
1Scientific Reports | 7:39733 | DOI: 10.1038/srep39733

www.nature.com/scientificreports

Loss-tolerant measurement-device-
independent quantum private 
queries
Liang-Yuan Zhao1,2, Zhen-Qiang Yin1,2, Wei Chen1,2, Yong-Jun Qian1,2, Chun-Mei Zhang1,2,†,‡, 
Guang-Can Guo1,2 & Zheng-Fu Han1,2

Quantum private queries (QPQ) is an important cryptography protocol aiming to protect both the user’s 
and database’s privacy when the database is queried privately. Recently, a variety of practical QPQ 
protocols based on quantum key distribution (QKD) have been proposed. However, for QKD-based QPQ 
the user’s imperfect detectors can be subjected to some detector- side-channel attacks launched by 
the dishonest owner of the database. Here, we present a simple example that shows how the detector-
blinding attack can damage the security of QKD-based QPQ completely. To remove all the known and 
unknown detector side channels, we propose a solution of measurement-device-independent QPQ 
(MDI-QPQ) with single- photon sources. The security of the proposed protocol has been analyzed 
under some typical attacks. Moreover, we prove that its security is completely loss independent. The 
results show that practical QPQ will remain the same degree of privacy as before even with seriously 
uncharacterized detectors.

An ideal symmetrically private information retrieval (SPIR) protocol1 allows a user, e.g. Alice, to extract an item 
of a database without revealing any information about which one she has retrieved to the database owner, e.g. 
Bob (perfect user privacy). Meanwhile, Alice can obtain only one item in a single query (perfect database privacy). 
SPIR can be used in the internet search and online transactions for the valuable and sensitive information. A SPIR 
protocol is a 1-out-of-N oblivious transfer (OT) protocol essentially2. In the 1-out-of-N OT, Bob sends N bits 
and Alice chooses which one she obtains. At the end of the protocol Alice knows the chosen bit value but has no 
information about other bits, while Bob is entirely ignorant of which bit Alice received. The security of classical 
OT relies on the unproven computational assumptions1. Unfortunately, Lo has proven that quantum mechanics 
along cannot provide unconditionally secure perfect quantum OT either3. This implies the impossibility of perfect 
quantum SPIR. It can be concluded from Lo’s proof that if a quantum SPIR has perfect user privacy, then Alice can 
perform an Einstein-Podolsky-Rosen-type4 attack to access the entire database without being detected.

Despite the no-go theorem about ideal quantum SPIR, some interesting degree of security can be achieved 
with changes in the model or the security requirements of the protocol. The first attempt of combining the quan-
tum mechanics with SPIR was made by Kerenidis and De Wolf 5. However, in their protocol, the database is repli-
cated over more than one owner and it preserves database privacy against only honest user. In 2008, Giovannetti, 
Lloyd and Maccone proposed a cheat sensitive quantum protocol (GLM08 protocol), named quantum private 
queries (QPQ), to solve the SPIR problem6. The term cheat sensitive means that Alice can catch Bob cheating with 
a nonvanishing (but nonunity) probability if Bob attempts to learn what Alice queries. The imperfect user privacy 
is the reason that QPQ can evade the no-go proof of Lo3. The security of GLM08 has been analyzed strictly7 and a 
proof-of-principle experiment has been implemented by De Martini et al.8. In the experiment, the bits of database 
were represented by an array of half-wave plates. If there existed a half-wave plate in one spatial mode, it meant 
that the corresponding bit was 1. Otherwise the bit was 0. For the user Alice, she prepared two non-orthogonal 
polarized states (the query state and test state), and sent them to Bob in a random order. The query state was 
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routed into the desired spatial mode to obtain the retrieved bit value. Combining this value with the test state, 
Alice could verify the honesty of Bob with a certain probability.

The advantage of GLM08 and its improved version9 is that the communication and computational complexity 
has been reduced exponentially. However, the security of the protocols may be seriously compromised in the pres-
ence of losses and it will be difficult to retrieve when the dimension of the database is large. In 2011, Jakobi et al.10  
proposed a QPQ protocol (J+11 protocol) based on the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) quantum 
key distribution (QKD) protocol11. J+11 is completely impervious to losses and can be easily implemented for 
large database with mature QKD technology. By adjusting the coefficients of the sent states, Gao et al. made 
the J+11 flexible for either better user privacy or better database privacy (G+12 protocol)12. Referring to the 
two-way QKD scheme, the QPQ has been designed to perform better in resisting the joint-measurement attack13. 
The QKD-based QPQ is a very practical solution and has been generalized with other QKD protocols14–16. The 
first experimental demonstration of J+11 and G+12 has been done on a QKD system17 with some necessary 
modifications by Chan et al.18. In their experiment, four polarized states from two orthonormal bases were pre-
pared randomly by Bob using the phase-randomized weak coherent state (PR-WCS) source. The faint laser pulses 
were transmitted to Alice trough a 12.4 km dark fiber with sequences of strong light, which acted as quantum 
frames17 to synchronize and compensate the time shift. Alice measured the faint pulses by passively selecting one 
of the bases randomly. After the classical postprocessing, including Bob announcing pairs of non-orthogonal 
states, key compression and error correction, Alice performed a total of 11 queries at the single-photon level. 
This experiment shows the feasibility of QKD-based QPQ with state-of-the-art technology. Note that the novel 
error-correcting code developed by Chan et al.18 and another one by Gao et al.19 to address the noise in the chan-
nel can protect the privacy of both parties. As the above QPQ protocols focused mainly on retrieving a single bit, 
multi-bit block QPQ has been proposed20,21, in which Alice could obtain several desired bits by just one query. 
Nevertheless, we still focus on the single-bit QPQ protocols in this paper for there are still many problems needed 
to be solved.

