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SUMMARY

Single-cell RNA sequencing (scRNA-seq) has become a revolutionary technology
to characterize cells under different biological conditions. Unlike bulk RNA-seq,
gene expression from scRNA-seq is highly sparse due to limited sequencing
depth per cell. This is worsened by tossing away a significant portion of reads
that attribute to gene quantification. To overcome data sparsity and fully utilize
original reads, we propose scSimClassify, a reference-free and alignment-free
approach to classify cell types with k-mer level features. The compressed k-mer
groups (CKGs), identified by the simhash method, contain k-mers with similar
abundance profiles and serve as the cells’ features. Our experiments demon-
strate that CKG features lend themselves to better performance than gene
expression features in scRNA-seq classification accuracy in the majority of exper-
imental cases. Because CKGs are derived from raw reads without alignment to
reference genome, scSimClassify offers an effective alternative to existing
methods especially when reference genome is incomplete or insufficient to repre-
sent subject genomes.

INTRODUCTION

Cataloging cells is crucial for understanding the organization of cells, disease mechanisms, and even treat-

ment respondences. Single-cell RNA sequencing (scRNA-seq) makes it possible to identify cell subpopu-

lations by exploring the unique transcriptomic profile of each cell. Clustering is the most popularly used

approach to partition cells based on transcriptome similarity in an unsupervised fashion (Andrews and

Hemberg, 2018). However, this requires well-established knowledge of biomarkers for cell type annotation,

as well as cell populations. Unfortunately, such information is often unavailable prior to the scRNA-seq ex-

periments (Kiselev et al., 2019). Therefore, researchers turn to other machine learning approaches, such as

supervised classification, to annotate cells automatically (Abdelaal et al., 2019).

Recently, Abdelaal et al. (Abdelaal et al., 2019) benchmarked 22 classification methods for scRNA-seq cell

type identification. All of these classification approaches utilized gene expression profiles of individual cells

as classification features. The study included many conventional classifiers such as support vector machine

(SVM) and random forest (RF) in addition to a few recently developed single cell-specific classifiers

including ACTINN (Ma and Pellegrini, 2020) and scPred (Alquicira-Hernandez et al., 2019). The study

demonstrated the efficacy of the gene profile-based approach in cell type identification. In a different

study, Arvind Iyer et al. (Iyer et al., 2020) classified cell types by naive Bayes, gradient boosting machine,

and RF fitted with gene expression profiles to recognize circulating tumor cells of diverse phenotypes.

However, scRNA-seq data are notorious for its relatively low sequencing depth resulting in highly sparse

gene expression across all cells (Yuan et al., 2017). To make things worse, read alignment to the reference

genome often filters out many unmapped reads. It is not uncommon that about half of the reads are thrown

out prior to the final analysis (Vieth et al., 2019). Note that not all unmapped reads are bad reads. Using

standard reference genomes may eliminate reads representing significant variations in a particular subject,

cell type, or disease genome. Last but not least, aligning read to the reference genome to derive a gene-

cell count matrix is typically the most time-consuming step of the process.

To overcome these limitations, we develop a reference-free approach for cell type classification sidestep-

ping read mapping step (Zielezinski et al., 2019; Shi and Yip, 2019). Specifically, it explores novel features

derived from the entirety of the reads. Instead of using gene expression features derived from scRNA-seq
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reads, we use k-mers, often referred to as the genomic words, as features for classification. Intuitively, these

genomic words can be extracted from reads in a scRNA-seq sample. Each of these ‘‘words’’ is associated

with its own ‘‘frequency’’ or abundance, which is defined as the number of times that a k-mer appears in a

sample. The change of gene/transcript expression will correspondingly affect the abundances of k-mers

identifying them. Thus k-mers and their abundances can be used as features for classification due to their

strong association with the expression of genes/transcripts. The advantage here is that k-mers can be easily

derived from reads without alignment to references. In the meantime, the derived k-mer set also captures

cell and subject-specific variations that do not fit standard reference genomes.

The challenge associated with k-mer based features is the huge set of unique k-mers, which can be in hun-

dreds of millions depending on sequencing depth. However, a large set of features in the size of hundreds

of millions is not a blessing for classification to achieve better accuracy and scalability. We observe that

many k-mers may be expressed very similarly even across samples, such as a group of k-mers unique to

the same gene/transcript. These k-mers are redundant to each other to represent the true k-mer feature

space. Clustering is one of the popular unsupervised approaches to group similar objects (Jiang et al.,

2004). Unfortunately, they are not feasible to group abundance profiles of k-mers due to the unknown num-

ber of clusters as well as high computational cost when dealing with a large number of k-mers directly.

Various approaches have been developed in the past in the field of metagenomics classification to reduce

the set of k-mer features, but they are restricted to applications with only case and control experiments. In

this case, k-mers that can significantly differentiate case and control were selected for further classification

(LaPierre et al., 2019; Wang et al., 2018). Unfortunately, such an approach cannot be easily applied as k-mer

abundances in scRNA-seq cannot be set up as a two-group comparison. Often times, cell type classification

is a multi-class classification problem with half a dozen or more cell types in a single experiment.

