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Abstract

Early life stress has been shown to exert profound short- and long-term effects on human physiology both in the central

nervous system and peripherally. Early life stress has demonstrated clear association with many psychiatric disorders

including major depression, posttraumatic stress disorder, and bipolar disorder. The Diagnostic and Statistics Manuel of

Mental Disorders (DSM) diagnostic categorical system has served as a necessary framework for clinical service, delivery, and

research, however has not been completely matching the neurobiological research perspective. Early life stress presents a

complex dynamic featuring a wide spectrum of physiologic alterations: from epigenetic alterations, inflammatory changes, to

dysregulation of the hypothalamic pituitary axis and has further added to the challenge of identifying biomarkers associated

with psychiatric disorders. The National Institute of Mental Health’s proposed Research Domain Criteria initiative incorp-

orates a dimensional approach to assess discrete domains and constructs of behavioral function that are subserved by

identifiable neural circuits. The current neurobiology of early life stress is reviewed in accordance with dimensional organ-

ization of Research Domain Criteria matrix and how the findings as a whole fit within the Research Domain Criteria

frameworks.
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Background

Early life stress (ELS) comprised of various forms of
child abuse and neglect has been shown to exert profound
short- and long-term effects on human physiology both in
the central nervous system (CNS) and peripherally.1 ELS
has clearly been demonstrated to be associated with
increased risk for many psychiatric disorders including
major depression, posttraumatic stress disorder (PTSD),
and bipolar disorder.2 The past decade has witnessed an
explosion of findings in relation to the consequences of
adverse early life experience.

Grossly, these findings pertain to a wide spectrum of
physiologic alteration: from epigenetic alterations,
inflammatory changes to dysregulation of the hypothal-
amic pituitary axis (HPA) axis. ELS presents a complex
dynamic which from a neurobiological research perspec-
tive does not completely match the DSM-defined categor-
ical diagnoses.

DSM diagnostic categories, a necessary framework for
clinical service delivery and research, clearly combine
pathophysiologically distinct profiles in a single

diagnostic category, which may be a contributing factor
to inconsistency in research findings across investiga-
tions,3 including the effort to identify diagnostic bio-
markers associated with mental illnesses.4

National Institute of Mental Health’s proposed
Research Domain Criteria (RDoC) initiative incorpor-
ates a dimensional approach to assess discrete domains
and constructs of behavioral functions that are subserved
by an identified neural circuit. The five initial domains
being: negative valence (acute threat, anxiety, and sus-
tained threat), positive valence, cognitive systems, social
processes, and arousal/modulatory systems. Each con-
struct is examined along seven units of analyses: genes,
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molecules, cells, circuits, physiology, behavior, self-
reports, and paradigms.5

Within each domain are constructs that significantly
correlate with hallmark features of psychiatric illnesses
such as negative valence of PTSD. This is a novel
approach which has clear virtues but several potential
drawbacks as we have noted previously.6

Given the broad scope of neurobiological findings
from investigations of ELS, it may be argued that this
dimensional/matrix approach will be informative for elu-
cidating how ELS mediates increased risk for psychiatric
illness. We review the current neurobiology of ELS in
accordance with the dimensional organization of the
RDoC matrix in mind. We then comment on how these
findings as a whole fit within the RDoC framework, the
tenets it was founded upon, and objectives it was
designed to achieve.

Genes to Circuits: Corticotropin-Releasing Factor’s Role
in Stress Response Neurobiology

There is a well-established link between early adverse life
experience and the development of psychiatric disorders,
of which the neurobiological stress response is believed to
play a seminal role. The two main components of the
mammalian stress response are the sympathetic adreno-
medullary (SAM) system and HPA axis.7 Both are modu-
lated by CNS circuits involving areas of the prefrontal
cortex, hippocampus, amygdala, hypothalamic, and
brain stem nuclei.

Corticotropin-releasing hormone (also referred to as
CRH) producing neurons oversee the entire mammalian
stress response, coordinating the autonomic, endocrine,
immune, and behavioral responses to stress.8 The highest
concentrations of Corticotropin-releasing factor (CRF)
are found in the parventricular nucleus (PVN) of the
hypothalamus, which primarily regulates the neuroendo-
crine stress response.9 CRF-producing neurons located in
the central nucleus of the amygdala are involved in pro-
cessing emotional stress responses and the SAM response
as well.

As regards this SAM response the CRF neurons in the
central nucleus of the amygdala project to the CRF neu-
rons in locus coeruleus norepinephrine (NE) cells which
project to the lateral thalamus leading to subsequent acti-
vation of the sympathetic preganglionic neurons that
stimulate release of epinephrine from the adrenal
medulla. Central nucleus of amygdala CRF cells are
involved in stress-induced activation of the HPA axis,10

using an indirect pathway through the bed nucleus of the
stria terminalis (BNST), where CRF neuron projections
innervate the PVN neurons of hypothalamic.11–13

Following activation of HPA axis, CRF is released
from the PVN to the hypothalamo-hypophysial portal
circulation from nerve terminals in the median

emminence where it stimulates adrenocorticotropin hor-
mone (ACTH) release from the anterior pituitary.