Note that the quantum processes of the J+11 have no difference from the implementation of SARG04 QKD. 
The practical security loopholes22,23, especially the detector side channels24–26, in QKD may still exist in prac-
tical J+11 system, which could damage the security of the system. In the following, we will give a strategy of 
detector-blinding attack on the practical J+11 and G+12 systems and show how it breaks the user privacy com-
pletely. To remove all the known and unknown detector-side-channel attacks launched by dishonest Bob, we 
propose a measurement-device-independent QPQ (MDI-QPQ) protocol with single-photon sources. MDI-QPQ 
benefits from the idea of MDI-QKD27–36 and enriches the application of the MDI paradigm in the mistrustful 
quantum cryptography37. Moreover, the security of our protocol is loss-tolerant.

In MDI-QKD, the detector side channels are removed by using the Bell state measurement (BSM) conducted 
by an untrusted third party. The two legitimate parties need only to know their state preparations. MDI-QPQ 
is similar to MDI-QKD in that Alice and Bob also need to characterize only their state prepare processes. A 
slight difference is that the BSM is played by Alice because there is no third party here. Nevertheless, Alice needs 
only to obtain a Bell state outcome from her measurement device, but does not have to characterize it any-
more. Thus, the idea of MDI-QKD can be modified to defend a dishonest Bob’s detector-side-channel attacks in 
MDI-QPQ. However, note that the untrusted measurement device is now in Alice’s laboratory, which is different 
from MDI-QKD. We emphasize that Alice should protect the classical information of her state preparations from 
leakage to both the measurement device and Bob. Considering that, we must be careful when adapting the MDI 
paradigm into the mistrustful quantum cryptography where the legitimate parties do not trust each other.

Results
The principle of detector-blinding attack on the practical QKD-based QPQ systems.  To demon-
strate that the detector side channels do exit in previous practical QKD-based QPQ systems, let us take the detec-
tor-blinding attack as an example. We first briefly review the basic ingredients of the J+11 protocol. In the J+11 
protocol, four qubits from two mutually unbiased bases, e.g., the rectilinear basis {|0〉​, |1〉​} and the diagonal basis 
{|+​〉​, |−​〉​}, are sent randomly from Bob to Alice. Here, |0〉​ and |1〉​ represent the horizontal and vertical polariza-
tion states, + = +( 0 1 )1

2
 and − = −( 0 1 )1

2
, respectively. The rectilinear basis stands for the raw 

key bit 0 and the diagonal basis refers to the raw key bit 1. Alice measures the states in the two bases randomly. For 
each of the successfully detected photons, Bob tells Alice two states which are composed of the actually sent state 
and a random one from the other basis. Combining with her measurement result, Alice can decode the raw key 
bit certainly with probability 1

4
. Then, the raw key are divided into several substrings by Bob with the length equal-

ing to the database and are added bitwise to generate the final key. Ideally, Alice will know only one final key and 
Bob has no information of its position. Alice computes the position difference between the known final key and 
her desired element of the database, and announces it to Bob. Bob shifts the final key according to the difference 
value and encrypts the database. At last, Alice can obtain that element from the encrypted database privately with 
the known final key.

Seeing the quantum processes of J+11 are the same with SARG04 QKD, we find that the principle of the 
detector-blinding attack on practical J+11 system is similar to the one in QKD26,38 with changes only in the classical 
postprocesses. For definiteness, let Alice chooses the bases actively with two single-photon detectors. Assume that 
in classical linear mode, the detector i ∈​ {1, 2} always clicks from a trigger pulse with optical peak power ≥​ palways,i,  
and never clicks from a trigger pulse with optical peak power ≤​ pnever,i. A perfect detector-blinding attack is pos-
sible if the equation
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<p p1
2

(max{ }) min{ } (1)i i i ialways, never,

is satisfied26, where 1
2

 is the mutual projection probability of the honest states from different bases. Equation (1) 
implies that if Alice’s basis differs from Bob’s, then neither of the two detectors would click.