In this paper, we propose scSimClassify, a reference-free approach for cell type classification. The scSim-

Classify reduces the original k-mer feature space by partitioning it into subsets of k-mers with similar abun-

dance profiles across a variety of cell types via an unsupervised approach. This is achieved by repurposing

simhash (Charikar, 2002), an extremely fast and effective algorithm that can automatically detect similar

items within a large set. We evaluate the performance of scSimClassify on scRNA-seq datasets generated

from breast cancer tissues with tumor and immune cell populations, as well as blood samples for studying

peripheral bloodmononuclear cells (PBMCs) in COVID-19 and influenza patients. Our experiments demon-

strate that scSimClassify can accurately identify cell types with the aggregated k-mer profiles (CKG fea-

tures). We also find that the top-ranked CKG features are biologically meaningful in consistency with

gene expression features. To the best of our knowledge, scSimClassify is the first reference-free method

for multi-class cell type classification based on k-mer level information. Besides improving general classi-

fication accuracy, our approach also makes it possible to classify cell types with incomplete or even un-

known references.

RESULTS

Overview of our reference-free approach scSimClassify

Figure 1 describes an overview of scSimClassify training steps for cell type classification. scSimClassify

takes the real-value k-mer abundance matrix as the input. The matrix is assembled from cells sequenced

by scRNA-seq and is preprocessed to filter out unreliable information. Here, we define k-mers sharing

similar abundance profiles across cells in a training set as similar k-mers. To reduce the size of the input,

simhash-based group generator (simGG) is implemented in three steps: (1) generate k-mers’ n-bit finger-

prints, (2) group similar k-mers into a CKG based on k-mers’ fingerprints, and (3) determine CKG abun-

dance matrix. Finally, scSimClassify uses the CKG abundance matrix for cell type classification. A more

detailed description of our reference-free approach is provided in STAR Methods.

Experimental configuration

The goal of our experiment was to evaluate scSimClassify for cell type classification using scRNA-seq data.

Two datasets of similar cell types in breast cancer tissues and two datasets of PBMCs (Table S1) were used

for evaluation.

Here, we compared the performance of CKG features and commonly used gene expression features

(referred as GE in the following) in the application of cell type classification. We conducted thorough com-

parisons among numerous general purpose classifiers (RF, GBM, MLP and SVM) between the two types of
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features. Benchmarking gene expression based classification methods to automatically assign cell identi-

ties, Abdelaal et al. (Abdelaal et al., 2019) concluded that ACTINN (Ma and Pellegrini, 2020) and scPred

(Alquicira-Hernandez et al., 2019) performed well on most datasets as single cell-specific classifiers. Thus

they are also included for comparison.

Several variations of CKG features with different combinations of k-mer length, k and simhash fingerprint

size, n were explored in this study. The k-mer length is either 16 or 21 (Dieffenbach et al., 1993), while

Figure 1. An overview of scSimClassify training steps for cell type classification

(A) The k-mers and their abundances in individual cells are obtained as the original input. Preprocessing is applied to the

original k-mer abundance matrix to filter out noises and systematic variations. Then, informative k-mers are selected

based on their abundance variability.

(B1) In the first step of simGG, k-mer abundance vectors are converted to n-bit fingerprints through simhash (taking n= 8

as an example).

(B2) In the second step of simGG, compressed k-mer groups (CKGs) are identified based on k-mers’ fingerprints. Each

CKG contains a set of k-mers sharing the same fingerprint.

(B3) In the third step of simGG, the abundance of a CKG in a cell is determined by averaging abundances of k-mers

following the removal of abundance outliers in the same group.

(C) Finally, a classifier is trained with the cells represented by CKG features. In this figure, colors of abundance matrices

indicate the values of abundances.
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fingerprint bit size for simhash can be either 16-bit or 32-bit. To investigate whether the reference genome

is essential for the cell type classification, we generated two categories of k-mers as inputs, as listed in Ta-

ble 1. The first category (on the left in Table 1) was generated without reference-based selection, contain-

ing k-mers derived from all the reads in scRNA-seq data; the second (on the right in Table 1) contained only

k-mers derived from reads that can be mapped to the reference genome.

To evaluate the performance of multi-class classification on imbalanced data, we calculated accuracy, F1

score by the module in the scikit-learn library. Each class provided a weighted contribution to F1 score (Pe-

dregosa et al., 2011).

Performance evaluation of intra-dataset cell type classification

In this experiment, we evaluated the scSimClassify’s performance by training and testing subsets of cells

included in the same scRNA-seq data. We named this an intra-dataset evaluation. The comparisons

were made by reporting results from the following groups: (a) scSimClassify with general purpose classifier

MLP, RF, GBM, and SVM. The features were GE, and 8 variations of CKGs (Table 1). (b) ACTINN, scPred with

GE feature set. The stratified 5-fold cross-validation was used to select the best hyperparameter combina-

tion for each classifier and feature set in scSimClassify. For all pipelines, five independent repetitions of 5-

fold cross-validation were performed to determine the classification results.

Comparison between GE and CKG features

We used two datasets, the Chuang’s dataset (Chung et al., 2017), as well as PBMC3k data set (10x Geno-

mics, 2016), to compare the performance of GE and CKE features in their ability for cell type identification.

As reported in Table 2, the overall winner for Chuang’s dataset is CKG feature classified by MLP, and CKG

feature classified by SVM wins the best classification performance on PBMC3k data set. All the general pur-

pose classifiers in scSimClassify outperform scRNA-seq specific classifier ACTINN and scPred trained with

gene expression features. For each general classification model, using CKG features quite consistently im-

proves the overall classification accuracy over GE features. This supports our hypothesis that k-mer level

features without gene annotation are sufficient for cell classification.

Performance of variations of CKG features

In this experiment, we also conducted thorough comparisons of the 8 variations of CKG features to under-

stand the effect of parameters n, k, and read types on the CKG performance.