ACTH in turn stimulates release of glucocorticoids
(GCs) from the adrenal cortex.14 Able to permeate the
blood––brain barrier, GCs reduce activation of the HPA
axis via stimulation of GC receptors (GRs) within the
hippocampus, hypothalamus, and anterior pituitary.15

The critical role of amygdalar CRF has brought to atten-
tion the wide spread CRF receptors located in brain and
their converging pathways in orchestrating stress
reactions.16,17

Two G protein-linked subtypes of CRF receptors
CRF1 and CRF2 have been found in the anterior pituit-
ary as well as in subcortical and cortical brain areas.18,19

In general, the stress response appears to be mediated by
CRF1 receptors, whereas CRF2 receptor activation
appears to diminish the stress response.

The response to psychosocial stress, of which ELS
likely represents a specific subtype, also involves
‘‘higher appraisal’’ by cortical and subcortical regions
of brain containing CRF1 receptors, namely, cingulate
cortex, orbital/medial prefrontal cortex, and hippocam-
pus;20 all these areas comprise part of the converging
pathways described earlier.

Much evidence points to the role for CRF as a neuro-
transmitter coordinating immune, autonomic, endocrine,
and behavioral stress responses, supported by the finding
that CRF1 receptors are more abundant in cortico-limbic
pathways that mediate fear- and anxiety-related
behaviors.21

In laboratory animals, CRF administration directly
into the CNS leads to activation of the autonomic ner-
vous system, elevation of peripheral catecholamines, and
increased heart rate and blood pressure. CNS administra-
tion of CRF has been shown to induce diminished food
intake, disturbed sleep patterns, facilitation of fear con-
ditioning, and increased startle response—behaviors that
parallel symptoms of depressive/anxiety disorders.
In non-human primates, direct administration of CRF
into the CNS produced depressive symptoms including
huddling behavior and inactivity.22

Interestingly, CRF antagonists have been shown to
attenuate the anxiety and depressive symptoms mediated
by CNS administration of CRF as well as to possess
intrinsic anxiolytic properties in a variety of preclinical
paradigms.23,24

In humans, cerebrospinal fluid (CSF) CRF concentra-
tions are elevated in drug-free depressed patients com-
pared with controls.25–27 The literature supports CRF
as a key mediator of the stress response and dysregulation
of the CRF system; which may in part explain the heigh-
tened vigilance and enhanced startle observed in patients
with anxiety and mixed depression–anxiety. ELS medi-
ates persistent neurodevelopmental changes through
alterations to the CRF and the HPA axis, which in this
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review will be shown to relate to the pathophysiology of
mood and anxiety disorders.

Early Life Stress and the HPA Axis: Genes,
Molecules, Cells, Physiology, and Circuits

Genes

It has become increasingly established that genetics con-
tribute to the risk for development of major psychiatric
disorders. In addition, ELS in the form of child abuse and
neglect serve as important risk factor for psychiatric dis-
orders.28,29 One of the goals of RDoC is to discover gene
candidates that can function as markers to predict indi-
vidual disease risk, prognosis, and treatment responses.
Single-nucleotide polymorphisms (SNPs) have been
investigated to evaluate for their interactions with early
life experience and effect on higher dimensions of neuro-
biological processes.

A novel approach that has been utilized in recent studies
tests the hypothesis that gene variants may modulate the
effect of ELS on the longitudinal risk for mental illness.
Diathesis–stress theories of depression suggest that individ-
ual’s sensitivity to stressful events depends, in part, on their
genotype.30,31 Investigations to date have largely supported
this theory, with many studies demonstrating gene� envir-
onment (G�E) interactions that predict both mental dis-
order risk and treatment outcomes in humans. To date,
there have been a handful of genetic polymorphisms pro-
posed that shall be reviewed here: 5HTTLPR, Monoamine
Oxidase A (MAOA), FKBP5, CRHR1, Brain-Derived
Neurotrophic Factor (BDNF), and OPRL1.

Serotonin transporter polymorphism. Evidence continues to
increasingly suggest that the pathophysiology and treat-
ment response for a subset of individuals with depression
may be influenced by a polymorphism in the promoter
region of the serotonin transporter gene (SERT).

The SERT is encoded in humans by a single gene
(SLC6A4) located on chromosome 17q11.1-q12. A func-
tional three base pair repeat polymorphism has been
identified in the promoter region of this gene and is
also known as 5-HTTLPR. The short variant of the poly-
morphism is denoted as ‘‘s’’ and long variant as ‘‘l.’’ The
‘‘s/s’’ or ‘‘s/l’’ genotype is associated with reduced tran-
scription of the SERT gene and reduced 5-HT uptake in
comparison to the ‘‘l/l’’ genotype.32–35

The s allele of the SERT genotype has been associated
in some studies with a predisposition toward develop-
ment of depression in humans. However, not all individ-
uals with s/s or s/l develop depression. Environmental
factors have been increasingly shown to interact with
SERT genotypes to increase individual likelihood of
developing depression in adulthood. Mehta et al.36

found, in a non-psychiatric cohort, that s allele carrier

status predicted late post partum depressive symptoms
only in the presence of negative life events.