The procedures of the detector-blinding attack launched by dishonest Bob in practical J+11 system are as fol-
lows. First, Bob transmits bright light into Alice’s detectors to convert them into classical linear model. Then, 
instead of preparing the sent states in single-photon pulses, Bob sends them by bright trigger pulses with peak 
power just above pmax { }i ialways, . Consequently, Alice has a successful click only if her basis is consistent with the 
sent state due to equation (1). Meanwhile, the non-detected trials will be discarded and announced by Alice 
because of the loss-tolerant property of the protocol. Thus, Bob will know which cases Alice has successful clicks, 
and her bases and measurement results correspondingly. Based on these information, Bob can determine with 
certainty whether Alice will obtain a conclusive raw key bit. For example, Bob sends the state |0〉​ and Alice has a 
click, which implies that Alice has chosen the rectilinear basis and obtained the |0〉​ state. Then, Bob can make 
Alice acquire a conclusive raw key bit 1 if he announces the states pair {|1〉​, |−​〉​}. Otherwise, he announces the 
states {|0〉​, |+​〉​} and Alice will have an inconclusive result. Finally, Bob could control precisely which final key is 
known to Alice by dividing the raw key properly, which means the user privacy is damaged completely.

As for G+12 protocol, Bob sends the states {|0〉​, |1〉​, |0′​〉​, |1′​〉​} to Alice, which is the difference from J+11. The 
states |0′​〉​ =​ cos θ|0〉​ +​ sin θ|1〉​ and |1′​〉​ =​ sin θ|0〉​ −​ cos θ|1〉​, where θ ∈ π( )0,

2
. To perform a perfect 

detector-blinding attack as above, the relationship of equation (1) should be modified to

θ

θ

<

<

p p

p p

cos (max{ }) min{ },

sin (max{ }) min{ }, (2)

i i i i

i i i i

2
always, never,

2
always, never,

where cos2θ and sin2θ are the mutual projection probabilities of the honest states from different bases. Here, we 
take some specified values maxi{palways,i} =​ 932 μW and mini{pnever,i} =​ 647 μW for the simulation26. In this case, 
the range of θ that fulfils equation (2) is demonstrated in Fig. 1. We can see that if the selected value θ falls into the 
span of 0.586 ≤​ θ ≤​ 0.985, then dishonest Bob can launch the attack perfectly. However, when the θ is outside of 
the above range, Bob’s detector-blinding attack will introduce errors in Alice’s raw key. Note that θ = π

4
 is the case 

for J+11, and the equation (1) is also satisfied.
From the above attack we can conclude that it is crucial to ensure that the experimental implementations of 

QKD-based QPQ are also secure. However, there is a gap between the theory and practice of QPQ in terms of the 
single-photon detectors, which dishonest Bob may exploit to break the user privacy without being detected. To 
solve this problem, the MDI-QPQ protocol is proposed in the following.

Protocol of loss-tolerant MDI-QPQ.  For the purpose of being completely loss independent, we demon-
strate the polarization encoding MDI-QPQ protocol with single-photon sources.

(1)	 Bob sends, uniformly at random, one of the four polarized states |0〉​, |1〉​, and

θ θ

θ θ

′ = +
′ = −

0 cos 0 sin 1 ,
1 sin 0 cos 1 ,

b b b

b b b

Figure 1.  Relationship between the optical power of the pulse reaching the two detectors and the value of θ 
when Alice chooses a different basis with Bob. The dotted box indicates the range of θ that fulfils equation (2), 
which implies that dishonest Bob can launch a perfect detector-blinding attack.
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�to Alice, where θ ∈ π( )0,b 2
 and can be adjusted to make the protocol have different degree of security. The 

rectilinear basis {|0〉​, |1〉​} encodes the raw key bit 0, and the basis ′ ′{ 0 , 1 }b b  corresponds to the raw key bit 1.
(2)	 Alice prepares one of the four polarized states |0〉​, |1〉​, and

θ θ

θ θ

| ′ 〉 = | 〉 + | 〉

| ′ 〉 = | 〉 − | 〉

0 cos 0 sin 1 ,
1 sin 0 cos 1 ,

a a a

a a a

randomly and independently of Bob (the value of θa is related to θb and is calculated in next section in detail). 
Then, she projects her and Bob’s states into a Bell state (see Fig. 2). If the BSM does not output a Bell state, then 
Alice asks Bob to restart step (1). Otherwise, Alice records the measurement result. In fact, she needs to identify 
only the Bell state Ψ = −− ( 01 10 )1