CKG feature variations with different values of k. By fixing the size of fingerprints, classifiers, and read

types, 21-mer CKG feature variations represent the same or better performance comparing with 16-mer

CKG feature variations in 10 cases of 16 comparisons on both datasets. For example, the performance

of allk21n16 is 2.1% better than allk16n16 for RF in accuracy in Chuang’s dataset. It indicates that more

unique k-mers lead to a finer resolution in representing gene diversity. This can ultimately result in better

classification performance.

CKG feature variations with different values of n. While we fixed k-mer length, classifiers, and read

types, the performances of CKG feature variations grouped by 32-bit fingerprints are better than 16-bit fin-

gerprints in around two-thirds of 16 comparisons on both datasets. Theoretically, using the 32-bit finger-

prints will generate more random hyperplanes to separate the original k-mer space, thus creating a more

precise categorization of k-mer groups than 16-bit fingerprints. It eventually leads to more descriptive CKG

features and better classification performances.

Table 1. The nomenclature (id) of CKG feature variations with different combination of parameter values

id k n read type id k n read type

allk21n16 21 16 all mappedk21n16 21 16 mapped

allk21n32 21 32 all mappedk21n32 21 32 mapped

allk16n16 16 16 all mappedk16n16 16 16 mapped

allk16n32 16 32 all mappedk16n32 16 32 mapped

The variations on the left are reference-free and take all k-mers to generate CKG features. The variations on the right only take

k-mers that can be mapped to the reference genome to generate CKG features.
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Table 2. Performance evaluation of intra-dataset cell type classification

(A) Chuang’s dataset

Feature set Accuracy F1 # Features

MLP GE 0.938G0.017 0.936G0.018 11353G42

allkn16 0.941G0.023 0.939G0.026 5323G488

allk21n32 0.94G0.025 0.938G0.027 12939G204

allk16n16 0.942G0.023 0.939G0.026 6213G564

allk16n32 0.942G0.025 0.94G0.026 14191G218

mappedk21n16 0.935G0.023 0.933G0.026 5248G542

mappedk21n32 0.935G0.025 0.933G0.027 12334G472

mappedk16n16 0.932G0.023 0.929G0.025 6117G544

mappedk16n32 0.934G0.022 0.932G0.024 13443G222

RF GE 0.916G0.022 0.906G0.027 11353G42

allk21n16 0.916G0.024 0.906G0.028 5323G488

allk21n32 0.926G0.021 0.92G0.025 12939G204

allk16n16 0.895G0.029 0.881G0.035 6213G564

allk16n32 0.921G0.021 0.914G0.025 14191G218

mappedk21n16 0.915G0.026 0.906G0.031 5248G542

mappedk21n32 0.931G0.016 0.926G0.02 12334G472

mappedk16n16 0.892G0.025 0.877G0.031 6117G544

mappedk16n32 0.914G0.024 0.905G0.028 13443G222

GBM GE 0.925G0.019 0.92G0.022 11353G42

allk21n16 0.911G0.025 0.906G0.026 5323G488

allk21n32 0.923G0.02 0.917G0.023 12939G204

allk16n16 0.915G0.022 0.91G0.026 6213G564

allk16n32 0.922G0.025 0.918G0.028 14191G218

mappedk21n16 0.92G0.023 0.914G0.027 5248G542

mappedk21n32 0.928G0.017 0.923G0.02 12334G472

mappedk16n16 0.918G0.021 0.912G0.024 6117G544

mappedk16n32 0.918G0.02 0.912G0.023 13443G222

SVM GE 0.94G0.017 0.938G0.018 11353G42

allk21n16 0.94G0.025 0.937G0.029 5323G488

allk21n32 0.931G0.02 0.928G0.022 12939G204

allk16n16 0.938G0.025 0.934G0.028 6213G564

allk16n32 0.936G0.023 0.933G0.025 14191G218

mappedk21n16 0.936G0.024 0.934G0.027 5248G542

mappedk21n32 0.93G0.021 0.927G0.024 12334G472

mappedk16n16 0.937G0.022 0.933G0.025 6117G544

mappedk16n32 0.934G0.023 0.931G0.026 13443G222

ACTINN GE 0.906G0.024 0.9G0.026 24613G228

scPred GE 0.896G0.025 0.919G0.024 38913
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CKG feature variations with different read types. CKGs derived from k-mers of all reads outperform

those from mapped reads in three-quarters of comparisons on Chuang’s dataset and half of the comparisons

on PBMC3k dataset. This suggests our reference-free approach is able to capture cell type relevant features

for classification without preselecting k-mers from mapped reads. The k-mers from unmapped reads may

contribute to the additional performance gain of our reference-free approach. Based on the performance com-

parison of variations of CKG features, we selected allk21n32 as CKG feature set in the following experiments.