Multiple studies have shown G�E interactions link-
ing ELS to an increased risk of depression. In non-human
primates, Coplan et al.37 have demonstrated that ELS in
the form of variable foraging demand leads to elevated
CSF CRF concentrations, most notably in subjects with
the s/s and s/l 5HTTLPR genotype. Human studies have
also revealed HPA axis hyperactivity in patients who
reported a history of ELS and current depression.38

Barr et al.39 assessed the influence of rearing condition
and the rh5-HTTLPR polymorphism on ACTH release.
The s allele coupled with ELS led to increase plasma
ACTH concentrations, confirming the findings of
Coplan et al. cited previously. Much research has focused
on the interaction between SERT polymorphisms, ELS,
and depression. Caspi et al.40 were the first to demon-
strate an association between depression, ELS, and the
5-HTTLPR genotype. Individuals exposed to childhood
maltreatment, possessing the s/s genotype were shown to
have the highest probability of developing a major
depressive episode, followed by the s/l genotype. In a
general population study, a three-way interaction
among childhood abuse� adult traumatic experience� s
allele carrier status was found to be associated with
higher Beck Depression Inventory-II (BDI-II) scores.41

A meta-analysis by Karg et al.42 found strong evidence
supporting the association between childhood maltreat-
ment and the s allele and increased stress sensitivity.

Interestingly, subjects with the l/l genotype did not
show an increased risk of developing major depressive
episodes even in the presence of ELS. In the wake of
this paradigm shifting study, numerous studies have
addressed and confirmed these findings.43

This G�E discovery leads to the interesting question,
namely, whether we can use a patient’s genotype for the
SERT as well as other polymorphisms coupled with a
history of ELS as criteria for early intervention to prevent
the development of major depression in vulnerable
individuals.

Studies of the interaction of SERT polymorphisms
and ELS in children also point to the value of early inter-
vention as a strategy for children with a known history of
abuse. Kaufman et al.44 showed that a supportive envir-
onment seemed to protect children with the s/s genotype
and a history of maltreatment from developing depres-
sion. Recent studies have demonstrated G�G�E inter-
action including the SERT gene.

MAOA. Childhood maltreatment may be the most
common form of ELS in western society and is associated
with a wide array of mental health outcomes.45 Although
the risk for developing conduct disorder, antisocial per-
sonality disorder, and criminal behavior is increased by
ELS, most children do not develop into adult criminals.46
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Caspi et al.40 were among the first to suggest that indi-
vidual differences at a functional polymorphism in the
promoter region of the MAOA gene may modulate chil-
dren’s response to maltreatment (Figure 1).

Located on the X chromosome (Xp11.123–11.4),48 it
encodes the MAOA enzyme, which metabolizes

neurotransmitters including NE, serotonin (5-HT), and
dopamine.49 Genetic deficiencies of MAOA have been
linked to the development of behavior disturbances in
children. SNPs of MAOA demonstrated significant
G�E interaction; lower MAOA activity showed a stron-
ger effect of childhood maltreatment to positively predict

Figure 1. Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Results of multiple regression

analyses estimating the association between number of stressful life events (between ages 21 and 26 years) and depression outcomes at age

26 as a function of 5-HT T genotype. Among the 146 s/s homozygotes, 43 (29%), 37(25%), 28 (19%), 15 (10%), and 23 (16%) study

members experienced zero, one, two, three, and four or more stressful events, respectively. Among the 435 s/l heterozygotes, 141 (32%),

101 (23%), 76 (17%), 49 (11%), and 68 (16%) experienced zero, one, two, three, and four or more stressful events. Among the 264 l/l

homozygotes, 79 (29%), 73 (28%), 57 (21%), 26 (10%), and 29 (11%) experienced zero, one, two, three, and four or more stressful events.

(a) Self-reports of depression symptoms. The main effect of 5-HT TLPR (i.e., an effect not conditional on other variables) was marginally

significant (b¼�0.96, SE¼ 0.52, t¼ 1.86, p¼ 0.06), the main effect of stressful life events was significant (b¼ 1.75, SE¼ 0.23, t¼ 7.45,

p< 0.001), and the interaction between 5-HT TLPR and life events was in the predicted direction (b¼�0.89, SE¼ 0.37, t¼ 2.39, p¼ 0.02).

The interaction showed that the effect of life events on self-reports of depression symptoms was stronger among individuals carrying an s

allele (b¼ 2.52, SE¼ 0.66, t¼ 3.82, p< 0.001 among s/s homozygotes, and b¼ 1.71, SE¼ 0.34, t¼ 5.02, p< 0.001 among s/l heterozygotes)

than among l/l homozygotes (b¼ 0.77, SE¼ 0.43, t¼ 1.79, p¼ 0.08). (b) Probability of major depressive episode. The main effect of 5-HT

TLPR was not significant (b¼�0.15, SE¼ 0.14, z¼ 1.07, p¼ 0.29), the main effect of life events was significant (b¼ 0.37, SE¼ 0.06,

z¼ 5.99, p< 0.001), and the G 3 E was in the predicted direction (b¼ –0.19, SE¼ 0.10, z¼ 1.91, p¼ 0.056). Life events predicted a

diagnosis of major depression among s carriers (b¼ 0.52, SE¼ 0.16, z¼ 3.28, p¼ 0.001 among s/s homozygotes, and b¼ 0.39, SE¼ 0.09,

z¼ 4.24, p< 0.001 among s/l heterozygotes) but not among l/l homozygotes (b¼ 0.16, SE¼ 0.13, z¼ 1.18, p¼ 0.24). (c) Probability of

suicide ideation or attempt. The main effect of 5-HT TLPR was not significant (b¼ –0.01, SE¼ 0.28, z¼ 0.01, p¼ 0.99), the main effect of

life events was significant (b¼ 0.51, SE¼ 0.13, z¼ 3.96, p< 0.001), and the G 3 E interaction was in the predicted direction (b¼ –0.39,