2
, which means that the BSM can be built with only linear optical ele-

ments. Theoretical probabilities of obtaining the projection |Ψ​−〉​ for different combinations of the honest states 
are shown in Table 1. Repeat steps (1) and (2) until k ×​ N successful BSMs are made, where k is a natural number 
determined by the security analysis and N is the number of database’s bits. Note that this step will make the pro-
tocol completely independent of losses.
(3)	 For each trial Alice obtained a Bell state |Ψ​−〉​, Bob announces bit 0 to Alice if he has sent states |0〉​ or ′0b , 

while reveals bit 1 if he has sent states |1〉​ or ′1b .
(4)	 Alice decodes Bob’s states to acquire the corresponding raw key bits. It can be done depending on her state 

and the bit declared in step (3). The decoding process is given in next section specifically. Here, we take that 
the θ θ= = π

a b 4
 and Bob sends state |0〉​ as an example. Now Bob will announce bit 0. According to Table 1, 

Alice can rule out ′0b  and conclude that the raw key is 0 certainly only if she prepared the state ′0a . Both the 
conclusive and inconclusive raw key are retained.

(5)	 Now, a string of raw key with length k ×​ N are distributed between Bob and Alice, where Bob knows every 
bit value and Alice knows partially. Then, Bob cuts the raw key into N substrings of length k and tells each 
bit’s position to Alice. The bits of every substring are added bitwise by Alice and Bob to form their final key of 
length N, respectively. For reducing the computation complexity of the error-correction procedure, if Alice is 
left with no final key bit composed by k conclusive raw key bits, henceforth referred to query key in this paper, 
then the protocol has to be restarted.

(6)	 Alice and Bob perform error correction on Alice’s final key using the method proposed by Chan et al.18. After 
that, Alice estimates the error rate of every query key. If all the error rates are less than some prescribed value, 
10−3 for example18, then the protocol goes to the next step. Otherwise, the protocol aborts.

Figure 2.  Schematic diagram of loss-tolerant MDI-QPQ for the honest parties. The BS represents 50:50 
beam splitter, and PBS stands for polarization beam splitter. Alice and Bob prepare honest polarization states 
randomly with single-photon sources. Alice makes the BSMs. A joint click on D1H and D2V or D1V and 
D2H implies a projection into Bell state |Ψ​−〉​ and will be recorded by Alice. The red dotted box means that 
the classical information of Alice’s state preparation is not leaked to the BSM and Bob. The grey dotted box 
represents that Alice needs not to trust the BSM device.

(Combinations)

|Ψ−〉

|0〉 |1〉 ′0b ′1b

|0〉​ 0 1
2

θsin b
1
2

2 θcos b
1
2

2

|1〉​ 1
2

0 θcos b
1
2

2 θsin b
1
2

2

′0a θsin a
1
2

2 θcos a
1
2

2 θ θ−sin ( )b a
1
2

2 θ θ−cos ( )b a
1
2

2

′1a θcos a
1
2

2 θsin a
1
2

2 θ θ−cos ( )b a
1
2

2 θ θ−sin ( )b a
1
2

2

Table 1.   Theoretical probabilities of obtaining Bell state |Ψ−〉 for different combinations of the honest 
states. These can be calculated by the interferences of the honest states at the beam splitter.
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(7)	 Alice announces to Bob a shift value that will align one of the query key bits to the bit in the database she 
wants to retrieve. Then, Bob shifts his final key cyclically with this value, and uses the shifted key to encrypt 
his database by one-time-pad. Bob sends the encrypted database to Alice. Consequently, Alice can decode the 
queried item with that query key.

The security of MDI-QPQ is completely loss independent with single-photon sources. The reasons are as follows.  
First, we prove that the degree of insecurity for the database privacy is completely independent of the losses in 
practical system. Note that the four honest states are linearly dependent, implying that the unambiguous state dis-
crimination (USD) is not applicable here39. Moreover, the density matrix of the state received by Alice in step (2) is

∑ρ ρ= =
=

I1
4 2

,
(3)i

i
1

4

where I is the identity operator in two-dimensional Hilbert space, ρ ρ ρ= = = ′ ′0 0 , 1 1 , 0 0b b1 2 3 , and 
ρ = ′ ′1 1b b4 . Equation (3) means that the identity operator can be resolved as a weighted sum over the density 
matrix ρi, resulting that the maximal-confidence discrimination (MCD) of the four honest states can be done 
without inconclusive results40. Namely, the MCD coincides with the minimum-error discrimination (MED), and 
the maximal guessing probability cannot be increased by admitting inconclusive results. Therefore, in step (2), 
Alice cannot keep only the conclusive raw key by USD or MCD, and discard the inconclusive ones which can be 
attributed to the losses. On the other hand, thanks to the elegant design of SARG04 QKD, Alice still has to distin-
guish two non-orthogonal states even if she can store the photons and delay the measurements after step (3). If the 
distinguished result is uncertain, she has no chance to disregard it because this state has been declared detected 
successfully in step (2) and will be used for the following postprocessing. Consequently, Alice cannot know all the 
raw key, let alone the final key, no matter how many losses in the practical system.