(B) PBMC3k dataset

Feature Set Accuracy F1 # Features

MLP GE 0.87G0.014 0.866G0.015 16115G18

allk21n16 0.893G0.015 0.892G0.016 6691G364

allk21n32 0.892G0.014 0.892G0.014 8191G101

allk16n16 0.893G0.012 0.893G0.012 6299G353

allk16n32 0.891G0.013 0.891G0.013 7959G104

mappedk21n16 0.894G0.013 0.894G0.013 6645G372

mappedk21n32 0.89G0.013 0.89G0.013 8187G109

mappedk16n16 0.894G0.013 0.894G0.013 6275G352

mappedk16n32 0.893G0.012 0.892G0.012 7938G117

RF GE 0.856G0.016 0.856G0.016 16115G18

allk21n16 0.879G0.01 0.876G0.01 6691G364

allk21n32 0.891G0.013 0.889G0.014 8191G101

allk16n16 0.881G0.012 0.877G0.013 6299G353

allk16n32 0.888G0.012 0.886G0.012 7959G104

mappedk21n16 0.883G0.013 0.879G0.014 6645G372

mappedk21n32 0.887G0.013 0.885G0.014 8187G109

mappedk16n16 0.884G0.011 0.881G0.012 6275G352

mappedk16n32 0.888G0.014 0.886G0.014 7938G117

GBM GE 0.879G0.01 0.874G0.011 16115G18

allk21n16 0.887G0.012 0.885G0.012 6691G364

allk21n32 0.893G0.013 0.892G0.014 8191G101

allk16n16 0.887G0.011 0.884G0.011 6299G353

allk16n32 0.891G0.014 0.889G0.014 7959G104

mappedk21n16 0.889G0.013 0.887G0.014 6645G372

mappedk21n32 0.891G0.014 0.889G0.015 8187G109

mappedk16n16 0.889G0.013 0.888G0.013 6275G352

mappedk16n32 0.895G0.015 0.893G0.015 7938G117

SVM GE 0.888G0.014 0.885G0.014 16115G18

allk21n16 0.895G0.014 0.894G0.014 6691G364

allk21n32 0.905G0.014 0.904G0.014 8191G101

allk16n16 0.894G0.013 0.894G0.014 6299G353

allk16n32 0.905G0.013 0.904G0.014 7959G104

mappedk21n16 0.894G0.015 0.894G0.015 6645G372

mappedk21n32 0.905G0.014 0.905G0.014 8187G109

mappedk16n16 0.897G0.013 0.896G0.013 6275G352

mappedk16n32 0.905G0.016 0.904G0.016 7938G117

ACTINN GE 0.856G0.014 0.856G0.015 12477G28

scPred GE 0.87G0.018 0.89G0.017 32738

Comparison of intra-dataset cell type classification performance among scSimClassify using GE features and 8 variations of CKG features (listed in Table 1), as

well as ACTINN and scPred with GE features. The mean and standard deviation are recorded for different evaluation metrics after five repetitions of 5-fold cross-

validation. The best performances in each classifier are highlighted in bold.
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Performance of highly variable features

Inferring highly variable features is a common step in current bioinformatics analysis (Brennecke et al.,

2013). To evaluate the necessity of highly variable features in this study, we selected the top 2000 variable

features with default settings of Seurat VST (Butler et al., 2018) for both GE and CKG (allk21n32) feature

sets. Classification performance on intra-datasets with highly variable features is shown in the Table S2.

Comparing classification performance based on highly variable features and all features (Table 2, Table

S2), there is no clear winner for cell type classification from both datasets and both feature sets. The com-

parison results are classifier-dependent and dataset-dependent. Moreover, inferring a subset of features

may exclude discriminant sources of variation across cells (Alquicira-Hernandez et al., 2019) and introduce

feature selection parameters. Therefore we used all the features to classify cell types in this study.

Performance evaluation of inter-dataset cell type classification

In this experiment, we evaluated if scSimClassify trained with one scRNA-seq dataset may be applied to

classify cell types in the other, which we referred to as inter-dataset classification.

We conducted two sets of inter-dataset experiments to predict shared cell types. In one experiment, Chuang’s

dataset was used as the training data and the trainedmodel was applied to predict the cell types in Karaayvazr’s

dataset (Karaayvaz et al., 2018). These two data sets consist of cells frombreast cancer tissues. In the other exper-

iment, cell types of three PBMC sets, which were cells from a COVID-19 patient, a FLU patient, and a healthy

donor in Lee’s dataset (Lee et al., 2020), were identified based on the model trained on PBMC3k dataset. To

obtain optimal hyperparameters for the target distribution, we randomly chose 20% and 80% of cells in the tar-

geting sets for validation and testing, respectively. The validation set was used togrid search optimal hyperpara-

meter combination (Feurer and Hutter, 2019). The GE and well-performing CKG feature set, allk21n32, sug-

gested by intra-dataset, were used for inter-dataset classification.

Table 3 represents the performance of inter-dataset classification between Chuang’s dataset and Karaay-

vazr’s dataset with averaged results over 5 repetitions. Overall, SVM using CKGs (allk21n32) shows the high-

est accuracy for detecting cell types, followed by GBM and ACTINN with GE features. Again the CKG fea-

tures show competitive performance to GE features in almost all metrics. For MLP, RF, and GBM, the CKG

feature set (allk21n32) consistently outperforms GE features in all metrics. The scPred method failed to

identify cells in this task even tuning the default parameters. Here, inter-dataset experiment shows a

more pronounced performance gain using CKG features over GE features when compared to the perfor-

mance on intra-data set experiment of the same configuration.

For PBMC inter-dataset classification (Figure 2), there is no winner feature set based on the results from

three samples in Lee’s dataset. However, for RF, using CKG features consistently improves the accuracy

in comparison to using GE features. As for GBM, CKG features show relatively equivalent performance

to GE features. As for MLP and SVM, CKG features outperform GE features in FLU sample.