SE¼ 0.20, t¼ 1.95, p¼ 0.051). Life events predicted suicide ideation or attempt among s carriers (b¼ 0.48, SE¼ 0.29, z¼ 1.67, p¼ 0.09

among s/s homozygotes, and b¼ 0.91, SE¼ 0.25, z¼ 3.58, p< 0.001 among s/l heterozygotes) but not among l/l homozygotes (b¼ 0.13,

SE¼ 0.26, z¼ 0.49, p¼ 0.62). (d) Informant reports of depression. The main effect of 5-HT TLPR was not significant (b¼ –0.06, SE¼ 0.06,

t¼ 0.98, p¼ 0.33), the main effect of life events was significant (b¼ 0.23, SE¼ 0.03, t¼ 8.47, p< 0.001), and the G 3 E was in the predicted

direction (b¼ –0.11, SE¼ 0.04, t¼ 2.54, p< 0.01). The effect of life events on depression was stronger among s carriers (b¼ 0.39,

SE¼ 0.07, t¼ 5.23, p< 0.001 among s/s homozygotes, and b¼ 0.17, SE¼ 0.04, t¼ 4.51, p< 0.001 among s/l heterozygotes) than among l/l

homozygotes (b¼ 0.14, SE¼ 0.05, t¼ 2.69, p< 0.01). From Caspi et al.40 Reprinted with permission from AAAS.
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the percentage of subjects that fit diagnostic criteria for
conduct disorder. Conversely, males with high MAOA
activity did not show significantly increased risk for con-
duct disorder.

Kim-Cohen et al., using a representative birth cohort
sample of 7-year-old boys, confirmed and extended Caspi
et al.’s original findings. They showed a G�E interaction
in which boys with the low-activity MAOA allele had
mental health problems scores that were half a standard
deviation higher than boys with the high-activity allele.50

Further, their meta-analysis results corroborated this
G�E effect.

Given that MAOA metabolizes neurotransmitters that
are central to multiple brain functional circuits associated
with stress regulation, it represents one of the factors
involved in biological sensitivity to life stress.51,52

FKBP5. G�E research has also spurred the investigation
of PTSD, in an attempt to answer the quandary of how
some individuals are more likely than others to develop a
stress disorder when exposed to similar levels of
trauma.53–56

It has becoming clear that there are predisposing gen-
etic and environment factors contributing to an individ-
ual risk after experiencing trauma.57 There is, of course,
also the dimension of resilience that serves to protect
individuals exposed to trauma from developing psycho-
logical sequelae. The association between child abuse and
adult PTSD has been well established.58 Given that
PTSD is strongly associated with long-lasting alterations
in HPA axis sensitivity and increased GR sensitivity, a
natural extension of G�E research has examined
whether HPA axis gene candidates mediate the increased
susceptibility to PTSD after ELS.27,59

FKBP5 is a gene that encodes a chaperone protein that
directly interacts with the GR-heterocomplex allowing it
to translocate into the nucleus and interact with GRs.
Overexpression of FKBP5 mediates a reduction in GC
signal transduction, leading to reduced efficiency of GR
signaling required for negative feedback accompanied by
relative increases in plasma cortisol60; this HPA axis con-
figuration matches very well what is seen in PTSD.27

Four FKBP5 SNPs were found to significantly predict
the PTSD Symptom Score in individuals with a history of
child abuse. All four SNPs have been associated with the
presence of higher levels of FKBP5, consistent with the
physiological mechanisms mediating GC sensitivity.61

Thus, in addition to FKBP5 polymorphisms interact-
ing with child abuse to predict levels of adult PTSD
symptoms, it is believed that FKBP5 alleles may enhance
the effect of acutely released cortisol leading to abnormal
FKBP5 expression driving persistent disturbances of GR
sensitivity.62 Zannas and Binder63 found that exposure to
child abuse leads to significant demethylation of CpG
in the functional GRE of FKBP5 gene mediating

GR resistance. Klengel et al.64 reported this demethyla-
tion as linked to an ELS-dependent increased FKBP5
gene transcription with subsequent long-term dysregula-
tion of the stress hormone system (Figure 2). McGowan
et al.65 showed that suicide victims with reported ELS
demonstrated increased cytosine methylation of the
NR3C1 promoter of GR gene.

CRHR1/OPRL1/BDNF. Although the SERT has received
much attention, it is clear that several genes moderate
vulnerability to depression.66 Moreover, given that
increased activity of HPA axis, in part due to CRH neur-
onal hyperactivity,7 has been demonstrated in Major
Depressive Disorder (MDD), genes regulating HPA axis
physiology in general, and those of the various compo-
nents of the CRH system in particular, have been impli-
cated in the regulation of stress reactivity.67,68

Studies have also demonstrated a significant associ-
ation between ELS and CRF receptor activity (CRF-R1
or CRHR1). Clinical studies of depressed patients have
revealed both increased CSF CRF concentrations and
CRF-R1 mRNA expression in limbic brain regions
including the amygdala.69,70 Bangasser et al.71 showed a
sex difference in CRF receptor cellular signaling and
receptor internalization, which rendered females more
sensitive to CRF. Another study demonstrated a sex-
specific association, showed that a specific SNP of the
pituitary adenylate cyclase-activating polypeptide pre-
dicted PTSD diagnosis and symptoms in females only.72

Bradley et al. demonstrated that genetic variants of the
CRHR1 moderate the effect of child abuse on adult
depressive symptoms. Laucht et al.73 found that the
impact of childhood maltreatment on adult depressive
symptoms was higher in individuals with two copies of
the CRHR1 TAT haplotype. A haplotype of three SNPs
in intron 1 of the CRHR1 gene was associated with a
diminished effect of child abuse on adult depressive symp-
toms.74 Thus, a genotype/haplotype may serve as a pre-
dictor both risk/resilience in those with history of child
abuse and neglect.

