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Based on the complex network theory, robustness analysis of condition monitoring wireless sensor network under uncertain
interference is present. In the evolution of the topology of sensor networks, the density weighted algebraic connectivity is taken
into account, and the phenomenon of removing and repairing the link and node in the network is discussed. Numerical simulation
is conducted to explore algebraic connectivity characteristics and network robustness performance. It is found that nodes density
has the effect on algebraic connectivity distribution in the random graph model; high density nodes carry more connections, use
more throughputs, and may be more unreliable. Moreover, the results show that, when network should be more error tolerant or
robust by repairing nodes or adding new nodes, the network should be better clustered in median and high scale wireless sensor
networks and be meshing topology in small scale networks.

1. Introduction

Currently, wireless sensor networks have been deployed for
condition monitoring application. In industrial harsh envi-
ronment, there are many kinds of uncertain interference, for
example, energy dependence, dynamic topological update,
and varying large number of nodes, and these make WSN a
type of complex system.

Under uncertain industrial environment, robustness is an
important property. Robustness is often defined as invari-
ance degree of state, behavior, and function or the adap-
tation/flexibility degree under interference of perturbations.
Robust analysis of wireless sensor networks is intractable and
challenging.

There are three models of complex network [1–3]. The
first model is the Erdős-Rényi model of random graphs, the
second model is small-world model, and the third model is
scale-free model of the power-law degree distribution.

Papers [4–12] proved that many complex systems display
a surprising degree of tolerance for errors. Robustness of
wireless complex networks can be enhanced by optimization
of networks topology or by repair of its faults.

Papers [13–18] discuss that second smallest eigenvalue of
the Laplacian matrix (algebraic connectivity) plays a special
role for the robustness of networks using the Erdős-Rényi
random graph, as an example for the model of condition
monitoring wireless sensor networks.

Papers [19–27] study the ability to control networks.
Recent work has extended the concept of pinning control and
structural controllability to complex networks and so on.

With the fundamentals of these, the paper focuses on the
research of topology choice and repairing control based on
density weighted algebraic connectivity; when the vertex and
links are not always constant, they can change with time.

The contributions of the paper are (1) weighted and
changeable algebraic connectivity analysis in random net-
work and (2) presenting a method to do topology choice and
repairing control of different topology of wireless sensors,
for example, the star topology, the tree-cluster topology, the
mash topology, and so on.

The paper is arranged as follows: in Section 2, the related
works are introduced; in Section 3, the research method of
the paper is described; in Section 4, the simulation and its
discussion are presented; in Section 5, the conclusion is given.
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Figure 1: Threshold probabilities at which different subgraphs
appear in a random graph.

2. Related Work

2.1. Statistics Results of Erdős and Rényi Model. A network is
represented as an undirected graph 𝐺 = (𝑁, 𝐿) consisting of
𝑁 = |𝑁| nodes and 𝐿 = |𝐿| links.

Erdős and Rényi define a random graph as 𝑁 labeled
nodes connected by 𝑛 edges, which are chosen randomly
from the 𝑁(𝑁 − 1)/2 possible edges. In total there are
𝐶
𝑛

[𝑁(𝑁−1)/2]
graphs with𝑁 nodes and 𝑛 edges. An alternative

and equivalent definition of a random graph is the binomial
model, and following properties of the random graph can be
determined asymptotically [1].

(i) In ER model, there is a critical probability 𝑝
𝑐
(𝑁). If

𝑝(𝑁) grows more slowly than 𝑝
𝑐
(𝑁) as 𝑁 → ∞,

then almost every graph with connection probability
𝑝(𝑁) fails to have property 𝑄. If 𝑝(𝑁) grows some-
what faster than 𝑝

𝑐
(𝑁), then almost every graph has

the property 𝑄.
(ii) The critical probability at which almost every graph

contains a subgraph with 𝑘 nodes and edges is
𝑝
𝑐
(𝑁) = 𝑐𝑁−𝑘/𝑙. (a) The critical probability of having

a tree of order 𝑘 is 𝑝
𝑐
(𝑁) = 𝑐𝑁−𝑘(𝑘−1); (b) the critical

probability of having a cycle of order 𝑘 is 𝑝
𝑐
(𝑁) =

𝑐𝑁−1; (c) the critical probability of having a complete
subgraph of order 𝑘 is 𝑝

𝑐
(𝑁) = 𝑐𝑁−2/(𝑘−1).