Table 3i. Performance evaluation of inter-dataset cell type classification on breast cancer datasets

Feature set Accuracy F1 # Features

MLP GE 0.69G0.045 0.69G0.045 11381

allk21n32 0.764G0.039 0.764G0.039 12958

RF GE 0.803G0.007 0.803G0.007 11381

allk21n32 0.828G0.003 0.828G0.003 12958

GBM GE 0.842G0.005 0.842G0.005 11381

allk21n32 0.828G0.002 0.828G0.002 12958

SVM GE 0.692G0.007 0.692G0.007 11381

allk21n32 0.872G0.003 0.872G0.003 12958

ACTINN GE 0.838G0.028 0.852G0.023 17061G36

Comparison of inter-dataset cell type classification performance among scSimClassify using GE and CKG (allk21n3) feature

sets, as well as ACTINN with GE features. The classification models are trained on Chuang’s dataset and tested on Karaay-

vazr’s dataset. The mean and standard deviation are recorded for different evaluation metrics after five repetitions. The best

performance in each classifier is highlighted in bold.
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Biological interpretation of CKG features

In this section, we tried to identify the biological origin of important CKG features and assessed whether

they were biologically meaningful.

A CKG was formed by k-mers sharing similar abundance profiles across cells. These k-mers might be from

the same gene, genes sharing significant sequence similarity (such as gene families), or even co-regulated

genes. Here, we defined that a CKG as a single-gene CKG if more than 90% of k-mers in it can be mapped

to one and only one gene. For those CKGs from genes with shared subsequences or potential co-regulated

genes, we defined them as multi-gene CKGs if at least 45% of k-mers in them can bemapped to each gene.

Except for single-gene and multi-gene CKGs, we categorized the remaining CKGs in the CKG feature sets

as unannotated CKGs. To identify the annotation for a CKG, we ran a blast search to determine each k-

mers’ gene association against protein-coding reference transcriptome (hg19).

WegeneratedCKG feature sets (allk21n32) fromChuang’s and PBMC3k datasets respectively to investigate

CKGannotation distribution. RankingCKG feature importance by trained tree-basedmodels (RF, GBM), we

analyzed annotation distributions of top N of the most important CKGs in the feature sets by changing the

value of N (Figure 3). Setting N as the number of CKGs in a feature set (the last stacked bar in Figure 3), it

shows that 67% of CKGs are single-gene CKGs, 5% of them are multi-gene CKGs among feature set gener-

ated fromChuang’s dataset, while the corresponding proportions for PBMC3k dataset are 80.7% and 7.1%,

respectively. It supports that simGG is capable of statistically grouping k-mers from a gene or multiple

genes. Most of the genes associated with multi-gene CKGs come from the same gene families sharing sub-

sequences. As expected, the proportion of single-gene CKG increased while decreasing N and selecting a

relatively small set of the most important CKG features. However, there still exist multi-gene and unanno-

tated CKGs even when N is as small as 50. This indicates that, in addition to single-gene CKGs, both

multi-gene and unannotated CKGs carry differentiate information for cell type classification.

We next analyzed the common genes shared within CKG’s gene annotation and GE. Here we focused on

exploring features with a significant contribution to the classification. The top 10 most important GE and

CKG features were derived from tree-based models used in intra-dataset experiments. From five repeti-

tions of 5-fold cross-validation on intra-dataset, we obtained 25 sets of classification models. For the top

10 most important GE features, its gene set consists of unique genes over 250 genes. For the top 10

most important CKGs (allk21n32), the gene set consists of unique genes over gene annotations of 250

CKGs.

Given a large proportion of common genes associated with the top 10 most important features in GE and

CKGs derived from both RF and GBM (Table 4), we have the following observations. First, a large propor-

tion of these genes are marker genes for each cell type classification task. For Chuang’s dataset, numerous

genes, such as PPP1R1B (Kotecha et al., 2019), FABP7(Liu et al., 2012), and ERBB2 (Tan and Yu, 2007), were

reported by prior literature showing close associations with breast cancers (Kotecha et al., 2019; Liu et al.,

2012; Tan and Yu, 2007; Shepherd et al., 2016; Dedes et al., 2010). For PBMC3k dataset, a set of common

genes (CCL5, CD14, CD3D, CD79A, CFD, CST3, GNLY, LST1, LYZ, NKG7, S100A4, S100A8, S100A9, TCL1A)

were identified as marker genes by Seurat scRNA-seq analysis pipeline (Butler et al., 2018). Secondly, the

Figure 2. Performance evaluation of inter-dataset

cell type classification on PBMC data sets

Comparison of CKG features (allk21n32) and GE

features for inter-dataset PBMC classification. Each

point in the scatterplot shows the accuracy using CKGs

vs using GE. Three PBMC samples in Lee’s dataset are

used. Each cell in the sample is classified by four

classifiers.
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vast majority of common genes, as highlighted in bold, are shared by both RF and GBM classification

models. This suggests that common genes fromCKGgene annotations andGE can be consistently derived

from tree-based models.

DISCUSSION

This paper presents a reference-free classification method for cell type identification in scRNA-seq data.

Our method leverages k-mer level features from the entirety of the reads for cell type classification without

requiring the alignment of reads. This enables the utilization of full sequencing reads especially when the

reference genome is unavailable or when the subject genome is highly mutated.

Our experiments on four datasets demonstrate that our proposed CKG features serve as competitive fea-

tures to gene expression features for cell type classification, which are exhibited across a variety of classi-

fication models. This suggests that CKG features can be an effective alternative to gene expression fea-

tures for cell type identification and can potentially be used in replacement of gene expression features.

In this study, we attempt to interpret CKGs using the k-mers associated with genes. We find that our method

naturally groups k-mers originated from the same gene together. This allows us to annotate CKG features

with known genes to assess their biological significance. The significant overlap of gene annotations of top-

ranked CKG features with top-ranked genes from GE indicates our method is biologically meaningful. In addi-

tion, we demonstrate that CKGs without specific gene annotations are also discriminative for cell types.