In contrast to the s variant of 5HTTLPR, the dis-
covered CRHR1 haplotype is not considered a functional
variant. Rather it is believed that CRHR1 SNPs may
modulate gene transcriptional activity and be in linkage
disequilibrium with a functional variant.

This has led to the inclusion of gene� gene inter-
actions in addition to more classical G�E studies to elu-
cidate genetic contribution to depression risk.

Thus, Ressler et al. found that variants in the 5-
HTTLPR interact with CRHR1 genotypes to predict cur-
rent adult depressive symptom. Individuals carrying a
‘‘risk’’ allele in both genes demonstrated more severe
depressive symptom at lower levels of child abuse.75

Interestingly, this interaction was present only when the
measure of child abuse was stratified across three severity
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levels. This highlights the importance of defining ELS in
the investigation of G�E interactions. Furthermore,
these findings support the plethora of research that has
suggested a dose-response relationship between life stres-
sors and risk of behavioral problems.45,76,77

This level of analysis is consistent with the fact that
early adverse experience impacts both CRF and 5-HT
systems suggesting significant interpermeation of the
two neural circuits. These interconnections supported
by studies that show that Pre-Frontal Cortex (PFC),
hippocampus, and basolateral amygdala receive signifi-
cant serotonergic innervation which is influenced by
CRF-mediated increase Gamma-Aminobutyric acid
(GABA) ergic inhibition of 5-HT at the dorsal raphe
nuclei.78,79

Another G�G interaction with implications of vul-
nerability to depression is between SLC6A4 and
BDNF. Meta-analyses have suggested that alteration in
serotonergic activity may serve as a prodrome for later
changes in neural plasticity of which BDNF is
essential.80,81

One study suggested that the BDNF Met allele may
serve as a protection against the adverse effects associated
with the 5-HTTLPR s allele in healthy individuals.
However, in maltreated children, the combination of
BDNF Met with 5-HTTLPR s allele was associated
with an increased risk for depression.82 Given that
BDNF is known to exert a direct effect on neuronal
growth and plasticity in hippocampus and amygdale,83–85

it comes as little surprise to find that BDNF

Figure 2. Differential FKBP5 intron 7 DNA methylation depends on genotype and trauma exposure. Correlation between intron 7 bin 2,

mean methylation, and log-transformed CTQ scores by FKBP5 rs1360780 genotype in the Grady and Conte cohort are shown. (a) Grady

cohort. Risk allele carriers exhibited a strong negative correlation (R¼ 0.646, p< 0.001) between methylation and CTQ total load

compared with carriers of the protective genotype (R¼ 0.414, p¼ 0.078; Fisher Z score¼ 4.23, p< 0.001). (b) Conte cohort. Correlation

between methylation and total CTQ in risk allele carriers (R¼ 0.273, p¼ 0.124) and in carriers of the protective genotype (R¼ 0.153,

p¼ 0.485; Fisher Z score¼ 1.5, p¼ 0.133). (c) Grady cohort. Negative correlation was found between methylation and the CTQ physical

abuse subscore in risk allele carriers (R¼ 0.586, p< 0.001) but not in carriers of the protective genotype (R¼ 0.360, p¼ 0.130; Fisher Z

score¼ 4.49, p< 0.001). (d) Conte cohort. Negative correlation was observed between methylation and the CTQ physical abuse subscore

in risk allele carriers (R¼ 0.397, p¼ 0.022) but not in carriers of the protective genotype (R¼ 0.246, p¼ 0.258; Fisher Z score¼ 2.33,

p¼ 0.019). (e) Grady cohort. Negative correlation was found between methylation and the CTQ emotional abuse subscore in risk allele

carriers (R¼ 0.685, p< 0.001) but not in carriers of the protective genotype (R¼ 0.321, p¼ 0.181; Fisher Z score¼ 4.1, p< 0.001). (f)

Conte cohort. Negative correlation was found between methylation and the CTQ emotional abuse subscore in risk allele carriers

(R¼ 0.397, p¼ 0.022) but not in carriers of the protective genotype (R¼ 0.022, p¼ 0.922; Fisher Z score¼ 1.53, p¼ 0.126). (g) Grady

cohort. Negative correlation was found between methylation and the CTQ sexual abuse subscore in risk allele carriers (R¼ 0.656,

p< 0.001) but not in carriers of the protective genotype (R¼ 0.599, p¼ 0.007; Fisher Z score¼ 5.17, p< 0.001). (H) Conte cohort.

Negative correlation was found between methylation and the CTQ sexual abuse subscore in risk allele carriers (R¼ 0.118, p¼ 0.514)

and in carriers of the protective genotype (R¼ 0.305, p¼ 0.922; Fisher Z score¼ 0.68, p¼ 0.496). From Klengel et al.64 Reprinted by

permission from Macmillan Publishers.