As the BSM can be fabricated by a dishonest Bob, the measurement device can be designed to discriminate the 
four honest states randomly prepared by Alice, and announce the result to Bob through classical communication. 
The discrimination of Alice’s four honest states can be regarded as distinguishing the state ρ in equation (3) with 
ρ ρ ρ= = = ′ ′0 0 , 1 1 , 0 0a a1 2 3 , and ρ = ′ ′1 1a a4 . For the reasons explained above, Bob cannot resort to 
the USD and MCD to unambiguously distinguish Alice’s state. His optimal discrimination of Alice’s state is the 
MED. Thus, he would not determine the conclusiveness of Alice’s raw key with certainty. Namely, he will not 
acquire the position of the query key exactly at last. In a word, neither dishonest party will benefit from the losses 
in the practical implementation.

Correctness.  The degree of privacy for MDI-QPQ will be analyzed in three aspects. The first is the correct-
ness of the protocol when both parties are honest. It can be seen from Table 1 that, to make the protocol work 
correctly, the absolute value of the difference between θa and θb should satisfies

θ θ θ
π

π π∆ = − =







.

0 or ,

2
or 3

2 (4)
a b

As there is no difference in the performance of the protocol for Δ​θ =​ 0 and Δ​θ =​ π ( for θ∆ = π
2

 and θ∆ = π3
2

 as 
well), we will choose Δ​θ =​ 0 and θ∆ = π

2
 for demonstration. Now, the Table 1 becomes the Table 2.

We make an example to show how Alice obtains a conclusive raw key in the honest protocol. For Δ​θ =​ 0, if 
Bob has sent state |0〉​ and announced bit 0, according to Table 2, Alice can identify Bob’s state |0〉​ and thus the raw 
key 0 with certainty only if she has prepared state ′0a . However, she will obtain an inconclusive result if she pre-
pared states |1〉​ or ′1a . For θ∆ = π

2
, if Bob has sent state |0〉​ and announced bit 0, according to Table 2, Alice can 

identify Bob’s state |0〉​ and thus the raw key 0 with certainty only if she has prepared state ′1a . However, she will 
obtain an inconclusive result if she prepared states |1〉​ or ′0a .

As Alice selects the four states randomly, in the absence of noise, the probability that BSM yields the above 
conclusive raw key is

(Δθ = 0)

|Ψ−〉 |Ψ−〉

|0〉 |1〉 ′0b ′1b ( θ∆ = π
2

) |0〉 |1〉 ′0b ′1b

|0〉​ 0 1
2

θsin b
1
2

2 θcos b
1
2

2 |0〉​ 0 1
2

θsin b
1
2

2 θcos b
1
2

2

|1〉​ 1
2

0 θcos b
1
2

2 θsin b
1
2

2 |1〉​ 1
2

0 θcos b
1
2

2 θsin b
1
2

2

′0a θsin b
1
2

2 θcos b
1
2

2 0 1
2

′0a θcos b
1
2

2 θsin b
1
2

2 1
2

0

′1a θcos b
1
2

2 θsin b
1
2

2 1
2

0 ′1a θsin b
1
2

2 θcos b
1
2

2 0 1
2

Table 2.   Theoretical probabilities of obtaining Bell state |Ψ−〉 for Δθ = 0 and θ∆ = π
2

 in the honest 
protocol.
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θ

θ θ

θ

=
×

× + +

=

( )
p

sin

sin cos

sin
2

,
(5)

c
b

b b

b

1
4

1
2

2

1
4

1
2

1
2

2 1
2

2

2

for both Δ​θ =​ 0 and θ∆ = π
2

. Without error correction, the average number of Alice’s query key is =n N p( )c
k. 

The probability that she will know none query key is p0 =​ [1 −​ (pc)k]N. It implies that the correctness of MDI-QPQ 
is the same with G+12 in the noiseless case. For databases with different number of bits N, we can choose suitable 
k and θb to make both the n and p0 be small.

In the presence of noise, the error rate of the query key before error correction is

∑= −
=

−( )
( )

e k
i

e e(1 ) ,

(6)
k

i
i

k

c
i

c
k i

1
odd

where ec is the error rate of the conclusive raw key and odd errors happened in the the query key’s k conclusive 
raw key bits. The relationships between the error rates ek and ec for different k are shown in Fig. 3. It can be seen 
that even for very little noise, the error rate of the query key will increase to the threshold value 10−3 quickly. Thus, 
it is necessary to add the error-correction procedure18 into the protocol.