(iii) The useful threshold probabilities for WSN at which
different subgraphs appear in a random graph are
shown in Figure 1. At 𝑝 ∼ 𝑁−1 trees of all orders
are present, and at the same time cycles of all orders
appear. The probability 𝑝 ∼ 𝑁−2/3 marks the appear-
ance of complete subgraphs of order 4; 𝑝 ∼ 𝑁−1/2

corresponds to complete subgraphs of order 5. As 𝑧

approaches 0, the graph contains complete subgraphs
of increasing order.

(iv) The expectation value of the number of nodes with
degree 𝑘 has a passion distribution.

(v) A general conclusion is that, for most values of
𝑝, almost all graphs with the same 𝑁 and 𝑝 have
precisely the same diameter.

(vi) The clustering coefficient of a random graph is for-
mula

𝐶rand = 𝑝 =
⟨𝑘⟩

𝑁
. (1)

2.2. Algebraic Connectivity of Erdős and Rényi Model. The
Laplacian matrix of a graph 𝐺 with 𝑁 nodes is an 𝑁 × 𝑁

matrix 𝑄 = Δ − 𝐴, where Δ = diag (𝐷
𝑖
). 𝐷
𝑖
denotes the

nodal degree of the node 𝑖 ∈ 𝑁 and𝐴 is the adjacency matrix
of 𝐺.

The asymptotic behavior of the algebraic connectivity in
the Erdős-Rényi random graph 𝐺

𝑝
(𝑁) is as follows: for any

𝜀 > 0,

𝜆
𝑁−1

= 𝑝𝑁 + 𝑜 (𝑁
1/2+𝜀

) , (2)

where the algebraic connectivity converges in probability as
𝑁 → ∞.

Paper [18] defined that the correlation coefficient of the
degrees𝐷

𝑖
and𝐷

𝑗
of two random nodes 𝑖 and 𝑗 in 𝐺

𝑝
(𝑁) for

0 < 𝑝 < 1 is

𝜌 (𝐷
𝑖
, 𝐷
𝑗
) =

Cov [𝐷
𝑖
, 𝐷
𝑗
]

√Var [𝐷
𝑖
]√Var [𝐷

𝑗
]

=
1

𝑁 − 1
. (3)

At large graph size 𝑁, the distribution of the algebraic
connectivity will rapidly approach the mean value. And the
distribution of the algebraic connectivity grows linearly with
the minimum nodal degree, 𝜆

𝑁−1
≈ 𝐷min.

And the larger the algebraic connectivity is, the better the
graph’s robustness of node and link failures is.

3. Weighted and Changeable Algebraic
Connectivity of WSN

3.1. Weighted Algebraic Connectivity. Figure 2 shows the sim-
plest topology of normal equipment condition monitoring
WSN.

In Figure 2, the vertex number of graph is seven. There is
a very interesting phenomenon that if we omitted the vertex
of sink node, the network should be almost connected with
equal probability 𝑝 (𝑘 of 𝑁 nodes).

In time domain, this omitted network graph can be
looked as a random graph. (For the data transmit, the
connected link is at probability 𝑝.)

Here the average degree of a vertex in this network is

𝑝
𝑘
= (

𝑁 − 1

𝑘
)𝑝
𝑘

(1 − 𝑝)
𝑁−1−𝑘

≅
𝑧𝑘

𝑘!
𝑒
−𝑧

. (4)

If 𝑁 were large, this distribution should be looked to as
the Poisson distribution.

(1) Medium Complexity Topology of Normal Condition Mon-
itoring WSN. As shown in Figure 3, the vertex number of
graph is almost 21. In the left and right of Figure 3, the density
of a network (number of nodes in an area) is the same, but
possibility of links is different. There is also a phenomenon
that if the vertex of route node was omitted, the network
should be almost connected with equal probability 𝑝 if they
had the same density. And, if the density is large, the vertex
degree of graph is large.
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Figure 2: Simplest topology of normal condition monitoring WSN.
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Full function node
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Figure 3: Modern complexity topology of normal condition moni-
toring WSN.