Limitations of the study

To address limitations of current work, our future work will focus on four directions: (1) We plan to expand

the current evaluation to include more scRNA-seq datasets for validation and benchmarking, especially

sequencing data with poorly annotated genomes; (2) We will continue our effort in the biological interpre-

tation of CKG features, including the unannotated CKGs’ potential biological association with mutations

and intergenic elements; (3) We will further optimize configuration parameters such as exploring even

larger fingerprint size n to see if the performance gain will continue to improve or will plateau at a certain

point. (4) We will conduct a thorough evaluation of scalability of both training and classification steps.

Figure 3. CKG’s gene annotation distribution

Distributions of three categories of CKGs in terms of their association with known gene annotation among top N of the

most important CKGs derived from RF and GBM models. The CKG feature sets (allk21n32) are generated by Chuang’s

dataset (A and C) and PBMC3k dataset (B and D), respectively. The last stacked bar shows category distribution of the

whole CKG feature set (The datasets and classifiers are shown below bar plots).
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Table 4. The list of common genes of CKG’s gene annotation and GE

(A) Chuang’s dataset

GBM ABRACL AGR3 CASC3 CD3D CD3G CD53 CHI3L1 COX6 CTTN CWC25

ERBB2 ESR1 FABP7 HLA-DRA HSPB8 LRMP MIEN1 MRPL45 MSL1 MT-ND2

NDUFC2 NF1 PI15 PLEKHA5 PPP1CB PPP1R14C PPP1R1B PSMB3 RAB3D RGS13

RPL23 S100A11 SLC30A8 TCEAL1 TRBC2

RF CASC3 CD3D CTTN ERBB2 ESR1 FXYD3 HLA-DRA KRT19 MIEN1 MRPL45

MS4A MSL1 ORMDL3 PI15 PLEKHA5 PPP1R14C PPP1R1B PSMB3 RPL23 SOX11

(B) PBMC3k dataset

GBM AIF1 CCL5 CD14 CD3D CD74 CD79A CD79B CFD COTL1 CST3 CST7

FCER1G FCN1 FTH1 FTL GABARAP GNLY GPX1 GZMA HLA-DRA LGALS LGALS2

LST1 LYZ NKG7 RPS14 RPS6 S100A4 S100A8 S100A9 TCL1A TYMP TYROBP

RF AIF1 B2M CD74 FCGR3A FTL HLA-DRA LYZ NKG7 S100A9 TYROBP

Common genes identified as the top 10most important genes selected fromGE features and associated with the top 10most important CKG features (allk21n32)

in intra-dataset experiments under RF and GBM. The overlaps of common genes between RF and GBM are highlighted in bold.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Jinze Liu (Jinze.Liu@vcuhealth.org).

Materials availability

This study did not generate new biological data.

Data and code availability

� This paper analyzes existing, publicly available data. These accession numbers for the datasets are

listed in the key resources table.

� The current version of scSimClassify is implemented in python and can be found at https://github.

com/digi2002/scSimClassify.

� Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Beginning from a k-mer abundance matrix, scSimClassify takes three main steps to build a classifier with

CKG features. The major contribution of scSimClassify is the simhash-based group generator(simGG),

which compresses k-mers with similar abundance profiles into groups. The compressed k-mer groups

(CKGs) serve as the aggregated k-mer level features for cell type classification. In this section, we describe

the workflow of scSimClassify as shown in Figure 1. The following table includes formal notations that will

be used in this section.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Chuang’s dataset NCBI SRA GSE75688

Karaayvaz’s dataset NCBI SRA GSE118389

PBMC3k dataset 10x Genomics https://support.10xgenomics.com/single-cell-

geneexpression/datasets/1.1.0/pbmc3k

Lee’s dataset NCBI SRA GSE149689

Software and algorithms

scSimClassify This paper https://github.com/digi2002/scSimClassify

Simhash (Manku et al., 2007) https://github.com/1e0ng/simhash

Table: Formal notations in the method

i the index of a k-mer d the index of a cell

I unique k-mers in a training set I’ (I03I) unique informative k-mers in a training set

D cells in a training set udi the abundance of k-mer i in cell d

Ri = fudigd˛D a k-mer abundance vector, representing

a k-mer i

with abundances across cells in a training set

Cd = fudigi˛I a cell d represented with an abundance

vector across k-mers in a training set

g the index of a CKG G a set of CKGs
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Preprocessing and selection of informative k-mers

The counting of k-mer abundances in scRNA-seq reads of individual cells is carried out using jellyfish (Mar-

çais and Kingsford, 2011). Only the canonical form of a k-mer sequence is kept, i.e., the lexicographical min-

imum of itself and its reverse complementary sequence. The original k-mer abundance matrix as shown in

Figure 1A is further processed based on three principles: (1) normalize k-mer abundance within individual

cells; (2) filter out k-mers with sparse expressions across cells in a training set; (3) select informative k-mers

with high abundance variations across cells in a training set.

To allow for a fair comparison across cells with variable sequencing depth, we normalize the original k-mer

abundance of each cell, i.e., Cdðd˛DÞ, by the total number of sequenced reads in cell d.

Often, k-mers with sporadic expression across the cell populations may be unreliable due to sequencing

errors. We define oðRiÞ as the occurrence of k-mer i˛I, which is the number of nonzero entries in ℛi. A

k-mer is removed if it appears in only a small percentage of cells in a training set, i.e., oðRiÞ%a jDj. The
default setting for a is 10%.