Database privacy.  Dishonest Alice will try to know as many query key as possible. Assume that Alice con-
trols everything except Bob’s single-photon source. It is in Alice’s best interest to replace the noisy channel with 
a noiseless one to receive the states correctly each time. Although it is no matter that the channel is lossy, the all 
powerful dishonest Alice can use a lossless one instead. We also suppose she has perfect detectors and perfect 
quantum memories.

The imperfect privacy of database is guaranteed by the theorem that nonorthogonal quantum states cannot 
be distinguished perfectly41. And Alice must announce which states have been projected to Bell state |Ψ​−〉​ suc-
cessfully before Bob tells some classical information of his sent states. Therefore, Alice inevitably obtains some 
inconclusive raw key with certain probability, which results in inconclusive final key.

As analyzed in J+11 and G+12 protocols10,12, Alice can increase the probability pc by storing the received pho-
tons in quantum memories and performing the USD measurements after step (3). The successful probability of 
the USD, for Bob’s announced two honest states, is θ− ′ = −1 0 0 1 cosb b. Thus, the MDI-QPQ will obtain 
better database privacy for small θb.

In this cheating strategy, Alice deviates from the MDI protocol to obtain more items of the database. However, 
our protocol is designed to protect only an honest Alice. Thus, it does not matter that the advantage of the MDI 
paradigm will not exist for a dishonest Alice.

User privacy.  Dishonest Bob will try to acquire the position of the item Alice queries. In the following, we 
will analyze the user privacy under the fact that Alice does not have to trust her measurement device. That is to 
say, we assume that the measurement device is built by dishonest Bob which contains his cheating equipment. 
Because the outcome of the measurement cannot reveal Alice’s state with certainty, the measurement device 
can send classical information to Bob. These are equivalent to that the measurement device is placed in Bob’s 
side and Bob announces the measurement results. Thus, all the detector side channels are removed. What Alice 
needs only to pay attention is to protect the classical information of her state preparation from leakage to the 

Figure 3.  Relationships between the error rates ek of the query key without error correction and ec of the 
conclusive raw key for k = 4, k = 7 and k = 10 (from right to left). 
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untrusted measurement device and Bob. Moreover, we suppose that both parties’ single-photon sources, the 
channels and the detectors are perfect. All these conditions will maximize the probability that Bob knows the 
item Alice queries.

Empty-pulse attack.  Based on the above assumptions, we first introduce an empty-pulse attack in which Bob 
does not send any state in step (1). However, Bob places a cheating equipment in the measurement device to dis-
criminate Alice’s states with minimum error rate. The measurement device will send the discrimination result to 
Bob and output a BSM projection randomly to honest Alice. Note that the four states sent randomly by Alice are 
pairs of two orthogonal states with the same prior probability 1

4
. Thus, the guessing probability of the four honest 

states for the MED is 1
2

42. Namely, Bob’s discrimination has an error rate of 1
2

.
For instance, assume Δ​θ =​ 0 and the result of the MED is state |0〉​. According to Table 2, Bob announces 0 in step 

(3) to expect Alice to acquire conclusive raw key 1. If the MED is right, Bob gains the information both on the con-
clusiveness and bit value of Alice’s raw key. However, if the MED is wrong, Alice will obtain conclusive key only if she 
prepares state ′0a . Now, Alice deems the raw key value is 0, which is different from Bob’s expectation. As Alice pre-
pares the states randomly, in the empty-pulse attack the probability that Alice has conclusive raw key is

= + ×

=

p 1
2

1
2

1
4

5
8

,
(7)

c
emp

and the bit error rate of Bob’s corresponding raw key is 1
2

.

Middle-state attack 1.  Another more powerful attack is the middle-state attack proposed in the security analysis 
of J+11 and G+12 protocols10,12. In the middle-state attack on MDI-QPQ, Bob keeps the measurement device 
doing the BSM. However, instead of transmitting the honest states to Alice in step (1), he sends the middle state 
″0b  (or ″1b ) and announcing 1 (or 0) in step (3) to expect Alice to acquire a conclusive raw key. The forms of the 

two middle states are that

θ θ

θ θ

″ = +

″ = − .

0 cos
2

0 sin
2

1 ,

1 sin
2

0 cos
2

1

b
b b

b
b b

The theoretical probabilities for the middle states and Alice’s honest states being projected into Bell state |Ψ​−〉​ are 
shown in Table 3. Take the example that Bob sends state ″0b  and announces bit 1. From Table 3 and the part of 
Table 2 for Δ​θ =​ 0, it can be seen that Alice will obtain a conclusive raw key if she prepares states |1〉​ or ′1a . As for 
Δ​θ =​ π/2, Alice will obtain a conclusive raw key if she prepares states |1〉​ or ′0a . Because Alice prepares the states 
randomly, as shown in Table 3, the probability of obtaining a conclusive raw key in both cases is

θ

=
× × +

× × + + +

= .

