaber, 2007).

The use of signaling pathways with multiple inputs and a
single output necessarily entails a loss of information about
input signals. This raises the natural question of why such
pathways are used by bacteria. For example, one can imagine
alternative architectures in which each input is detected by a
dedicated signaling pathway and information about multiple
inputs is integrated at the promoters of regulated genes
through combinatorial gene regulation (Kato et al, 2007;
Mitrophanov and Groisman, 2008). We have argued that for
V. harveyi such a multi-input, single-output architecture
facilitates the implementation of a linear, multi-stage, develop-
mental program. The architecture of signal integration
networks may also reflect evolutionary constraints. For
example, such networks may have evolved from a single
pathway by gene duplication. In addition, when the output of a
signal integration network is a master transcription factor
regulating the expression of many genes (e.g. LuxR in
V. harveyi), the use of a single-output pathway may be more
efficient with regard to use of space on the genome than a
competing architectures consisting of individual signaling
pathways, one for each input, culminating in combinatorial
gene regulation. Recent experiments indicate that the sporula-
tion network in B. subtilis may have a similar role in regulating
biofilm formation (Vlamakis et al, 2008). In light of the
accumulating evidence that bacterial populations behave

similarly as multicellular organisms (Shapiro, 1998), we
suspect that the use signal integration networks to coordinate
development programs may be widespread in prokaryotes.

The study presented here focuses on signal integration in
bacteria. The architecture of prokaryotic phosphorelays, in
which a single phosphate group is transferred sequentially to
downstream components, constrains bacteria to encode
information using amplitude encoding, that is, all information
about input signals is contained in the number of active
response regulator molecules. The use of amplitude encoding
places strong constraints on network architecture and limits
the amount of information that bacteria can transmit. This
contrasts with neural networks, in which spike timing allows
neurons to encode information using more sophisticated
schemes (Rieke et al, 1997). Signaling in bacteria also differs
from signaling in eukaryotes, which often uses multiple
phosphorylation sites and kinase cascades that permit
temporal encoding schemes, such as dose–duration encoding
(Detwiler et al, 2000; Behar et al, 2008). It may prove fruitful to
generalize our information theoretic formalism to these more
complicated intracellular circuits.

Finally, our results suggest that information theory may
prove to be a powerful general tool for analyzing biological
signaling networks. Information theory provides a natural
language for formulating questions about information proces-
sing and signaling integration. An additional advantage of an
information theoretic analysis is that no detailed knowledge of
the signaling circuit is required. All quantities are calculated
using the input–output relationship of a signaling circuit, often
an experimentally accessible quantity, even for large signaling
networks. For these reasons, we expect the application of
information theory to yield new biological insights into
cellular signaling in the future.

Supplementary information

Supplementary information is available at the Molecular
Systems Biology website (www.nature.com/msb).
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