CTQ: Childhood Trauma Questionnaire.
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Val66Met�ELS interacts to predict significant changes
to brain structure and function.86 Early life maltreatment
in rats showed persistent changes in methylation of
BDNF, altering adult BDNF gene expression in pre-
frontal cortex.87

To add to the ELS-HPA axis gene interaction story, a
SNP found in the opioid receptor like 1 (Oprl1) gene in
patients with PTSD symptoms after a traumatic event is
associated with a self reported history of childhood
trauma.88 The same SNP is association with altered fear
learning and fear discrimination mechanisms including
differential amygdala–insula functional connectivity
which has been linked to PTSD.89

Molecules, Cells, and Physiology

Given the central role of the HPA axis and CRF in med-
iating the endocrine, immune, behavioral, and autonomic
effects of stress, both preclinical and clinical studies have
explored and confirmed that ELS does indeed produce
persistent changes that correlate with increase risk of
development of psychiatric illness.

Preclinical studies. Many of the initial studies used various
forms of maternal separation in rats as a model of ELS, a
species in which much of the neural development in brain
occurs in the post-natal period. Alterations in maternal
care between dams and their pups have already been
shown to set into motion molecular events that directly
pertain to regulation of the HPA axis, namely, that
maternal licking and grooming regulate methylation of
the GR gene in hippocampus.90 GR genes, obviously,
directly influence how many receptors are present on hip-
pocampal neurons; increase receptor number allows for
efficient termination of the stress response and protects
against chronic effects of allostatic load.91

Brief maternal deprivation during the neonatal period
in rats resulted in significant increases of basal and stress-
induced ACTH concentrations, CRF concentrations in
median eminence, as well as reduced CRF-R1 receptor
density in the anterior pituitary.92

Further, prolonged maternal separation are asso-
ciated with long-term changes in adult male rates,
demonstrating increased CSF CRF concentrations as
well as increased CRF mRNA expression in the PVN,
central nucleus of the amygdala, BNST, and locus
coeruleus.93

Similarly, ELS in rats is associated with the disruption
of the negative feedback of the HPA axis, with maternally
deprived rats escaping from suppression of plasma
ACTH and corticosterone by dexamethasone.94

Studies of maternal grooming of rats showed that
those that received less licking and grooming were
found to have shorter dendritic branches and lower
spine densities in CA1 cells which was associated with

impaired hippocampal long-term potentiation as well as
concurrent reductions of GC and MR receptor
density.95

Studies in the non-human primate have repeatedly
shown that ELS paradigms mediate persistent neuroen-
docrine, neurotransmitter, and behavioral effects.37,96 In
the bonnet macaque, alteration of food availability to the
mother–infant dyad known as variable foraging demand
has been repeatedly associated with marked and persist-
ent increases in CSF CRF concentrations.97

The resulting neglectful maternal care of infant pri-
mates persists into their adulthood, as they have been
show to be more fearful, exhibit greater weight gain,
and decreased glucose disposal rates.98,99 In Rhesus mon-
keys, repeated maternal separation was associated with a
flattened diurnal secretion pattern of cortisol and
increased acoustic startle reactivity and cortisol reactivity
to separation.100

Clinical studies. The influence of ELS on HPA axis activity
in humans has been an area of extensive and closely scru-
tinized research, in part due to the fact that studies in this
area have shown child abuse and neglect is associated
with both increased and decreased HPA axis activity.

Using various models validated human stress, such as
the Trier Social Stress Test and the combined dexametha-
sone CRF stimulation test, HPA axis hyperactivity was
demonstrated in depressed women and men with ELS as
demonstrated by increases in both the ACTH and corti-
sol response as well as increased CSF CRF concentra-
tions.38,101–103 Increased basal and post stress cortisol
levels were reported in patients with major depression
and borderline personality disorder who reported a his-
tory of childhood trauma.104

In contrast, individuals with ELS in the form of child
abuse have been reported to exhibit reduced basal cortisol
levels as well as blunted cortisol response to provocative
stimuli.105 Likewise, ELS is well documented to increase
the risk for development of PTSD, which is characterized
by an ‘‘endocrine signature’’ of GR hypersensitivity and
reduced cortisol signaling.106

These described discordant findings fuels active inves-
tigation into the precise effects of ELS. A recent study has
attempted to reconcile them by suggesting a two pathway
model in which ELS invokes interactions of the GC
system with oxytocin and serotonergic systems to mediate
an ultimate outcome of hyper- or hypoactivity of the
HPA axis.107

Briefly, oxytocin is known to mediate attachment,
social affiliation, intimacy, trust, and has recently been
shown to be affected by ELS. Exposure to maltreatment
in childhood was significantly inversely associated with
CSF oxytocin concentrations.108 Furthermore, SNP vari-
ation of the oxytocin receptor interacted with ELS to
predict anxiety and depression severity.109
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Early Life Stress and Brain Circuits

The RDoC was initially conceptualized as a circuit-based
framework for the study of psychiatric illness, the timing
of its emergence coincide with the rapidly developing
understanding of brain mechanisms mediating complex
behaviors, which has been increasingly blurring the line
between the clinical disciplines of psychiatry and
neurology.110

Because the pathogenesis of depression is most appro-
priately understood as a multidimensional, system-level
disorder involving functionally overlapping pathways,
the need for biological algorithms to define homeostatic
emotional control during stress is of paramount
importance.111

That ELS produces persistent increases in CSF CRF
neural circuits, a hallmark of HPA axis hyperactivity, and
dysregulation of cortico–limbic circuits puts it in a pos-
ition of fundamental importance in exploring pathogenic
mechanisms that may underlie major psychiatric illnesses
such as major depression and PTSD.