Note that not all k-mers are equally important for classification purposes. For example, some k-mers from

housekeeping genes may have very consistent abundances across all cells. Such k-mers may not be useful

in differentiating cell types. We assume the abundance vector of an informative k-mer exhibits a high stan-

dard deviation. Let stdðRiÞ be the standard deviation of k-mer abundance vector Riði˛IÞ. A k-mer is

selected as an informative k-mer if its stdðRiÞ is among the top b% in k-mer set I. The default setting for

b is 5. The set of informative k-mers I’ (I03I) will be the input of the next step.

Simhash-based group generator(simGG)

As mentioned in Introduction, k-mers may originate from the same gene/transcript, sharing similar abun-

dance profiles across cells. Such k-mers can be redundant to represent cells. Therefore, we want to group

similar k-mers into CKGs based on their corresponding abundance vectors across cells in a training set.

However, conventional clustering algorithms are not scalable due to the presence of a huge set of k-

mers. Even k-means clustering can not be applied due to the lack of knowledge on the number of clusters.

In this study, we utilize the locality sensitive hashing (LSH) (Gionis et al., 1999), an approximate algorithm

that is applicable to objects on a large scale, to detect similar k-mers. The underlying idea of LSH is to

hash objects with similar features to similar hash values such that object similarity could be determined

by comparing their corresponding hash values. Here, we adapt the simhash method (Charikar, 2002) to

group k-mers sharing similar abundance vectors. Simhash was originally developed to identify documents

with similar word vectors in a large corpus. The simhash method is one of LSH functions that can represent

feature vectors of objects in the continuous space with n-bit fingerprints in a binary form. It has the property

that the more similar the objects are, the smaller the Hamming distance between their fingerprints, and the

higher probability that they share the same fingerprints. Our proposed simhash-based method, named

simGG, has the following steps:

Step one: generate k-mers’ n-bit fingerprints. Given a point in space (in this case, a k-mer abundance

vector), the simhash method generates an n-bit fingerprint by determining the point’s relative location

among n generated hyperplanes. Each bit of the fingerprint corresponds to a hyperplane. The bit’s value

is set to 1 if the point is above the corresponding hyperplane; otherwise, it is set to 0. Two points with the

same n-bit fingerprint indicate that they are very close as none of the n hyperplanes is able to separate

them. Therefore, using more hyperplanes (larger n) often result in a more accurate similarity estimation

for k-mer abundance vectors as space is split into much smaller regions.

To speed up the performance and avoid storing hyperplanes, we implement the simhash method as the

pseudocode given in Algorithm 1 (Sood and Loguinov, 2011). The steps to map a k-mer abundance vector

ℛi (i˛I0) to an n-bit fingerprint start by initializing a temporary arrayW with n zeros. Next, the algorithm gen-

erates an n-bit hash 4d for each cell d in Ri (i˛I0) with a consistent hashing mechanism md5 (Dobbertin,

1996). For each bit of 4d , it decides to add or subtract udi, the abundance of k-mer i in cell d, to/from

W½j� based on whether the j-th bit of 4d is one or zero. After all the cells of Riði˛I0Þ are processed, jth bit

in fingerprint is obtained by setting 1 if W½j� is positive, otherwise setting to 0. Therefore, a k-mer abun-

dance vector Riði˛I0Þ is mapped to [0,2n] n-bit fingerprint values as shown in Figure 1B1 and 11B2.
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Step two: identify compressed k-mer groups (CKGs). Based on the property of simhash, two k-mers are

considered similar if the Hamming distance between their corresponding fingerprints is very small. Considering

the large scale of k-mers and similarity identification performance, we use the strictestmeasure to identify similar

k-mers by checking if Hamming distance is zero or not(Williams and Giles, 2013). Thereby we do not need to

compute Hamming distances of all pairs of k-mers’ fingerprints. We define a CKG as a group of similar k-

mers if they share exactly the same fingerprint. An example of CKGs is provided in Figure 1B3.

To group similar k-mers, a naive clustering method takes Oð
�
�
�I0j2

�
�
�D

�
�
�Þ time. In comparison, the complexity of

simGG is bounded by OðjI0jlogjI0jÞ. The algorithm first simhashes informative k-mer abundance vectors Ri (i˛
I0) to n-bit fingerprints with OðjI0jÞ time complexity. This is followed by the identification of the k-mers with

the same fingerprints through sortingwithOðjI0jlogjI0jÞ time complexity. Additionally, bothof the steps in simGG

can be executed in parallel computing (Grama et al., 2003), which may further reduces the running time.

Step three: determine CKGs’ abundances in individual cells. In this step, the pre-built CKGs from a

training set are used to aggregate k-mer abundances into CKGs’ abundances for both training and test

sets. In general, the abundances of k-mers belonging to the same CKG are similar in an individual cell,

as shown in Figure 1B3. As a result, we can compress those k-mers’ abundances into a single abundance

to represent the expression of a CKG in a cell. Given k-mers belonging to cell d and CKG g, we first filter

out the outliers whose abundances fall outside of two standard deviations from the mean abundance and

then average the abundances of the remaining k-mers as the abundance of CKG g for cell d. To charac-

terize cell d with CKGs obtained from previous step, we iteratively determine the abundance of each

CKG for cell d. As shown in Figures 1A and 1C, the feature size of individual cells is reduced from the orig-

inal k-mer size jIj to CKG feature size jGj.