θ θ

θ θ θ θ

( )
( )

p
cos cos

sin cos sin cos

cos
2 (8)

c

b

1
mid1

1
4

1
2

2
2

2
2

1
4

1
2

2
2

2
2

2
2

2
2

2

b b

b b b b

If Bob wants Alice to obtain an inconclusive raw key, he sends ″0b  (or ″1b ) but announces 0 (or 1). Now, Alice will 
gets a conclusive result with probability

θ

=
× × +

× × + + +

= .

θ θ

θ θ θ θ

( )
( )

p
sin sin

sin cos sin cos

sin
2 (9)

c

b

2
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1
4

1
2

2
2

2
2

1
4

1
2

2
2

2
2

2
2

2
2

2

b b

b b b b

for both Δ​θ =​ 0 and θ∆ = π
2

.

(Δθ = 0)

|Ψ−〉 |Ψ−〉

|0〉 |1〉 ′0a ′1a ( θ∆ = π
2

) |0〉 |1〉 ′0a ′1a
″0b

θsin b1
2

2
2

θcos b1
2

2
2

θsin b1
2

2
2

θcos b1
2

2
2

″0b
θsin b1

2
2

2
θcos b1

2
2

2
θcos b1

2
2

2
θsin b1

2
2

2

″1b
θcos b1

2
2

2
θsin b1

2
2

2
θcos b1

2
2

2
θsin b1

2
2

2
″1b

θcos b1
2

2
2

θsin b1
2

2
2

θsin b1
2

2
2

θcos b1
2

2
2

Table 3.   Theoretical probabilities of obtaining Bell state |Ψ−〉 for different combinations of Bob’s cheating 
states and Alice’s honest states in the first middle-state attack.
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The relationships between pc, pc1
mid1, pc2

mid1 and θb are plotted in Fig. 4. We can see that Bob can increase or 
decrease the conclusiveness of Alice’s raw key in the middle-state attack. Thus, he will improve the accuracy of the 
estimation for Alice’s query address. However, it can be viewed from Tables 2 and 3 that now Alice will register the 
conclusive raw key bit value as 0 or 1 with equal probability, implying that the bit error rate of Bob’s corresponding 
raw key is 1

2
.

Middle-state attack 2.  There is another middle-state attack in which Bob can reduce the bit error rate of his raw 
key at the price of compromising his control of the conclusiveness of Alice’s raw key. The difference with the above 
one is that Bob now sends the following two middle states

θ θ

θ θ

″ = +

″ = − .

0 cos
2

0 sin
2

1 ,

1 sin
2

0 cos
2

1

b
a a

b
a a

The theoretical probabilities for these two middle states and Alice’s honest states being projected into Bell state 
|Ψ​−〉​ are shown in Table 4. For the case Δ​θ =​ 0, the two middle-state attacks are the same. In the following, we 
consider only the situation θ∆ = π

2
 and assume the parties select θ θ= + π

a b 2
. When Bob chooses the cheating 

strategy of sending the middle state ″0b  (or ″1b ) and announcing 1 (or 0), the probability which Alice obtains 
conclusive raw key is a constant

=
× × + + +

× × × + + +

= .

θ π θ π

θ π θ π

( )
( )

( ) ( )
( ) ( )

p
sin cos

2 sin cos

1
2 (10)
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2 4
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b b

If Bob chooses sending ″0b  (or ″1b ) but announces 0 (or 1), Alice will gets a conclusive raw key with =pc2
mid2 1

2
 

as well. It implies that the conclusiveness of Alice’s raw key is independent of Bob’s cheating strategies. Comparing 
with pc1

mid1 and pc2
mid1, it shows that Bob has limited control over Alice’s raw key.

Figure 4.  The probabilities of Alice acquiring a conclusive raw key in the honest protocol and in the first 
middle-state attack for different θb. The curves represent pc1

mid1, pc and pc2
mid1 from up to down.

(Δθ = 0)
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Table 4.   Theoretical probabilities of obtaining Bell state |Ψ−〉 for different combinations of Bob’s cheating 
states and Alice’s honest states in the second middle-state attack. The operator ‘+​’ in ‘±​’ stands for the case 
θ θ− = π

a b 2
, while the operator ‘−​’ in ‘±​’ represents the case θ θ− = − πa b 2

.
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Take the cheating strategy that Bob sends the middle state ″0b  and announces 1 for instance. Alice will obtain 
a conclusive raw key if she prepares state |1〉​ or ′0a . Seeing Table 4, the probability for states combination ′{ 0a  and 
″0 }b  being projected into |Ψ​−〉​ is larger than the combination {|1〉​ and ″0 }b . Thus, it is reasonable for Bob to guess 

that Alice has prepared state ′0a  under the hypothesis that she obtained a conclusive result. If this is indeed the 
case, then Alice’s conclusive raw key bit is 0. However, if in fact, Alice prepares the state |1〉​, she will identify the 
conclusive raw key bit 1 and Bob has a error in this raw key. Thus, the error rate of Bob’s raw key when compared 
with Alice’s conclusive results is

θ π

=
× × +

× × + + +

=



+


.