Recent advances in structural and functional brain
imaging have begun to elucidate the long-lasting effects
of childhood maltreatment on the CNS.112 Moreover, the

use of imaging genetics has also revealed the importance
of selective polymorphisms of candidate genes as modu-
lating regional brain activity.

Within the context of ELS, emerging data are all con-
gruent in demonstrating persistent structural and func-
tional changes to CNS structures and circuits including
the prefrontal cortex, hippocampus, amygdala, and other
cortical/subcortical areas of brain, with increasing evi-
dence that the ELS-specific subtypes result in specific
neuroanatomical alterations.

One study of children used structural magnetic reson-
ance imaging (MRI) and executive function assessment
do determine the relationship between ELS, executive
function, and prefrontal cortex volume and connectivity
with the anterior cingulate frontal poles. Increased ELS
was associated with smaller PFC volumes in both gray
and white matter between anterior cingulate and frontal
poles, which was associated with poor executive
functioning.113

The hippocampus has long been an area of interest
for a multitude of reasons, one being that it is known
to play a pivotal role in efficient termination of the
HPA axis stress response by virtue of its rich density
of GRs. Moreover, hippocampal volume reductions

Figure 3. Regression of CTQ Total Score against cortical thickness in women with and without childhood sexual abuse. Cortical

thickness analysis results after regressing CTQ total score against thickness across the entire cortex. Control variables included age and

depression scores. Main effects are seen in the somatosensory cortex in the female genital and mouth area on the left, the PHG bilaterally,

the left ACC, and the PRC bilaterally. For the precise location of the genital sensory field as identified using fMRI of neural response to

stimulation, see Heim et al.119 The color scale refers to the F values of the linear regression (significance threshold: F> 4.33). From Heim

et al.119 Reprinted with permission from the American Journal of Psychiatry.

BA3: Brodmann’s area 3; PCC: posterior cingulate cortex; A: anterior; p: posterior; CTQ: Childhood Trauma Questionnaire;

PHG¼ para-hippocampal gyrus; ACC¼ anterior cingulate cortex; PRC¼ precuneus; fMRI¼ functional magnetic resonance imaging.
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have been repeatedly reported in those suffering from
major depression, PTSD, and other psychiatric dis-
orders. Reports of reduced hippocampal volume in
depressed women with a history of childhood maltreat-
ment but not in equally depressed women without ELS
have also been confirmed by others.114–116 This has
been confirmed in a comprehensive meta-analysis
(Figure 7).117

Another study compared depressed patients and age-
and sex-matched healthy controls found that childhood
maltreatment but not depression was associated with hip-
pocampal atrophy (Figure 5).118 Victims of childhood
sexual and emotional abuse showed marked thinning in
respective areas of cortical representation, suggesting that
ELS has effect on neural plasticity that persist into adult-
hood (Figure 3).119

The pre-eminent role of the amygdala in stress respon-
sivity has appropriately made it a central focus in
research of mood and anxiety disorders. Both amygdala
volume and responsiveness to stressors in those exposed
to child abuse and neglect versus controls have been
explored.

Non-human primates, subjected to ELS (variable fora-
ging demand), demonstrated an increase in amygdala

volume as assessed by MRI. This increase of amygdala
volume was correlated with elevated CSF CRF concen-
trations, along with reduced hippocampal neurogenesis
and increased anxiety.120

ELS also appears to alter connectivity between the
amygdala and PFC, and there is a general consensus
that depression is associated with increased amygdala
responsiveness to stress. Whether this is a result of ELS
or depression or a predisposing selective polymorphism
still remains to be determined.

Threat-related amygdala reactivity was studied in ado-
lescents, where it was shown to be positively associated
with a family history of depression and severity of stress-
ful life events.121 This suggests that amygdala hyperactiv-
ity may precede manifestations of syndromal mood
disturbance.

Childhood maltreatment (assessed by the Childhood
Trauma Questionnaire) was shown to be positively asso-
ciated with amygdala responsiveness in a standard emo-
tional face-matching paradigm. This effect was not
confounded by recent life stressors, current depression,
or sociodemographic factors (Figure 6).122

Imaging genetic studies exploring some of the earlier
discussed selective polymorphism in candidate genes

Figure 4. Regression of CTQ Emotional Abuse Score against Cortical Thickness in Women with and without Childhood Sexual Abuse.

Cortical thickness analysis results after regressing CTQ emotional abuse score against thickness across the entire cortex. Control variables

included age, depression, and all other CTQ subscales. Main effects are seen in the left and right PRC), left ACC, right PHG), and left

somatosensory cortex in the area of the face. The color scale refers to the F values of the linear regression (significance threshold:

F> 4.33). From Heim et al.119 Reprinted with permission from the American Journal of Psychiatry.