The omitted network graph can also be looked to as a
random graph. And the network made from route nodes and
sink nodes has similar property with mesh network.

(2) Large Complexity Topology of ConditionMonitoringWSN.
When there are hundreds of nodes in a wireless condition
monitoring network and the network consists of many
similar areas that have independent functions, and then we

can define this every area as a cell of network.Then if the cell
of network has the same topology as Figure 2, then it has the
similar results as (1).

The eigenvalues of𝑄 are called the Laplacian eigenvalues.
The Laplacian eigenvalues 𝜆

𝑁
= 0 ⩽ 𝜆

𝑁−1
⩽ ⋅ ⋅ ⋅ ⩽ 𝜆

1

are all real and nonnegative. The second smallest Laplacian
eigenvalue 𝜆

𝑁−1
is also known as the algebraic connectivity.

Lemma 1. Algebraic connectivity of wireless star, cluster-tree,
or mesh network has below properties:

For an ideal full-function mesh network, algebraic
connectivity is proportional with density of network.
For an ideal star or cluster-tree network, the end
nodes have similar algebraic connectivity; algebraic
connectivity of the route nodes and AP (or coordinator)
is proportional with density of network.
For complex WSN, algebraic connectivity has a weight;
the simplest example of the weight is density of network.

3.2.The Influence Function ofWeightedAlgebraic Connectivity.
To discuss the robustness of WSN, here two connectivity
metrics of 𝐺 are introduced: (1) the link (edge) connectivity
𝜅
𝐿
is the minimal number of links whose removal would

disconnect 𝐺; (2) the node (vertex) connectivity 𝜅
𝑁

is
defined analogously (nodes together with adjacent links are
removed).

The robustness of network graph has a relationship with
algebraic connectivity; the algebraic connectivity of a graph is
increased with the node and the link connectivity. In another
way, robustness has a relationship with error tolerance of
network. Two types of node removal were considered. The
first type was that all the nodes were randomly removed.The
second type was that the most highly connected nodes were
of more reliability nodes; other was the same as type 1.

Definition 2 (influence function set of network). In graph 𝑅

of network, if the subgraph 𝑅
1
is not connected with Sink (or

network access point node) node, then subgraph is 𝑅
1
graph,

and connected graph is 𝑅-𝑅
1
graph.
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If 𝑅
1
occurred from removal of node 𝑘, then ratio of

𝐸
𝑘
= 𝑅
1
/𝑅means the destroy effect of node 𝑘, called influence

function of node 𝑘.
The sum of 𝐸

𝑖
is called one-dimension influence function

of network
𝑛

∑
𝑖=1

𝐸
𝑖
= IFnet, 𝑖 ∈ 𝑅. (5)

If 𝑘
1
, 𝑘
2
were removed,𝐸

1,2
were called influence function

of nodes 𝑘
1
, 𝑘
2
. If the removed nodes were sets, for example,

the removed nodes sets are ℘𝐾 = {𝐾
1
, 𝐾
2
, . . .}, 𝐾

1
= {𝑘
1
, 𝑘
2
},

𝐾
2

= {𝑘
3
, 𝑘
4
}, then the ℘𝐸 = {𝐸

𝐾
1

, 𝐸
𝐾
2

, . . .} is the influence
function set of network.

Definition 3 (influence function set of weighted algebraic
connectivity). Propose the density (weighted) stands for
more easy to produce congest, and to be more unreliability.
Here density weighted influence function set of network is
defined. It has a relationship with throughput, energy cost,
and so on.

Lemma 4. An ideal random network means that there are no
determining factors that can infect network communication, for
example, (nodes) density, (effective) communication distances.
Then the mean or least square mean of connectivity is opti-
mum estimation value, and meanwhile the network may be
microstable (less intermoving) or reliable.

Note. In ZigBee, there are phenomena of near neighbor
ring, hidden nodes, and so on. In WirelessHart, there are
phenomena of limited connective number, loss of noisy node,
and so on. They have not been studied in detail in the paper.