Algorithm 1. Pseudocode of the simhash algorithm

Procedure Simhash(ℛi)8Simhash k-mer abundance vector ℛi

W ) array of n zeros

for d˛D do 8Examine each cell

4d) Hash(d) 8Compute n-bit hash

for j = 1 to n do 8Iterate through each bit

if jth bit of 4d = 1 then

W ½j�)W ½j�+udi

else

W ½j�)W ½j� � udi

end if

end for

end for

for j = 1 to n do 8Revisit all bits

if W ½j�>0 then

fingerprint½j�)1

else

fingerprint½j�)0

end if

end for

end Procedure
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Classification algorithms

During the classification process, we adopt a variety of classification algorithms (Abdelaal et al., 2019; Iyer

et al., 2020) to classify cell types with CKG features. These methods include random forest (RF) (Breiman,

1996), gradient boosting machine (GBM) (Natekin and Knoll, 2013), multilayer perceptron (MLP) (Hornik

et al., 1989) and support vector machine (SVM) (Cortes and Vapnik, 1995). The four classifiers are selected

to classify cell types with CKG features as they represent four branches of the general classification algo-

rithms. RF andGBM are tree-based ensemblemethods that randomly consider a subset of features to build

the classifier. The difference between them is that RF builds trees independently, while GBM builds one

tree at a time to correct decision trees that come before it. MLP is a kind of artificial neural networks

that considers all the features to determine the data classes. SVM finds a plane with the maximum margin

to separate two classes of data points. Benchmarking on these classifiers allows us to investigate how

different CKG features perform on each type of the state-of-the-art classifiers.

Dataset description

We identified four datasets (Chuang, Karaayvaz, PBMC3k and Lee) for evaluation in our experiments. They

vary in the number of cells, cell populations, and sequencing protocols (Table S1).

Both Chuang’s and Karaayvaz’s datasets were sequenced from breast cancer tissues using Smartseq-2 tech-

nology where full-length transcripts were sequenced within individual cells. Their associated experiments

aimed at revealing the characteristics of breast cancer subtypes shaped by tumor cells and immune cells in

the microenvironment (Chung et al., 2017; Karaayvaz et al., 2018). The Chuang’s dataset (Chung et al.,

2017) contains 317 epithelial breast cancer cells, 175 immune cells, and 23 stromal cells. The epithelial breast

cancer cells are further divided into four subpopulations: 73 luminal A subtypes, 25 luminal B subtypes, 130

HER2 subtypes, and 89 triple-negative breast cancer (TNBC) subtypes. And 175 immune cells can be further

classified into three categories: 83 B cells, 54 T cells, and 38 macrophages. In all, it consists of eight types of

cells. The Karaayvaz’s dataset (Karaayvaz et al., 2018) contains 1098 cells originated from five different cell type

populations: 868 epithelial breast cancer cells, 94 stromal cells, 64 macrophages, 53 T cells, and 19 B cells.

Both datasets share five common cell types: epithelial breast cancer cells, stromal cells, B cells, T cells, and

macrophages, making it possible to classify cell types across datasets.

The PBMC3k and Lee’s datasets are human PBMC datasets. They were sequenced by 10x genomics, which

only sequenced the 30-end of the transcripts and generate a relatively low number of reads. The scRNAseq

data and its gene expression profiles from PBMC3k dataset are freely available from 10X Genomics (10x

Genomics, 2016) with nine identified cell types. This is a well-analyzed dataset with the ground truth cell

type assigned by Seurat clustering protocol (Butler et al., 2018). Lee’s study performed scRNA-seq using

PBMCs to identify factors associated with the development of severe COVID-19 infection. We randomly

selected three samples from Lee’s dataset. They were PBMCs from a healthy donor (HD), a patient with se-

vere influenza (FLU), and a patient with COVID-19. Also, six shared cell types between PBMC3k and Lee’s

dataset made cross-dataset classification possible.

Classification feature generation

Gene expression data associated with the original scRNA-seq data from each dataset was downloaded

from the GEO repository or 10X Genomics. We followedQC criteria as used in their original studies (Chung

et al., 2017; Lee et al., 2020) to discard low-expressed or unexpressed genes.

We generated 8 variations of CKG featurs, containing k-mers derived from both all the reads and mapped

reads in scRNA-seq data. To obtain mapped reads in Chuang’s dataset, the scRNA-seq reads were aligned

to human genome reference sequences (hg19) using the 2-pass mode of STAR (default parameters) (Dobin

et al., 2013), following the same alignment procedure for gene expression quantification (Chung et al.,

2017). As for PBMC3k dataset, we obtained read alignment information from the downloaded BAM file.

Due to different sequencing protocols, the average reads per cell on PBMC3k is around 69,000 reads per

cell in comparison to over 10 million reads per cell in Chuang’s dataset. Therefore we set the k-mer filtering

threshold to be a = 0.5% to retain sufficient k-mers to generate CKG features in the PBMC3k dataset,

comparing to the default setting of a = 10% as in Chuang’s dataset.
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Classifier configuration

We applied MLP, RF, GBM, and SVM to classify cells with each feature set. A grid search to identify optimal

hyperparameter combination was performed for all classifiers. The hyperparameter searching space for RF

and GBM was the maximum tree depth (2/6/10), number of estimators (10/50/100), and a maximum of fea-

tures to look for best split (‘‘sqrt’’/‘‘log’’/‘‘None’’). SVM selected parameters from the type of kernel (linear/

rbf) and themargin error controller (0.0001/0.001/0.01). The options for MLP were the number of the hidden

layer (1/2) and the dropout rate (0.4/0.5/0.6). The number of neurons in each layer was the average of

neuron numbers of its previous layer and output layer. RF, GBM and SVM were implemented via the sci-

kit-learn library (Pedregosa et al., 2011), and the MLP was implemented in Keras (Gulli and Pal, 2017).

We run ACTINN and scPred with their defaulting settings after downloading scripts or installing packages

from their respective websites.
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