BA3: Brodmann’s area 3; PCC: posterior cingulate cortex; A: anterior; p: posterior; CTQ: Childhood Trauma Questionnaire; PHG¼ para-

hippocampal gyrus; ACC¼ anterior cingulate cortex; PRC¼ precuneus.
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have been found to correlate with altered amygdala
response to stress. Evidence for FKBP5 and mineralo-
corticoid receptors modulating the effect of ELS on
amygdala reactivity has been demonstrated.123,124

Carriers of the s allele of the SERT have been found
to have reduced gray matter volume in the amygdala as
well as cingulate regions125; the s allele carrier also
showed relative uncoupling of this circuit when process-
ing fearful stimuli and was associated with temperamen-
tal anxiety.

How ELS Neurobiological Research Fits in
the Era of RDoC

The emergence of the RDoC was in part due to the per-
ceived failings of the current categorical DSM system to
‘‘capture fundamental underlying mechanisms of dys-
function’’ of psychiatric disorders.

The successful elucidation of pathophysiological
mechanisms can be said to be the hallmark of much con-
temporary medicine and may be in part the reason why

Figure 5. Effect of childhood maltreatment on hippocampal gray matter volume in the entire study sample. (a) Coronal view (x¼ 0.75,

14) depicting gray matter volume negatively associated with CTQscores; color bar, negative correlation coefficient r. (b) Scatter plot

depicting gray matter volume at x¼ 0.75, 14; y¼ 0.75, 10; z¼ 0.75, 24 correlated with CTQ scores within the entire sample. Dotted lines:

regression slopes of patients and controls separately; continuous line: regression slope in the entire sample. From Opel et al.118 Reprinted

by permission from Macmillan Publishers.

CTQ: Childhood Trauma Questionnaire.

Figure 6. Childhood maltreatment, CTQ scores, is positively associated with right amygdala responsiveness to negative facial expres-

sions. Left: coronal view (y¼ !2) depicting amygdala responsiveness modulated by CTQ scores. For display reasons, the statistical threshold

was set to p< 01, uncorrected. Color bar, correlation coefficient r. Right: scatter plot depicting the positive correlation (r¼ 0.456,

p< .0001) of the mean cluster activation values (left) and CTQ scores. From Dannlowski et al.122 Reprinted with permission from Elsevier.

CTQ: Childhood Trauma Questionnaire.
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advances in psychiatry have lagged behind other discip-
lines in medicine.126

One of the fundamental founding tenets of RDoC was
that data from genetics and clinical neurosciences will
reveal ‘‘bio-signatures’’ that will enhance the specificity
of psychiatric diagnosis and treatment; in an age where
precision medicine has resulted in important advances in
translational research, genomics and neuroscience will
likely pave the way for a framework that will allow psy-
chiatric research to move forward in an accelerated
manner.127

Because RDoC’s primary focus is on neural circuitry
in a bidirectional manner, ELS-neurobiological research
findings to date as summarized above can be said to be a
natural extension of the current domains and level of
analysis, by incorporating the preeminent role of ELS
in both preclinical and clinical research (environmental
exposure) on development.

While more time and data are needed to discern the
improvements RDoC will impart on the field of psych-
iatry, it may be said that it presents a paradigm shift in
the field that fosters more emphasis on the underlying
mechanisms mediating psychiatric disorders. This evolu-
tion of thought of psychiatric disorders may change the
way in which psychiatrists of the future train and ultim-
ately improve patient care.

The ELS paradigm, in both preclinical and clinical
research, has generated a diverse aggregate of findings
that range from G�E interactions to gross changes of
hippocampal/amygdala volume and persistent perturb-
ation of the HPA axis. ELS is clearly a major detriment
to several of the currently defined diagnostic categories,
including major depression, bipolar disorder, and
PTSD.128

Indeed, as a framework that intends to integrate many
different levels of data analysis within each domain/

Figure 7. Meta-analysis of clinical trials investigating the association between childhood maltreatment and treatment outcome of

depression. Based on the evidence of homogeneous distributions of effect sizes within treatment groups, we present here the results of

fixed-effects model meta-analyses for different treatment groups. The overall effect size across treatment groups was estimated with a

random-effects model meta-analysis with the following study weights: Nemeroff (psychotherapy): 7.88; Barbe: 2.78; Shirk: 3.49; Lewis

(psychotherapy): 2.65; Sakado: 4.36; Nemeroff (pharmacotherapy): 8.03; Asarnow (pharmacotherapy): 7.32; Johnstone: 10.96; Klein: 14.09;

Lewis (pharmacotherapy): 2.25; Nemeroff (combined therapy): 8.42; Enns: 7.07; Asarnow (combined therapy): 6.90; Lewis (combined

therapy): 3.61; and Miniati: 10.18. The red diamonds show the combined effect sizes for studies concerned with psychotherapy,

pharmacotherapy, and combined therapy as well as the overall effect size of the meta-analysis (top to bottom). From Nanni et al.117

Reprinted with permission from the American Journal of Psychiatry.
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construct, ELS can be said to play a role in almost every
level as the scope of its effects encompass autonomic,
immune, behavioral, endocrine, and circuit-level alter-
ations that appear to interact with pathophysiological
processes thought to potentially underlie these disorders.

Although psychiatry is considered to be one of the
most ‘‘artful’’ areas of medicine, the field must develop
biomarkers that will improve outcomes. This is one of the
long-term goals of what RDoC hopes to achieve. ELS
research has been able to begin to meet these demands
via the core finding discussed in this review.
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