3.3. Changeable Algebraic Connectivity. There are some dif-
ferent kinds of model of time-varying topologies: (1) the
switching topology which refers to a deterministically time-
varying model where, at each time instant, the network
adopts a topology from a known set; (2) random topologies,
in the presence of random failures caused by working under
uncertain interference, for instance, changes in the environ-
ment, mobility of the nodes, asynchronous sleeping periods,
or randomized communication protocols; the topology of a
WSN varies randomly with time; (3) E-R model.

Whenwireless sensor networks are working under uncer-
tain interference, nodes and links may lose effect momentar-
ily or permanently. And the topology may be different with
random topologies.

When the links are added or removed unpredictably
from the set at any time, the graph can be looked to as the
realization of a random process. WSN are normally exposed
to random communication failures caused by uncertain
interference, and these communication impairments cause
abrupt changes in the connectivity of the network, which are
described by means of a random graph,

𝐴
𝑘
= 𝐴
𝑘−1

⋅ 𝐵
𝑡
,

𝐵
𝑡
= 𝐼, 𝑡 < 𝑡

𝑐
,

𝐵
𝑡
= 𝐼 + Δ𝐵, 𝑡 > 𝑡

𝑐
.

(6)

When considering formula (6), the connectivity matrix
𝐴 is changed after time 𝑡

𝑐
. And meanwhile the algebraic

connectivity of graph is changed.
Then the algebraic connectivity 𝜆

𝑁−1
is random variable;

its distribution with the losing effective nodes is important to
improve the robustness of complex networks, by optimization
of complex networks topology or by repairing the damage
nodes of complex networks.

4. Simulation and Test Results

The state of the network can be simplified as linear system:

�̇� (𝑡) = −L𝑥 (𝑡) , (7)

where 𝑥(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑁
(𝑡)]
𝑇 is the vector of all

states at time 𝑡 and L ∈ R𝑁×𝑁 is the Laplacian matrix
associated with the graph.

A discrete implementation of the expression of (7) is

𝑥
𝑖
(𝑘 + 1) = ∑

𝑗∈𝑁
𝑖
∪{𝑖}

𝑤
𝑖𝑗
𝑥
𝑗
(𝑘) , 𝑘 ≥ 0. (8)

Different from weighted algebraic connectivity, 𝑤
𝑖𝑗
is

nonzero weight assigned by node 𝑖 to the information
received from node 𝑗, satisfying

∑
𝑗∈𝑁
𝑖
∪{𝑖}

𝑤
𝑖𝑗

= 1. (9)

More generally, the linear control systems are described
by the following state equation:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) , (10)

where 𝑥(𝑡) = {𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . 𝑥

𝑁
(𝑡)}
𝑇, which is the state of

a system of 𝑁 nodes at time 𝑡. 𝐴 is the 𝑁 × 𝑁 adjacency
matrix of the network representing the system. 𝐵 is the
𝑁 × 𝑀 input matrix, which identifies the nodes where the
input signals are imposed. The input signal vector 𝑢(𝑡) =

{𝑢
1
(𝑡), 𝑢
2
(𝑡), . . . 𝑢

𝑁
(𝑡)}
𝑇 is a time-dependent input signal

vector. The state of each node at each time step is controlled
by the linear combination of the elements of the input vector.

4.1. Weighted Algebraic Connectivity and Not Weighted Alge-
braic Connectivity. In wireless condition monitoring net-
work, supposing whether nodes can be connected or not only
relies on its effective communication distance. As shown in
Figure 4, the density of nodes and the topology of networks
are two important factors to research communication links.

(1) The Relationship between Density and Connectivity. Simu-
latemethod: in certain area, using different numbers of nodes
circulate its connectivity.

The connectivity is defined as the successful connection
possibility when random deploy nodes in this area 100 times.
When numbers of nodes are above than or equal to 10,
the networks have a reliability of connectivity (as shown in
Figure 5). So the theory of effective distance is less than 0.47.
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Figure 4: Different topology and its communication links in a certain area (left is random mesh; right is star).
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Thismeans, in wireless conditionmonitoring network, an
effective distance of random network should be larger than
half of monitoring area. Considering its physical communi-
cation ability, the edge of monitoring cell is defined as twice
times of its effective distance.
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Figure 7: The relationship between throughput of network and
density.