θ π

θ π θ π( )
( )

( ) ( )
e

cos

sin cos

cos
2 4 (11)

b

b

mid2

1
4

1
2

2
2 4

1
4

1
2

2
2 4

2
2 4

2

b

b b

The relationship between eb
mid2 and θb is plotted in Fig. 5. It shows that if Bob pursues a low error rate of his raw 

key for θ∆ = π
2

, he can perform the second middle-state attack.
Comparing the two middle-state attacks, it shows that there is a trade-off between the control of the conclu-

siveness and knowing the value of Alice’s raw key. The first one allows Bob to obtain strong control on the conclu-
siveness of Alice’s raw key while makes him completely ignore of the key’s value. On the other hand, the second 
one let Bob know nonvanishing information on the value of the raw key, but his control on the key is limited.

In the above three attacks once Bob tries to gather more information on Alice’s query item than the honest 
protocol, it will make him loss the information on the raw key bit value, even he can control the measurement 
device. By designing the error-correction code properly, Bob’s final key is still not exactly the same with Alice’s 
corresponding query key at last18, which means that he may provide wrong answers. And it can be detected by 
Alice at a later time with a nonvanishing (but nonunity) probability. It shows that loss-tolerant MDI-QPQ is cheat 
sensitive for user privacy.

Actually, seeing Table 2, if Bob knows that one of Alice’s raw key is conclusive and its bit value is 0 (or 1) at the 
same time, then he can also correctly guess that the basis Alice used to prepare her state is ′ ′{ 0 , 1 }a a  (or {|0〉​,  
|1〉​}) (note that in J+11 and G+12, Bob will correctly guess the basis Alice used to measure the state she received). 
However, since Alice has protected the classical information of her state preparation from leakage to Bob, the 
no-signaling principle implies that Bob’s probability to guess her basis correctly is no more than 1

2
. Thus, in 

MDI-QPQ, dishonest Bob cannot simultaneously have the bit value and the conclusiveness information of Alice’s 
raw key, which is similar to J+11 and G+12 protocols10,12.

Discussion
We have proposed a detector-blinding attack launched by dishonest Bob on the practical QKD-based QPQ sys-
tem. Specifically, perfect detector-blinding attack is always possible for practical J+11 system, and is possible for 
G+12 with a certain range of θ. However, the detector-blinding attack may introduce some errors in Alice’s raw 
key with smaller and larger θ value for G+12. To make the practical QKD-based QPQ systems secure again, we 
proposed the method of loss-tolerant MDI-QPQ. Compared with previous QKD-based QPQ, it has a distinct 
advantage of removing all the detector side channels. We have proven the security of loss-tolerant MDI-QPQ 
under some typical attacks. It would be meaningful to have a more general security analysis in the future. 
Moreover, the source flaws should be considered in the security analysis, because it has been assumed that both 
parties’ sources are trusted in this paper. We should examine this condition carefully in practice.

Figure 5.  The relationship between the error rate of Bob’s raw key and θb in the second middle-state attack 
for θ∆ = π

2
.
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For the experiment of the proposed loss-tolerant MDI-QPQ, it can benefit from the rapid development of 
MDI-QKD experiments28–35 with only few necessary modifications. The major changes for the quantum process 
are the coefficients of the states prepared by both parties and they have to use single-photon sources. The remain-
ing setups, like the BSM device, do not need to be modified. It shows that our proposal is feasible with the existed 
MDI-QKD experiments.

In the experiments of quantum cryptography, a PR-WCS source is always used to substitute the single-photon 
source, which is not easy for state-of-the-art technology. However, when we employ PR-WCS sources, the secu-
rity of MDI-QPQ may be compromised due to the multi-photon pulses. Note that one could close the potential 
security loophole by limiting the total number of transmitted pulses, resulting that the protocol maybe not com-
pletely loss independent43. Another problem is that the projection |Ψ​−〉​ from the case when the parties prepare the 
states in bases ′ ′{ 0 , 1 }a b a b( ) ( )  will introduce a high inherent error rate for Alice’s raw key. Thus, an appropriate 
error-correction code is needed for the correctness of the protocol. Or one can refer the setup proposed for 
MDI-SARG04 QKD with PR-WCS sources44. We will deal with these obstacles in the following research to make 
the loss-tolerant MDI-QPQ more practical.
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