(2) The Relationship between Algebraic Connectivity and
Density When the Effective Distance Is about 0.5. As shown
in Figure 6, discrete algebraic connectivity is varied with the
density (or number of nodes in certain area); the useful value
of algebraic connectivity is a flat plain of certain density
(10–20 nodes in a cell). The reason is too large the density
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Figure 8: The relationship between random destruction number of node and connectivity.
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form another different subgraphs and outlier of algebraic
connectivity.

(3) The Relationship between Network Throughput and Den-
sity. In simulation, throughput is only comprised of the
transmitting sense data; the network management steam

is not considered. As shown in Figure 7, when density of
network is large, the throughput of network became very
large, such that the value is almost 10 k byte per second. So
the density of network should not be large.

As discussed in (2) and (3), this gives the property of
density weighted algebraic connectivity.
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4.2. Robustness Analysis of Random Complex Network

(1) The Relationship between Random Destruction Number
of Node and Connectivity. As shown in Figure 8, when
random destruction of node is larger than its degree, then the
connection of network can be destroyed.

(2) The Robustness Analysis of Random Complex Network.
Consider a new graph that includes the plant’s sensors and
actuator, where the plant is controlled using a multihop
wireless network. In applied layer application, condition
monitoring parameters are measured by sensors and trans-
mitted in networks; the networks construction changed with
uncertain interference; this output is different with ordinary
output with its random delay, packets loss rate, and so on.

There are two kinds of data; one kind is distributed data.
It combined lots of nodes to get a useful data, as shown in
formula

𝑥 [𝑘 + 1] = (𝐴 + Δ𝐴) 𝑥 [𝑘] + (𝐵 + Δ𝐵) 𝑢 [𝑘] ,

𝑦 [𝑘] = (𝐶 + Δ𝐶) 𝑥 [𝑘] .
(11)

The another kind is standalone data, when can be
described as a function, like

𝑦
𝑖
(𝑡) = 𝑓 (𝑥

𝑖
(𝑡)) + Δ𝑓 (𝑥

𝑖
(𝑡)) . (12)

An example delay of wireless HART network is

𝑇 𝑑 = −0.0011 × 𝑛
2

+ 0.24 × 𝑛 − 1.3333, 𝑛 > 50,

𝑇 𝑑 = 0.1029 × 𝑛 + 2, 𝑛 < 50.
(13)

Suppose that loss of effective nodes is relay nodes, and
then delay time value is changed in normality distribution
way; its means is zero. Its standard deviation has a relation-
ship with connectivity.

As a result, if delay time is shorter than sample time,
delays will do less interference with LTI system. And if the
packet loss rate was less than 15% (use true time simulate
using CSMA/CA, TDMA), spring damper system should
work normally with little performance degrade (as shown in
Figure 9).

If the system is not connected, should repair it.This robust
control problem is to find control scheme to obtain system
robustness. That includes two factors: the first is topology
selection; the second is repairing scheme.

Assumption 5. If the connected degree distribution was
Poisson distribution, the Packet loss rate under uncertain
interface should follow the Poisson distribution.

Then this becomes a time-space transmitting processing
problem.

In every time slot different density (data transmitting
rate), themost possibility of losing packet is shown in Figures
10 and 11.

Conclusion. It is obvious that the cluster-tree, star-mesh
topologies are easier than only mesh network to repair the
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Figure 10: The time and space domain losing packet rate at lower
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network for its small algebraic connectivity and communica-
tion links. And it uses self-repairing or deploying new nodes
to repair network.

But center nodes are more important and fragile than
other nodes in these topologies. If they are to be novel
stronger than other nodes, inmedian and large networks, this
topology may have large possibility to be more robust than
mesh topology in median and large scale networks. And, in
small scale network,mesh topologymay have large possibility
to be more robust than other topology.

5. Conclusions

The cluster-tree, star-mesh topologies are easier than only
mesh network to repair the network and may have large
possibility to be more robust than mesh topology in median
and large scale networks. In small scale network, mesh
topology may have large possibility to be more robust than
other topology.
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If random destruction of node was larger than its alge-
braic connectivity, the connection of network should be
broken out.

The properties of density weighted algebraic connectivity
are two factors: one is that the useful value of algebraic
connectivity is in certain density; the other is an effective
network in which the density of network should not be large.
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